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Abstract

The coherence-breaking channels play a significant role in quantum information theory. We s-

tudy the coherence-breaking channels for qubit systems and give a method to amend the coherence-

breaking channels by applying unitary operations. For given incoherent channel Φ, we give a

necessary and sufficient condition for the channel to be a coherence-breaking channel and amend

it via unitary operations. For incoherent channels Φ that are not coherence-breaking ones, we

consider Φ ◦ Φ and give the conditions for coherence-breaking and channel amendment as well.
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1 Introduction

Originating from quantum superposition, quantum coherence has been a cornerstone of quan-

tum information theory. It is of fundamental importance in quantum information processing such

as quantum reference frames [1, 2, 3], transport in biological systems [4, 5] and quantum thermo-

dynamics [6, 7]. In recent years, the resource theories of quantum coherence have been rapidly

developed [8, 9, 10]. The free operations, the free states and the resource states are three basic in-

gredients in a quantum resource theory. In the resource theory of quantum coherence, the free states

are the incoherent states whose density matrices are diagonal under the reference basis. The free

operations are the incoherent operations Φ.

An important aspect in the study of resource theories is related to the evolution under the action

of a channel. For example, in the entanglement resource theory, entanglement-breaking channels

(EBCs) have been characterized completely [11, 12, 13]. In Ref. [14], Cuevas et al. amended EBCs

by using unitary operations. Of special interest to us is the coherence-breaking channel and its

amendment. Recently, in Ref. [15], Bu et al. introduced two kinds of coherence-breaking channels

(CBCs). In addition, they devoted to the coherence-breaking indices of incoherent quantum channels
∗Corresponding author: wangzhx@cnu.edu.cn
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and presented various examples to elucidate this concept. Based on these works, we give a specific

expression of a qubit coherence-breaking channel (CBC) and try to amend it via unitary operations.

In many practical situations, a quantum channel can be represented as the consecutive application of

a given elementary map Φ repeated n times with n a positive integer. In this case, the full channel is

given by Φn = Φ ◦ · · · ◦ Φ︸       ︷︷       ︸
n times

.

In this paper, we first give explicit expressions for incoherent channels Φ and Φ2 being CBCs,

respectively. Then we amend Φ and Φ2 via unitary operations.

2 Preliminaries

In this section, we first introduce some relevant basic concepts that are required in presenting

our main results.

For a d-dimensional quantum system and a fixed reference basis {|i⟩}, the l1 norm of coherence

Cl1 of a state ρ is given as Cl1 (ρ) =
∑
i, j
|⟨i|ρ| j⟩|. Any qubit state ρ can be written as ρ = 1

2 (I+−→r · −→σ) =

1
2 (I+ rxσx + ryσy + rzσz), where σx, σy and σz are Pauli matrices, r⃗ is a 3-dimensional Bloch vector

with |−→r | ≤ 1.

A quantum channel Φ is a linear completely positive and trace preserving (CPTP) map [16].

The action of a qubit quantum channel Φ on a state ρ can be expressed by a real 4 × 4 matrix 1 01×3
−→n M

 which transforms the vector (1, rx, ry, rz) to the one of Φ(ρ). Obviously, the action of

a qubit quantum channel Φ is completely characterized by (M,−→n ) and the iterated channel Φn is

characterized by (Mn, (
n−1∑
k=0

Mk)−→n ).

A non-coherence-generating channel (NC) Φ̃ is a CPTP map from an incoherent state to an

incoherent state: Φ̃(I) ⊂ I, where I denotes the set of incoherent states [17].

Any quantum channel Φ is called an incoherent channel if there exists a Kraus decomposition

Φ(·) = ΣnKn(·)K†n such that ρn =
Kn(ρ)K†n

Tr(Kn(ρ)K†n )
is incoherent for any incoherent state ρ. We call inco-

herent channel Φ a coherence-breaking channel (CBC) if Φ(ρ) is an incoherent state for any state ρ

[15].

Let Φ be an incoherent channel, the coherence-breaking index n(Φ) of Φ is defined as [15]

n(Φ) = min{n ≥ 1 : Φn is a coherence-breaking channel}. (1)

A rank-2 qubit channel is an NC if and only if it has the Kraus decomposition either as [17]

Φ(1)(·) = E(1)
1 (·)E(1)†

1 + E(1)
2 (·)E(1)†

2 (2)

with

E(1)
1 =

 eiη cos θ cos ϕ 0

− sin θ sin ϕ eiξ cos ϕ

 , E(1)
2 =

 sin θ cos ϕ eiξ sin ϕ

e−iη cos θ sin ϕ 0

 (3)

or as

Φ(2)(·) = E(2)
1 (·)E(2)†

1 + E(2)
2 (·)E(2)†

2 (4)
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with

E(2)
1 =

 cos θ 0

0 eiξ cos ϕ

 , E(2)
2 =

 0 sin ϕ

eiξ sin θ 0

 , (5)

where θ, ϕ, ξ and η are all real numbers. Here we note that Φ(1) is not an incoherent channel unless

sin θ cos θ sin ϕ cos ϕ = 0 and Φ(2) is an incoherent channel.

3 Coherence-breaking channels

First we give a necessary and sufficient condition for an incoherent channel being a CBC. If an

incoherent channel Φ is not a coherence-breaking channel, we can give a consecutive application of

Φ repeated 2 times (n(Φ) = 2), i.e., to find a necessary and sufficient condition for Φ2 being a CBC.

For the case of n(Φ) ≥ 3, we can get the analogous results similarly.

Lemma 3.1. Let Φ be an incoherent channel defined by (2), then Φ is a CBC iff cos θ = 0.

Proof. Any density operator acting on a two-dimensional quantum system can be generally written

as

ρ =

 a b

b∗ 1 − a

 , (6)

where |a|2 + |b|2 ≤ 1. Substitute (6) into (2), we have

Φ(ρ) =

 A B

B∗ 1 − A

 , (7)

where A = a cos2 ϕ + (b∗eiξ + be−iξ) sin θ sin ϕ cos ϕ + (1 − a) sin2 ϕ and B = beiη−iξ cos θ cos2 ϕ +

b∗eiξ+iη cos θ sin2 ϕ. Then we find Φ(ρ) ∈ I iff B = beiη−iξ cos θ cos2 ϕ + b∗eiξ+iη cos θ sin2 ϕ = 0 for

arbitrary b. Let b = |b|eβ, where β ∈ [0, 2π). Thus, B = 0 iff e−iη|b| cos θ(eiξ−iβ cos2 ϕ+eiβ−iξ sin2 ϕ) =

0 for arbitrary β and |b|. Particularly, set β = ξ, we find cos θ = 0. It is easy to see that Φ is an

incoherent channel when cos θ = 0. �

Lemma 3.2. Let Φ be an incoherent channel defined by (4), then Φ is a CBC iff sin θ = 0, cos ϕ = 0

or cos θ = 0, sin ϕ = 0.

Proof. Substitute (6) into (4), we have

Φ(ρ) =

 C D

D∗ 1 −C

 , (8)

where C = a cos2 θ+(1−a) sin2 ϕ and D = eiξ(b cos θ cos ϕ+b∗ sin θ sin ϕ). Then we findΦ is a CBC

iffD = 0 for arbitrary b. Let b = |b|eβ. ThenΦ is a CBC iff |b|
√

cos2 β cos2(θ − ϕ) + sin2 β cos2(θ + ϕ)

= 0 for arbitrary |b| and β iff sin θ = 0, cos ϕ = 0 or cos θ = 0, sin ϕ = 0. �

Assuming that a given incoherent channel Φ is not a CBC, we give a necessary and sufficient

conditions for Φ2 to be a CBC.
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As any qubit channelΦ that maps ρ = 1
2 (I+rxσx+ryσy+rzσz) toΦ(ρ) = 1

2 (I+r′xσx+r′yσy+r′zσz)

can be give by

Φ =


1 0 0 0

nx M11 M12 M13

ny M21 M22 M23

nz M31 M32 M33


, (9)

such that Φ(1, rx, ry, rz)t = (1, r′x, r
′
y, r
′
z)

t. Thus, Φ(ρ) ∈ I for arbitrary single-qubit state ρ iff Mi j = 0

for i = 1, 2 and j = 1, 2, 3.

Lemma 3.3. Let Φ be an incoherent channel defined by (2), then n(Φ) = 2 iff cos 2ϕ = 0, sin θ = 0

and sin ξ sin η + cos ξ cos η = 0.

Proof. It is easy to see sin θ cos θ sin ϕ cos ϕ = 0. Comparing (2),(3) with (9), we find nx = ny =

nz = M13 = M23 = 0, M11 = cos θ(cos η cos ξ + sin η sin ξ cos 2ϕ), M12 = cos θ(sin η cos ξ cos 2ϕ −
cos η sin ξ), M21 = cos θ(cos η sin ξ cos 2ϕ − sin η cos ξ), M22 = cos θ(cos η cos ξ cos 2ϕ + sin η sin ξ),

M31 = 2 sin θ sin ϕ cos ϕ cos ξ, M32 = −2 sin θ sin ϕ cos ϕ sin ξ and M33 = cos 2ϕ. Thus, Φ2 is a

CBC iff M2
11 + M12M21 = 0, M12(M11 + M22) = 0, M21(M11 + M22) = 0, M12M21 + M2

22 = 0 and

cos θ , 0 iff cos 2ϕ = 0, cos θ , 0 and sin ξ sin η + cos ξ cos η = 0. Then we have n(Φ) = 2 iff

cos 2ϕ = 0, sin θ = 0 and sin ξ sin η + cos ξ cos η = 0. �

Lemma 3.4. Let Φ be an incoherent channel defined by (4), then n(Φ) = 2 iff one of the following

three conditions holds.

(i) cos 2ξ = 0 and cos(θ + ϕ) = cos(θ − ϕ) , 0;

(ii) cos(θ − ϕ) = 0, cos ξ = 0 and cos(θ + ϕ) , 0;

(iii) cos(θ + ϕ) = 0, cos ξ = 0 and cos(θ − ϕ) , 0.

Proof. Comparing (4),(5) with (9), we find nx = ny = M13 = M23 = M31 = M32 = 0, nz =

sin2 ϕ − sin2 θ, M11 = cos ξ cos(θ − ϕ), M12 = sin ξ cos(θ + ϕ), M21 = − sin ξ cos(θ − ϕ), M22 =

− cos ξ cos(θ+ϕ) and M33 = cos2 θ−sin2 ϕ. Thus, n(Φ) = 2 iff M2
11+M12M21 = 0, M12(M11+M22) =

0, M21(M11 + M22) = 0, M12M21 + M2
22 = 0, sin θ cos ϕ , 0 and cos θ sin ϕ , 0, which implying one

of the three conditions above holds. �

4 Amending coherence-breaking channels

In this section, we discuss the amendment of CBCs. We show that a CBC Φ can be amended

via unitary operations Λα through Λα ◦ Φ. For the case n(Φ) = 2, the channel can be amended by

unitary operations through Φ ◦ Λα ◦ Φ.

Lemma 4.1. Let Φ be a CBC defined by (2), there always exists a unitary operation Λα that can

amend Φ by Λα ◦ Φ.
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Proof. Any general unitary operation can be written as Λα(·) =
 cosα −eiα1 sinα

eiα2 sinα eiα3 cosα

 (·) cosα e−iα2 sinα

−e−iα1 sinα e−iα3 cosα

 . Comparing it with (9), we get

Λα =


1 0 0 0

0 N11 N12 N13

0 N21 N22 N23

0 N31 N32 N33


, (10)

where N11 = cos2 α cosα3 − sin2 α cos(α1 − α2), N12 = sin2 α sin(α1 − α2) − cos2 α sinα3, N13 =

sin 2α cosα2, N21 = cos2 α sinα3 + sin2 α sin(α1 − α2), N22 = sin2 α cos(α1 − α2) + cos2 α cosα3,

N23 = sin 2α sinα2, N31 = − sin 2α cosα1, N32 = sin 2α sinα1 and N33 = cos 2α. Then we get

Λα ◦ Φ =


1 0 0 0

0 N13M31 N13M32 N13M33

0 N23M31 N23M32 N23M33

0 N33M31 N33M32 N33M33


, (11)

where Mi j are defined in Lemma 3.1 with i, j = 1, 2, 3. Thus, Λ ◦ Φ is not a CBC iff N13 , 0 or

N23 , 0 iff sin 2α , 0. In other words, Λ can amend Φ iff sin 2α , 0. �

Lemma 4.2. Let Φ be a CBC defined by (4), there always exists a unitary operation Λα that can

amend Φ2 by Λα ◦ Φ.

Proof. Similar to the proof of Lemma 4.1, we find Λα can amend Φ iff sin 2α , 0. �

Lemma 4.3. Let Φ be a CBC defined by (2) and n(Φ) = 2, there always exists a unitary operation

Λα that can amend Φ2 by Φ ◦ Λα ◦ Φ.

Proof. It is easy to see

Φ ◦ Λα ◦ Φ =


1 0 0 0

0 M̃11 M̃12 0

0 M̃21 M̃22 0

0 M̃31 M̃32 0


, (12)

where M̃11 = M11(M11N11 + M12N21) + M21(M11N12 + M12N22) + M31(M11N13 + M12N23), M̃12 =

M12(M11N11 + M12N21) + M22(M11N12 + M12N22) + M32(M11N13 + M12N23), M̃21 = M11(M21N11 +

M22N21) + M21(M21N12 + M22N22) + M31(M21N13 + M22N23), M̃22 = M12(M21N11 + M22N21) +

M22(M21N12 + M22N22) + M32(M21N13 + M22N23), M̃31 = M11(M31N11 + M32N21) + M21(M31N12 +

M32N22) + M31(M31N13 + M32N23), M̃32 = M12(M31N11 + M32N21) + M22(M31N12 + M32N22) +

M32(M31N13 + M32N23) and Mi j and Ni j are defined in Lemmas 3.3 and 4.1, respectively. �

Assume sinα = 0, then we find M̃i j = 0 iff sinα3 = 0, where i = 1, 2 and j = 1, 2, 3. In other

words, if sinα = 0 and sinα3 , 0, Φ2 is amended.
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Lemma 4.4. Let Φ be a CBC defined by (4) and n(Φ) = 2, there always exists a unitary operation

Λα that can amend Φ2 by Φ ◦ Λα ◦ Φ.

Proof. Similar to Lemma 4.3, we obtain

Φ ◦ Λα ◦ Φ =


1 0 0 0

ñx M̃11 M̃12 0

ñy M̃21 M̃22 0

ñz M̃31 M̃32 0


, (13)

where ñx = nz(M11N13+M12N23), ñy = nz(M21N13+M22N23), ñz = nzM33N33, M̃11 = M11(M11N11+

M12N21) + M21(M11N12 + M12N22), M̃12 = M12(M11N11 + M12N21) + M22(M11N12 + M12N22),

M̃13 = M33(M11N13 + M12N23), M̃21 = M11(M21N11 + M22N21) + M21(M21N12 + M22N22), M̃22 =

M12(M21N11+M22N21)+M22(M21N12+M22N22), M̃23 = M33(M21N13+M22N23), M̃31 = M11M33N31+

M21M33N32, M̃32 = M12M33N31 + M22M33N32, M̃33 = M2
33N33 and Mi j, Ni j are from Lemmas 3.4

and 4.1, respectively.

(i) cos 2ξ = 0 and cos(θ + ϕ) = cos(θ − ϕ) , 0

Assume sinα = 0, then we find M̃i j = 0 iff sinα3 = 0, where i = 1, 2 and j = 1, 2, 3. In other

words, if sinα = 0 and sinα3 , 0, Φ2 is amended.

(ii) cos(θ − ϕ) = 0, cos ξ = 0 and cos(θ + ϕ) , 0

In this case,

Φ ◦ Λ ◦ Φ =


1 0 0 0

ñx 0 M2
12N21 M12M33N23

ñy 0 0 0

ñz 0 0 0


. (14)

Thus, Φ ◦ Λ ◦ Φ is not a CBC iff N21 , 0 or N23 , 0.

(iii) cos(θ + ϕ) = 0, cos ξ = 0 and cos(θ − ϕ) , 0

Similar to (ii), we have for N12 , 0 or N13 , 0, the channel Φ can be amended. �

Now we give examples to illustrate our results about the coherence-breaking channel’s amend-

ment.

Example 4.1 Consider an incoherent qubit quantum channel Φ characterized by (M, n⃗) with

M =


0 0 0

0 0 0

0 0 µ

, where µ is a real number and n⃗ = (0, 0, 0)⊤. For |µ| ≤ 1, Φ is an incoherent chan-

nel [18, 19]. It is easy to see that Φ is a CBC. Set a unitary operation as Λ(·) =
 cosα − sinα

sinα cosα

 (·) cosα sinα

− sinα cosα

 with sin 2α , 0. We obtain that Λ ◦ Φ is not a CBC, i.e., the channel Φ is

amended.

Example 4.2 Consider an incoherent qubit quantum channel Φ characterized by (M, n⃗) with
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M =


0 γ 0

0 0 0

0 0 0

, where γ is a real number and n⃗ = (0, 0, 0)⊤. For |γ| ≤ 1, Φ is an inco-

herent channel [18, 19]. It is easy to see that n(Φ) = 2. Set a unitary operation as Λ(·) = 1 0

0 eiα3

 (·)
 1 0

0 e−iα3

 with sinα3 , 0. Then we find Φ ◦Λ ◦Φ is not a CBC, i.e., the channel

is amended.

5 Conclusions

We have discussed the qubit CBCs and give the expressions for the case n(Φ) = 1, 2. Further-

more, for the cases n(Φ) = 1and n(Φ) = 2, we can always find unitary operations Λα to amend the

channel byΛα◦Φ andΦ◦Λα◦Φ, respectively. For n(Φ) ≥ 3, following similar discussion, there also

exist unitary operations to amend the channel Φ by Φ ◦ Λα ◦ · · · ◦ Λα ◦ Φ︸                      ︷︷                      ︸
n Φ

. In addition, for a qudit

quantum channel Φ, the channel Φ can be amended by Φ ◦ Λα ◦ · · · ◦ Λα ◦ Φ︸                      ︷︷                      ︸
n Φ

with proper unitary

operations Λα when n(Φ) = n with n a positive integer.
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