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We investigate the geometry with respect to several distance-based quantifiers of coherence for
Bell-diagonal states. We find that as both l1 norm and relative entropy of coherence vary continu-
ously from zero to one, their related geometric surfaces move from the region of separable states to
the region of entangled states, a fact illustrating intuitively that quantum states with nonzero co-
herence can be used for entanglement creation. We find the necessary and sufficient conditions that
quantum discord of Bell-diagonal states equals to its relative entropy of coherence, and depict the
surfaces related to the equality. We give surfaces of relative entropy of coherence for X states. We
show the surfaces of dynamics of relative entropy of coherence for Bell-diagonal states under local
nondissipative channels and find that all coherences under local nondissipative channels decrease.

I. INTRODUCTION

Quantum coherence originates in the superposition of quantum states. As a physical resource[1–3]

like quantum entanglement and other quantum correlations, quantum coherence is an essential ingredi-

ent in quantum information processing[4–6], quantum metrology[7–9], quantum optics[10–12], nanoscale

thermodynamics[13–18] and quantum biology[19–23]. Recently, a rigorous framework to quantify coherence

has been proposed[3]. And a number of quantum coherence measures, such as the l1 norm of coherence[3],

the relative entropy of coherence[3], trace norm of coherence[24], Tsallis relative α entropies[25] and Rel-

ative Rényi α monotones[26], have been presented. With these coherence measures, many properties of

quantum coherence, such as the relations between quantum coherence and quantum correlations[27–31], the

fact that the relative entropy of coherence decreases strictly for all nontrivial evolutions in the dynamics of

coherence[32], the freezing phenomenon of coherence[32, 33], have been investigated.

The geometry of Bell-diagonal states, including the separable and classical subsets, can be depicted in

three dimensions[34, 35]. Level surfaces of entanglement and nonclassical measures can be plotted directly

in terms of such three-dimensional geometry. The complete structure of entanglement and nonclassicality

can be explicitly displayed. It is more illuminating to use such pictures to explain how the measures of

entanglement and nonclassicality change rather than the other way around[36]. A series of researches have

been done toward the geometry of quantum correlations, such as the level surfaces of quantum discord

for a class of two-qubit states[37], the geometry of one-way information deficit for a class of two-qubit

states[38], the surfaces of constant quantum discord and super-quantum discord for Bell-diagonal state[39],

the geometric illustration of Bell-diagonal states steerable by two projective measurements[40].

In this article, we calculate several distance-based quantifiers of coherence for Bell-diagonal states and

study the associated geometry. We plot the geometry both for the l1-norm of coherence and the relative

entropy of coherence for Bell-diagonal states in separable and entangled regions. We present the surfaces
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that quantum discord equals to the relative entropy of coherence for Bell-diagonal states. We depict the

geometry of relative entropy of coherence for X states. We show the geometry of dynamics of relative

entropy of coherence for Bell-diagonal states under local nondissipative channels.

II. GEOMETRY OF SEVERAL DISTANCE-BASED QUANTIFIERS OF COHERENCE FOR
BELL-DIAGONAL STATES

The two-qubit Bell-diagonal states can be expressed by

ρ =
1

4
(I ⊗ I +

3∑
i=1

ciσi ⊗ σi), (1)

where {σi}3i=1 are the standard Pauli matrices. In the computational basis |00⟩, |01⟩, |10⟩, |11⟩, one has

ρ =
1

4

 1 + c3 0 0 c1 − c2
0 1− c3 c1 + c2 0
0 c1 + c2 1− c3 0

c1 − c2 0 0 1 + c3

 , (2)

where c1, c2, c3 ∈ [−1, 1].

We study the geometry of several distance-based quantifiers of coherence for Bell-diagonal states, such as

l1-norm of coherence Cl1 [3], trace distance of Ctr[24], relative entropy of coherence Cr[3]. As Bell-diagonal

states are X states, one has Cl1 = Ctr[41]. By straightforward computation, we have

Cl1(ρ) =
∑
i ̸=j

|ρi,j | =
1

2
(|c1 − c2|+ |c1 + c2|), (3)

and

Cr(ρ) = S(ρdiag)− S(ρ)

=
1

4
(1− c1 − c2 − c3) log

1

4
(1− c1 − c2 − c3)

+
1

4
(1− c1 + c2 − c3) log

1

4
(1− c1 + c2 − c3)

+
1

4
(1 + c1 − c2 + c3) log

1

4
(1 + c1 − c2 + c3)

+
1

4
(1 + c1 + c2 + c3) log

1

4
(1 + c1 + c2 + c3)

+ 2− 1 + c3
2

log(1 + c3)−
1− c3

2
log(1− c3). (4)

The geometry with respect to the l1-norm of coherence and the relative entropy of coherence are similar

[see Fig. 1 and Fig. 2]. The orange tetrahedron is the set of valid Bell-diagonal states. The green octahedron

is the set of separable Bell-diagonal states. There are four entangled regions outside octahedron[36]. The

the tube-like level surfaces are along the Cartesian axes C3. The tubes are cut off by the state tetrahedron

at their ends. As coherence decreases, the tubes collapse to the Cartesian axes. The tube structure is

obscured as the coherence increases. From Eq. (3) and Eq. (4), one sees that the vanishes if and only if

c1 = c2 = 0, and the geometry of coherence is the Cartesian axes C3 that is completely in the set of separable

Bell-diagonal states (the green octahedron). For small coherence, the surfaces move to the entangled region

[see Fig. 1(a) and Fig. 2(a)]. With the increasing coherence, the surfaces distribute in both separable and
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entangled regions [see Fig. 1(b) and Fig. 2(b)]. When the coherence approaches 1, the surfaces almost

distribute in the entangled regions [see Fig 1(c). and Fig. 2(c)]. When the coherence equals to 1, the

surfaces lie in the four vertexes of the tetrahedron, which are four Bell states.

It can be also shown that the geometry related to the Tsallis α divergence [25] and Relative Rényi α

monotones [26] for α = 1/2, 3/2, 2 is extremely similar to the geometry of relative entropy of coherence.

(a) (b) (c)

FIG. 1: Surfaces of constant l1-norm of coherence Cl1 for Bell-diagonal states (Blue surfaces): (a) Cl1 = 0.001; (b)
Cl1 = 0.5; (c) Cl1 = 0.99.

(a) (b) (c)

FIG. 2: Surfaces of constant relative entropy of coherence for Bell-diagonal states (Blue surfaces): (a) Cr(ρ) = 0.001;
(b) Cr(ρ) = 0.2; (c) Cr(ρ) = 0.9.

We now investigate the surfaces that the quantum discord is equal to the relative entropy of coherence

for Bell-diagonal states. The quantum discord D(ρ) of Bell-diagonal states is given by[42],

D(ρ) =
1

4
(1− c1 − c2 − c3) log

1

4
(1− c1 − c2 − c3)

+
1

4
(1− c1 + c2 − c3) log

1

4
(1− c1 + c2 − c3)

+
1

4
(1 + c1 − c2 + c3) log

1

4
(1 + c1 − c2 + c3)

+
1

4
(1 + c1 + c2 + c3) log

1

4
(1 + c1 + c2 + c3)

+2− 1 + c

2
log(1 + c)− 1− c

2
log(1− c),
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where c = max{|c1|, |c2|, |c3|}. Comparing D(ρ) with Eq. (4), we have that the quantum discord equal to

relative entropy of coherence for Bell-diagonal states if and only if c3 = max{|c1|, |c2|, |c3|}. In Fig. 3 two

blue tubes above and below the orange cross tube represent the surfaces of Cr(ρ) = D(ρ) = 0.05.

FIG. 3: (Color online) Surfaces of Cr(ρ) = D(ρ) = 0.05 for Bell-diagonal states (two Blue tubes).

III. GEOMETRY OF RELATIVE ENTROPY OF COHERENCE FOR X STATES

We consider now general two qubit X states. Under proper local unitary transformations, the two qubit

X states can be written as,

ρ =
1

4
(I ⊗ I + r · σ ⊗ I + I ⊗ s · σ +

3∑
i=1

ciσi ⊗ σi), (5)

where r and s are Bloch vectors. When r=s=0, ρ reduces to the two-qubit Bell-diagonal states. We assume

that the Bloch vectors are in z direction, r = (0, 0, r), s = (0, 0, s). The state in Eq. (5) turns into the

following form

ρ =
1

4
(I ⊗ I + rσ3 ⊗ I + I ⊗ sσ3 +

3∑
i=1

ciσi ⊗ σi).

In the computational basis |00⟩, |01⟩, |10⟩, |11⟩, one has

ρ =
1

4

 1 + r + s+ c3 0 0 c1 − c2
0 1 + r − s− c3 c1 + c2 0
0 c1 + c2 1− r + s− c3 0

c1 − c2 0 0 1− r − s+ c3

 . (6)
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From the Eq. (4) in [43], after some algebraic calculations, we have the relative entropy of coherence for X

states,

Cr(ρ) = S(ρdiag)− S(ρ)

=
1

4
(1− c3 +

√
(r − s)2 + (c1 + c2)2) log(1− c3 +

√
(r − s)2 + (c1 + c2)2)

+
1

4
(1− c3 −

√
(r − s)2 + (c1 + c2)2) log(1− c3 −

√
(r − s)2 + (c1 + c2)2)

+
1

4
(1 + c3 +

√
(r + s)2 + (c1 − c2)2) log(1 + c3 +

√
(r + s)2 + (c1 + c2)2)

+
1

4
(1 + c3 −

√
(r + s)2 + (c1 − c2)2) log(1 + c3 −

√
(r + s)2 + (c1 − c2)2)

−1

4
(1 + r + s+ c3) log(1 + r + s+ c3)

−1

4
(1 + r − s− c3) log(1 + r − s− c3)

−1

4
(1− r + s− c3) log(1− r + s− c3)

−1

4
(1− r − s+ c3) log(1− r − s+ c3). (7)

In Fig. 4 we plot the surface of relative entropy of coherence for X states. From Fig. 4, one can see

that the level surface of coherence is similar to the case r = s = 0, i.e., the one of Bell-diagonal states [see

Fig. 4(a)]. The surface shrinks with the increasing r and s. The shrinking rate becomes larger with the

increasing |r| and |s| [see Fig. 4(a), (b)]. For larger r and s, the picture is moved up to the plane c3 = 0

[see Fig. 4(b)]. For larger coherence and small r and s [see Fig. 4(c)], the surface becomes fat and short.

But for larger r and s [see Fig. 4(d)], the figure is moved up again and changes dramatically too.

(a) (b)

(c) (d)

FIG. 4: (Color online) Surfaces of constant relative entropy of coherence for X states(blue surface): (a)r = s =
0.1, Cr = 0.1; (b)r = s = 0.5, Cr = 0.1; (c)r = s = 0.1, Cr = 0.5; (d)r = s = 0.5, Cr = 0.5.



6

Kraus operators

BF E0 =
√

1− p/2 I, E1 =
√

p/2σ1

PF E0 =
√

1− p/2 I, E1 =
√

p/2σ3

BPF E0 =
√

1− p/2 I, E1 =
√

p/2σ2

GAD E0 =
√
p

(
1 0

0
√
1− γ

)
, E2 =

√
1− p

( √
1− γ 0

0 1

)

E1 =
√
p

(
0

√
γ

0 0

)
, E3 =

√
1− p

(
0 0
√
γ 0

)

TABLE I: Kraus operators for the quantum channels: bit flip (BF), phase flip (PF), bit-phase flip (BPF), and
generalized amplitude damping (GAD), where p and γ are decoherence probabilities, 0 < p < 1, 0 < γ < 1.

Channel c′1 c′2 c′3

BF c1 c2(1− p)2 c3(1− p)2

PF c1(1− p)2 c2(1− p)2 c3

BPF c1(1− p)2 c2 c3(1− p)2

GAD c1(1− p) c2(1− p) c3(1− p)2

TABLE II: Correlation coefficients with respect to: bit flip (BF), phase flip (PF), bit-phase flip (BPF), and gener-
alized amplitude damping (GAD). For GAD, we fixed p = 1/2 and replaced γ by p.

IV. GEOMETRY OF DYNAMICS OF RELATIVE ENTROPY OF COHERENCE FOR
BELL-DIAGONAL STATES UNDER LOCAL NONDISSIPATIVE CHANNELS

We consider next the system-environment interaction[44] by the evolution of a quantum state ρ under a

trace-preserving quantum operation ε(ρ),

ε(ρ) =
∑
i,j

(Ei ⊗ Ej) ρ (Ei ⊗ Ej)
†
,

where {Ek} is the set of Kraus operators associated to a decohering process of a single qubit, with∑
k E

†
kEk = I. We use the Kraus operators in Table I [45] for a variety of quantum channels.

The decoherence processes BF, PF, and BPF in Table I preserve the Bell-diagonal form of the density

operator ρAB . For the case of GAD, the Bell-diagonal form is kept for arbitrary γ and p = 1/2. In this

situation, we can write the quantum operation ε(ρ) as

ε(ρAB) =
1

4
(I ⊗ I +

3∑
i=1

c′iσi ⊗ σi),

where the values of the c′1, c
′
2, c

′
3 are given in Table II [45].
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Replacing ci by c′i in Eq. (4), we plot the surfaces of the relative entropy of coherence for Bell-diagonal

states under local nondissipative channels. one can see that when the relative entropy of coherence increases,

the surfaces of coherence become fat [see (a), (b) of Figs. 5, 6, 7, 8]. Furthermore, when p increases, the

surfaces of coherence under BF and BPF become two opposite surfaces [see (c) of Figs. 5, 7]. And the surface

of coherence under PF becomes four small triangle surfaces [Fig. 6(c)]. While the surface of coherence under

GAD becomes a cylinder [see Fig. 8(c)].

On the other hand, for c1 = −0.1, c2 = 0.4, c3 = 0.4 and c1 = −0.5, c2 = 0.1, c3 = 0.1, the dynamic

behavior of relative entropy of coherence of Bell-diagonal states under bit flip, phase flip, bit-phase flip,

and generalized amplitude damping channels is depicted in Fig. 9. We find that Cpf and Cgad approach

zero as p increases, and all the coherences under local nondissipative channels decrease. It is a special case

of the relative entropy of coherence which decreases strictly for all nontrivial evolutions[32]. Although Cbf

decreases as p increases in Fig. 9(a), it keeps almost unchanged in Fig. 9(b), similar to freezing phenomenon

of coherence[32, 33].

(a) (b) (c)

FIG. 5: Surfaces of relative entropy of coherence for Bell-diagonal states under bit flip channels:(a) p = 0.1, Cr(ρ) =
0.1; (b) p = 0.1, Cr(ρ) = 0.5; (c) p = 0.5, Cr(ρ) = 0.1.

(a) (b) (c)

FIG. 6: Surfaces of relative entropy of coherence for Bell-diagonal states under phase flip channels:(a) p = 0.1, Cr(ρ) =
0.1; (b) p = 0.1, Cr(ρ) = 0.5; (c) p = 0.5, Cr(ρ) = 0.1.

V. SUMMARY

We have calculated several distance-based quantifiers of coherence for Bell-diagonal states including l1-

norm of coherence and relative entropy of coherence, and illustrated the corresponding geometries. The

geometry associated with the l1-norm of coherence and the relative entropy of coherence are basically the
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(a) (b) (c)

FIG. 7: Surfaces of relative entropy of coherence for Bell-diagonal states under bit-phase flip channels:(a) p =
0.1, Cr(ρ) = 0.1; (b) p = 0.1, Cr(ρ) = 0.5; (c) p = 0.5, Cr(ρ) = 0.1.

(a) (b) (c)

FIG. 8: Surfaces of relative entropy of coherence for Bell-diagonal states under generalized amplitude damping
channels:(a) p = 0.1, Cr(ρ) = 0.1; (b) p = 0.1, Cr(ρ) = 0.5; (c) p = 0.5, Cr(ρ) = 0.1.

same except for the shape of the parallelogram. The level surfaces consist of tubes along the Cartesian axes

C3. These tubes are cut off by the state tetrahedron at their ends. As the coherence decreases, the tubes

collapse to the Cartesian axes C3. Such tube structure becomes obscured as the coherence increases. It

has been shown that when the coherence approaches zero, the geometry of coherence is the Cartesian axes

C3 that lies completely in the set of separable Bell-diagonal states. For small coherence, the surfaces move

to the entangled region. As coherence increases, the surfaces distribute both in separable and entangled

regions. When the coherence approaches 1, the surfaces almost distribute in the entangled regions. When

the coherence is equal to 1, the surfaces are the four vertexes of the tetrahedron with respect to the four

Bell states.

We have shown that the quantum discord equals to the relative entropy of coherence for Bell-diagonal

states if and only if c3 = max{|c1|, |c2|, |c3|}. The related surfaces of for the equality has been plotted.

We have also plotted the surfaces of relative entropy of coherence for X states, showing that the surface

shrinks with the increasing r and s, and the shrinking rate becomes larger with the increasing |r| and |s|.

For larger r and s, the surfaces move up the plane c3 = 0. For larger coherence and small r and s, the

surfaces become fat and short.

The surfaces of dynamics with respect to the relative entropy of coherence for Bell-diagonal states under

local nondissipative channels have been also studied. We have shown that when the relative entropy of

coherence increases, the surfaces of coherence become fat. What is more, when p increases, the surfaces of

coherence under bit flip and bit-phase flip channels become two opposite surfaces, the surface of coherence
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(a) (b)

FIG. 9: (Color online) Relative entropy of coherence Cbf , Cpf , Cbpf and Cgad for Bell-diagonal states under bit
flip, phase flip, bit-phase flip and generalized amplitude damping channels as a function of p, respectively: (a)
c1 = −0.1, c2 = 0.4, c3 = 0.4; (b) c1 = −0.5, c2 = 0.1, c3 = 0.1.

under phase flip channel becomes four small triangle surfaces, and the surface of coherence under generalized

amplitude damping channel becomes a cylinder.

We have also studied the dynamic behavior of relative entropy of coherence of Bell-diagonal states. It has

been shown that all the coherence under local nondissipative channels decreases, and the coherences under

phase flip channel and generalized amplitude damping channel approach zero as p increases.
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