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We investigate genuine multipartite entanglement in general multipartite systems. Based on
the norms of the correlation tensors of a multipartite state under various partitions, we present an
analytical sufficient criterion for detecting the genuine four-partite entanglement. We show that our
criterion can detect genuine entanglement by detailed example. The results are generalized to arbitrary

multipartite systems.
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1. Introduction

Quantum entanglement is one of the most fascinating features in quantum physics, with
numerous applications in quantum information processing, secure communication and channel
protocols [1,2;3]. In particular, the genuine multipartite entanglement appears to have more
significant advantages than the bipartite ones in these quantum tasks [4].

The notion of genuine multipartite entanglement (GME) was introduced in [5]. Let HZ,
i =1,2,...,n, denote d-dimensional Hilbert spaces. An n-partite state p € H! ® ... ® H? can
be expressed as p = > pa [a) (Ya|, where 0 < po, < 1, Yops = 1, [ths) € HI ® ... ® HY are
normalized pure states. p is said to be fully separable if it can be written as p = >, ¢ pi ®

pE®---® pl, where g; is a probability distribution and pf are density matrices with respect to



the subsystem H;. On the other hand, p is called genuine n-partite entangled if |¢,) are not
separable under any bipartite partitions.

The genuine multipartite entangled states exist in physical systems like the ground state
of the XY model [6]. However, it is extremely difficult to identify the GME for general mixed
multipartite states. The GME concurrence and its lower bound were studied in [7-9]. Some
sufficient or necessary conditions of GEM were presented in [10-12]. As for detection of GME,
the common criterion is the entanglement witnesses [13-16]. Using correlation tensors, the au-
thors in [17] have provided a general framework to detect different classes of GME for quantum
systems of arbitrary dimensions. In [18] the genuine multipartite entanglement has been in-
vestigated in terms of the norms of the correlation tensors and multipartite concurrence. The
relations between the norms of the correlation vectors and the detection of GME in tripartite
quantum systems have been established in [19].

In this paper, we analyze the relationship between the norms of the correlation tensors and
various bipartitions of multipartite quantum systems, and present sufficient conditions of GME
for four partite and multipartite quantum systems.

We generalize some inequalities of the norms of the correlation tensors for four-partite states
and give a criterion to detect GME of four-partite quantum systems in Section 2. In Section
3, we generalize these concepts and conclusions to multipartite quantum systems. Comments

and conclusions are given in Section 4.

2. Detection of GME for Four-partite Quantum States

We first consider the GME for four-partite qudit states p € H{ ® ... @ H{. Let \;, i =
1,---,d*> — 1, denote the mutually orthogonal generators of the special unitary Lie algebra

su(d) under a fixed bilinear form [20], and I the d x d identity matrix. Then p can be expanded



in terms of \;s,

d?-1
! £
p = ﬁl®[®[®l+iﬁ }:t,x DIRI@T 4
f=14=1
1 d?-1
T 2 M @A) @A e Y, 0

11,12,13,04=1

where )\E{ )(( f) represents the position of \;, in the tensor product) stand for the operators with

Ai, on Hy and I on the rest spaces, tl(-{) =tr(p /\Z({) RIRIRI), -- L2 tr(p/\ (1) ®/\ @ g

7 711,02,23,14
(3) (4)
)\i3 ® )\i4 )

Let 7, ... 71239 denote vectors with entries tg{), - 775511}22’3;;)@4 (i1, 49,13,04 = 1,-+ ,d*—

1; f = 1,2,3,4), respectively. From T) ... T:234) we further define the following matrices
under different partitions.
We denote Ty(gn the (d* — 1) x (d* — 1)? matrices with entries t;, (@ —1)2(i,—1)4+(@—1)(in—1)+i =

1,2,3,4 . . .
t§1,i2,i3,)i47 ng|hl the (d2 — 1)2 X (d2 — 1)2 matrices with entries t(d271)(z‘ffl)Jrig,(d?71)(ih71)+il =

234 and Tpgnp the (d? — 1) x (d® — 1) matrices with entries ¢(g2_1)2(i,—1)4(d2—1)(ig—1)+insis =

21,12,13,%4

123 where f £ g £ h#£1=1,2,3,45is, g, 0p,0 =1, ,d®—1.

11,12,13,%4

Let TU9 and TU9 be (d? — 1) x (d* — 1) matrices with entries t;, ;, = t/9 and ¢,

t1,82 — Yipio 12,81
19 respectively. We denote TU9M  TUgh) and TUHeh) the (d2 — 1) x (d? — 1)? matrices

21,12
with entries given by t;, (42—1)(ip—1)+is = tgii’ﬂi, Lin (d2—1)(i1— 1)+13 = tffi’ 12 and 5, (@2—1)(i,~1)4is =

90 respectively. We denote TWeh  TU9h) and TU2M the (42 —1)2 x (d? — 1) matrices

11,22,237
: Lo h h)
Wlth entries given by t(d271)(i171)+i2, = tE{Zgz Z:)37 t(d271)(i171)+2'3,@2 = tE{i i3 and t d2 1)(ia—1)4i3,i1 =
tg fh 2 , Tespectively.
In the following we denote || M ||=,/>",; ; M7 = /3, 07 the Frobenius norm of a matrix

M, and || M ||x= El o; the kth Ky Fan norm of matrix M, where o;, i = 1,--- ,min(m,n),
are the singular values of the matrix M arranged in descending order.

For any pure state p € H{ ® HY ® HY, p = i[ RIRI+ #(242’1 tl(l))\(-l) IR+
ST @ 1+ Y T P 1010 ) + L NP ex P o1+ Y G e

A2 ®>\Z3+Zd‘1 )A(”@I@A )+ Zd21 £ A0 @ A2 @ AP

1,3 741,83 701 21,22,23 11712713 1 13 )

wm[zuwzuih F N2+ LS (D)2 St zuj,?;)] Iy =1

we have tr(p?) =



Therefore

d® —
ST = A TR+ O
2
D+ D) + D))
d

Saﬁ—n

(1,2,3) 123
Thus, || T t;, Z2Z3 < d

tion tensors and the separablhty under various partitions, we have the following results:

. Concerning the relations between the correla-

Lemma 1. Let p € H! @ Hf @ H¢ @ H{ be a pure state. If p is fully separable, then for any
k=1,---,d>—1,

A(d — 1)
|| T1\2|3\4 ||k: T (2)

Proof. Since p is fully separable, p = p; ® ps ® p3 ® py, where py, ps, p3, ps are the reduced
density matrices of p. By the inequality for 1-body correlation tensors, || () ||< /241 [17],

f=1,2,3,4, with the equality holding iff the state is pure, we have

| Tipe e = TOT@ @TO @ TOY e TO | - | (T2 @ TO 0 T |
T (@D eTO @ TOY = TV || | TO @ TO e T |

A(d - 1)
= TON- AT 7O T = =, (3)

which proves the Theorem. O

Lemma 2. Let p € H' @ HS @ HY @ H{ be a pure state such that p is separable under at least
one bipartition. Then for any k=1,--- ,d*> — 1, and f # g# h # 1 € {1,2,3,4}, we have
(i) if p is separable under bipartition f|ghl, then

Md—1)WEFdFT
| Tignt [|x< 7 ; (4)

(i) if p is entangled under bipartition f|ghl, then

aNE(d? — 1
| Tpignt [I1< %- (5)



Proof. (i) If p is separable under bipartition f|ghl, p = p; ® pgn, it follows from || T9h) ||<

(d ~1)
2 ) that

I Tppgna I =1 T (@@ =] T |- | (TOD)

SN TD |- | o) = 7O || || T |

- 4(d — 1)\/d6212+d+1' ©)

(ii) p is entangled under bipartition f|ghl, without loss of generality, say, under the bi-
partition 1|234. If p is separable under some bipartition of one subsystem vs the rest three

subsystems, we have

Md—1WEFdFT
| Tigni [|x< 7 : (7)

If p is separable under some bipartition of two subsystems vs the rest two subsystems, from

the inequality of 2-body correlation tensors || TU9) || < (/25 (d2 Y [17], we have

I Tpgna I =1 TED @ (T [li= T - || (T |l
ANVE(d® 1)
VR TED || 70 || € ——F—, (8)
where we have used the inequality || M ||x< k|| M || for any matrix M. If p is separable under

some bipartition of three subsystems vs the rest one subsystem, we have

| Trigna [l =l T @ (TO) |lo=|| LS ||y, - (| (TO) ||
4(d— 1)\/k(d>+d+1
<VE | TS || 7O ||< ( ) d(2 +dad+ ). ()

(d— 1)\/d2+d+ 4f(d2 1)

Y

Hence, if p is entangled under bipartition 1234, we have || Tjgn ||x< maz{ 2
Ay k(d2+d+l } = 4‘f(d% —~. Similar discussion applies to other bipartitions 2|134, 3|124 and
4[123. It indicates that these norms have the same upper bound. Hence, || Tfgn |[x< 4‘/%#,

if p is entangled under bipartition f|ghl. O

We may analyze the bipartition fgh|l by using similar methods above and obtain the

following Lemma.



Lemma 3. Let p € H{ ® HS® H{ @ HY be a pure state such that p is separable under at least
one bipartition. Then for anyk=1,--- ,d> =1, and f # g # h #1 € {1,2,3,4}, we have
(i) if p is separable under bipartition fgh|l, then

Md— VWP +d+1

| Trgnpr [I1<

(i) if p is entangled under bipartition fghl|l, then

ANE(d? - 1)

7 (11)

| Trgnpp ||x<

Now we consider the relations between the correlation tensors and the separability under

the bipartition fg|hl.

Lemma 4. Let p € H{ ® HY ® H{ @ H{ be a pure state such that p is separable under at least
one bipartition. Then for any k=1,--- ,d*> =1, and f #g# h #1 € {1,2,3,4}, we have

(i) if p is separable under bipartition fg|hl, then

4(d? - 1)
| Trgm [Ix< 3z (12)
1) if p 18 entangled under bipartition hl, then
(i) if p g P glhl,
Ah(d? — 1)
| Trgna [Ix< — 2 (13)
Proof. (i) If p is separable under bipartition fg|hl, p = prg ® ppi, then
| Ty e = TV - (TEDY o= || T || || (TP =] TS || - || (TP
A(d? -1
—|| T || .|| T®D || < A& -1) (14)

az
by using the inequality for 2-body correlation tensors.

(ii) p is entangled under bipartition fg|hl, say, 12|34. If p is separable under some bipartition

of one subsystem vs the rest three subsystems, we have

| Tyl =) 7O ©T@H Jym) 70 | T |
Ad—1)\/k(d*>+d+1
< VEITO | e g LEDVRERAED



If p is separable under some bipartition of two subsystems vs the rest two subsystems, we have

A(d? - 1)

I Trgpua lln= ——— (16)

If p is separable under some bipartition of three subsystems vs the rest one subsystem, we have

| Trgma I =1l TELY @ (TO) =] TELY |l - || (TO) Iy
4(d — E(d?2+d+1
< VE |7 | 70 < W DVHETIT]) (17)
2
Hence, if p is entangled under bipartition 12|34, we have || T¢gjn || k<max{ ;2(d2+d+1),

(21)

2 4d1 d2d1
AP Dy - MEOVHERED) > 2 Tk =1, || Tygm |h<

Similarly, if p is entangled under bipartition 13|24, 14|23 23|14, 24|13 and 34|12, we have

the upper bound of the norm as follows.

bipartition of i subsystem vs the rest 5 subsystems.

Let ¢« vs 7 denote that p is separable under some

lvs3 2vs 2 3uvus 1
[ T13)24 I | Th3j24 ||& I T13)24 I
|
13]24 =| T & T9hD I =|| TG99 & T 1P =|| TG990 & (T(l))t I
4(d—1)\/k(d2+d+1) < 4k(d?-1) 4(d—1)\/k(d?2+d+1)
>~ a2 = T 2 >~ a2
H T14|23 sz H T14|23 sz H T14\23 Hk
1423 =|| TY) @ TW@D |, =|| TG9) & Thd) B =|| TW9h) & 70 I
< 4(d—1)/k(d?+d+1) < Ak(d>-1) 4(d—1)1/k(d2+d+1)
= d2 — d2 = d2
| Tospa |k | Tospa |& | Tospa ||k
23|14 =|| TV @ Tl ||, =|| TV9 @ T®D ||, =|| T2l @ (TOY ||,
4(d—=1)4/k(d?+d+1) 4k(d2-1) 4(d—1)4/k(d2+d+1)
< 7 < =g < 2
H T24|13 Hk H T24|13 Hk H T24|13 Hk
24|13 =l TW' & Tg:hD I =|| TV9 @ Tt ||, =|| ¢l @ TO ||,
4(d—1)4/k(d?+d+1) 4k(d%-1) 4(d—1)4/k(d2+d+1)
S d2 S d2 S d2
| Tsap12 ||x | Taapz ||k | Taapz ||k
3412 | =[| (TV) @ T ||, | = (T19)" @ T® ||, —H T @ T |y
4(d—1)+/k(d2+d+1) < 4(d%-1) d—l),/ d2+d+1
= d2 — d2 =

Altogether we have || Tygjn ||x<

) if p is entangled under bipartition f glhl.




Next we present a sufficient condition to detect GME for four-partite systems. By the

4(d—1)Vd2Fd+1 4VE(d?-1) it
2 &2 1

Lemma 2 we have that || Tpign [|5< if p is separable, and || Tyjgn [|x<

k(d?—1)
2

p is entangled. However, || Ty [s< 75— is a rather weak condition. We define the average

matricization norm, Mk = lll(H T1‘234 ||k + || T2|134 ||k; + || T3‘124 ||k + || T4|123 ||k)

Theorem 1. If p is a four-qudit state, and

(d— 1)V +d+1+3(d+1)VE]
d2

Mi(p) > (18)

for any k € {1,2,3,--- ,d* — 1}, then p is genuine multipartite entangled.

Remark 1: Compared with the Theorem 3 in [17] for four-qubit states, our result detects
GME for any general four-qudit states.

Ezample: Consider the four-qubit state p = =2 + z]p) (¢, where |¢) = \%(|OOOO) +|1111))
is the Greenberger-Horne-Zeilinger(GHZ) state. By Theorem 3 in [17], the inequality is ||
Moo (T i) > 2vVE(1 < k < 3), p contains genuine four-qubit entangled when 0.692820 <
x < 1. By our result in Theorem 1, with d = 2 and £ = 3, we have that p contains genuine

four-qubit entangled for 0.911710 < x < 1, see Fig. 1.

Af(x)
2 .

Fig. 1: Function f(x) denotes the difference between the left and right hand side of the in-
equality (18) and the inequality of the Theorem 3 of [17]. From the Theorem 3 of [17], one has
f(x) = 5x—3.464103(dashed line) which contains the GME for 0.692820 < x < 1. Our Theorem
gives rise to f(z) = bx — 4.558552(solid line), which contains GME for 0.911710 < = < 1.



3. Detection of GME for Multipartite Quantum States

In this section, we study the GME for multipartite qudit states. Any n-partite density
matrix p € H{ @ H{ ® - -+ ® H? can be expressed as

n d?—1
1 \U
po=lo- ®I+2dn122t WOl @I+
J1=141=1
1 d?—1
+o > il er)e el (19)
21, ,in=1

where (j;) represents the position of \;; in the tensor product, tgfl) = tr(p)\l(-fl) RQI® - ®

I),--- ,tﬁj’ ) tr(p)\(l ® )\ - ® /\(")), and TUV | ... TUm) are the vectors (tensors)
with elements tz(l ), e tﬁj ) , respectively.
For a pure state p, one has
n d?-1 d2-1

tr(p?) + oo Sl ;n > (=1 (20)

Ji i1 11, in

Hence

d?2—1 n d?*—1

1, Con 27 "(d"—1)
Z (t( n)) —gn _ it 2d“ - ZZZ T, (21)

11, 5in

which implies that

d2—1

o 2n(dn —1)
e N D D G R (22)

115" 5tn

We now consider multipartite systems and their 7" matrices.

Theorem 2. Let p € HI @ --- @ H? be a pure state. If p is fully separable, then for any
k=1,---,d*> -1,

o1 (d— 1)

I T o= /=

(23)



. i . . . 1)
Proof. According to the Proposition 1 of Ref. [21], i.e., if p is fully separable then iy, =

¢ tf;:), using the bound || TWY) ||< \/Q(dfd_l), j1=1,---,n, we have

i PN

| Tyl =ITO - (@O @ @ TOF = TO || - | (TO 0 0 TO) |y
= 7 |-l T ... T™ =]l 71 - T® & ... 0T™ I
2n(d —1)»
ST T 7 = 2 1)
Hence, if p is fully separable, then || T4..., ||x= 2”(‘;_;1)". —

Let A; be subsets of the set {Hy, Hs,- -+ , H,} and Ay the complement of Ay, ns, and na,
be the number of spaces contained in A; and Aj, respectively. For the bipartition A;|A; =
J1e dnadna s Jns 1 # Jo F 0 F Ju € {1,2, ,n}, let T4, be a matrix with entries
tap = 1,757, where a = (@ = 1) (i, = 1)+ 4, b= (=17 (i, 1—1)+ i,

Litsljos - ooy g, —1,2,...,d — 1.

Theorem 3. Let p € Hl ® ---® H? be a pure state. If p is separable under bipartition A;|As,
then for any k=1,--- ,d* — 1,

2 (d™ — 1)(d™> — 1
| Ty, s 22 D@22 1) (29

Proof. If p is separable under bipartition A;|As, then pa, ® pa,. Using the inequality (22), we
get

| Tagga I = T (T = [ T |- | (TAD) |l
=[| T || (T = T - | (T |
n(JnA; — MNAy
- \/2 (d ;2(d 1) (26)

O

Theorem 4. Let p € HL ® ---® HZ be a pure state such that p is separable under at least one
bipartition. For anyk =1,--- d*> —1 and j; # jo # -+ # jn € {1,2,+-+ ,n}, we have

(1) if p is entangled under a certain bipartition ji|js - - - jn, then

10



nk(dl3]_ -5
| Thljarein 16< \/2 k(d 2 1)(d 2 ([] denotes integer function), when n is odd;

| T 1o 1< 2%%#, when n is even;

(1) if p is entangled under a certain bipartition jy - - - ju_1|jn, then

n [ ] mn— *]
T R L L e
| T i 16 M(‘Z#, when n s even.

Proof. (i) If p is entangled under bipartition ji|j2 - - - j,, then there is at least one bipartition
JiJpliper - dn (0 =1,2--- ,n—1) such that p is separable. Let jj ---j |7, .1 - j, = Ai|As,
then n4, = p.

D ji=1. If p=1and j; # 1, we have

| Ttz e = [T (T | TOV | ] (T )
-/ y -/ 2n(d — 1)(d1 —1
= || TV || - || T2 ) || < \/ ( )d(” ) (27)

Ifp=223--- ,n—1, we get

= | 71 ) ® (T(J’;H,---Ja))t le=| 71 ) e - | (T(j;ﬂ,---,ja))t I

| Tiljargn e =
-/ v . y n D __ n—p __
< Vi 1 71 dp) -l T ps15n) < \/2 k(d ;)n(d 1).

(28)

@ j1=2,---,n— 1. For any p we have

T P Y A 1= [ i A PN NUAC S

< VR || T B | i) < \/Q"k(d” - z)n(d”p -1 (20)

@ji=nIftp=1,--- n—2 we have
| T e = | (T2 90))e @ TUprrdad || || (T B D) | || TV da) |
< VE || TG || || TUein) || < \/2nk(dp - z)n(d”p - 1)_ (30)
Ifp=n—1, we get
| Ty g I = [ (T 90=2)e @ PO || (T UL Fn-t) ||| TR |
= || TUrdnn) ||| TR || < \/2n(d _ 12(7?”_1 _ 1)‘ (31)

11



Now consider max{\/znk (dP — 1)n(d" P— 1)7 \/2"(d 1)(d" ! 1)} 1,---,n—1. Let y = (dh _
1)(d"™" — 1) (h € R*) be a continuous function. Then the maximal value is ¥4 = (d2 — 1)2.
. n [ﬁ]_ "_[ﬂ]_ . n ﬂ_ 2
If nis odd, || Taja, ||x< \/2 h(d2 Z)n(d = If n is even, || Taya, Ix< 2"3(62—311).

(17) If p is entangled under bipartition j; - - - j,_1|jn, then there is at least one bipartition

g1 Jpldpi s dnp=1,2--- ,n—1, such that p is separable. Similarly, let jj ---j,|j, .1 j, =
Aq| Ay, then na, = p. The proof can be done in three cases.

D j.=1. It p=1, we have

T e = [ (TO0) © T = (TRY - | T |
i’ i/ % 2n(d — 1)(dr1 -1
e H T(]l) H . H T(]27'“7]n) HS \/ ( )Cl(n ) (32)

fp=2---,n—1, we get

| g o = ) TOE) @ Pl | 7O | ) |
VY v . . n — n—p __
< Vk | U320 dp) | - || TUps30) || < \/2 k(d? 11)n<d 1)' (33)

@ jn=2,--- ,n— 1. For any p we have
= || TU T @ Plpsar i) ||| TU im0 || || T d0) ||,

-/ +/ -/ . . n P — n—p _

| Thyjor o Il

(34)

@jﬂ:n' pr:l?"'an_27weget

_ || T(jiﬁ”'ﬂjzlv) ®T(jz’,+1,.4.,j§r1vjfz) “k:H T(ji"”ﬂjz/v) ||k ) H T(j;’“””’j;kl’j;l) ||k
2ike(dr — 1)(d7 — 1)

| Thij sl Il

< \/E H T(ji,m,j;@) H . ” T(j;2+1a'--,j;717j;z) HS \/ T (35)
If p=n—1and j,, # n, we have
| Tyt I = T8 oma) (Y ]| TR ) |- | ()
. . 2n(d — 1)(dr=1 = 1)
= || TV ) ||| 7O || < \/ o . (36)
. 2 k(dlZ) —1)(d"~ 2k(dZ —1)2
If nis odd, || Ty 1pin 6< \/ il )( Cfnis even, || T 165 %.

O

12



4. Conclusion

We have studied genuine multipartite entanglement in four-partite and multipartite qudit
quantum systems, and derived the relationship between the norms of the correlation tensors and
the specific matrix T'. Based on these relations we have presented a criterion to detect GME in
four-partite quantum systems. These results are generalized to multipartite systems. Our main
results concern with special inequalities that bound the various norms of the correlation tensors,
upon which our criterion is presented to detect GME in multipartite systems. These results can
help distinguishing genuine multipartite entangled states. Genuine multipartite entanglement
plays significant roles in many quantum information processing. Our approach and results may

highlight further researches on the theory of genuine multipartite entanglement.
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