Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

On the Anisotropic Moser-Trudinger inequality for unbounded domains in ${ }^{n}$

by
Changliang Zhou and Chunqin Zhou

August 13, 2019

ON THE ANISOTROPIC MOSER-TRUDINGER INEQUALITY FOR UNBOUNDED DOMAINS IN \mathbb{R}^{n}

CHANGLIANG ZHOU
SCHOOL OF SCIENCE, EAST CHINA UNIVERSITY OF TECHNOLOGY, NANCHANG, CHINA
CHUNQIN ZHOU
SCHOOL OF MATHEMATICAL SCIENCES, MOE-LSC, SHANGHAI JIAO TONG
UNIVERSITY, SHANGHAI, CHINA

Abstract

In this paper, we investigate a sharp Moser-Trudinger inequality which involves the anisotropic Sobolev norm in unbounded domains. Under this anisotropic Sobolev norm, we establish the Lions type concentrationcompactness alternative firstly. Then by using a blow-up procedure, we obtain the existence of extremal functions for this sharp geometric inequality. In particular, we combine the low dimension case of $n=2$ and the high dimension case of $n \geq 3$ to prove the existence of the extremal functions, which is different from the arguments of isotropic case, see [BR, LR].

Key words: Moser-Trudinger inequality, anisotropic Sobolev norm, blow-up analysis, existence of extremal functions

1. INTRODUCTION

Let $\Omega \subset \mathbb{R}^{n}$ denote a domain with $n \geq 2$. When Ω is a bounded domain, the classical Trudinger-Moser inequality states that for all functions $u \in W_{0}^{1, n}(\Omega)$ with Dirichlet norm $\|u\|_{D}=\left(\int_{\Omega}|\nabla u|^{n} d x\right)^{\frac{1}{n}}$ it holds that

$$
\sup _{\|u\|_{D} \leq 1} \int_{\Omega}\left(e^{\alpha|u|^{\frac{n}{n-1}}}-1\right) d x=C(\Omega, \alpha) \begin{cases}<+\infty & \text { when } \alpha \leq \lambda_{n} \tag{1}\\ =+\infty & \text { when } \alpha>\lambda_{n}\end{cases}
$$

where $\lambda_{n}=n \omega_{n-1}^{\frac{n}{n-1}}$, and ω_{n-1} is the measure of the unit sphere in \mathbb{R}^{n}. Moreover, when $\alpha \leq \lambda_{n}$, the supremum can be attained by some $u \in W_{0}^{1, n}(\Omega)$ with $\|u\|_{D}=1$.

It is well known that whether the extremal functions exist or not is an interesting question about Moser-Trudinger inequalities. There are lots of contributions in this direction. The first result is due to Carleson and Chang [CC], who proved that the supremum is attained when Ω is a unit ball in \mathbb{R}^{n}. Then Struwe $[\mathrm{S}]$ got the existence of extremals for Ω close to a ball. Struwe's technique was then used and extended by

[^0]Flucher $[\mathrm{F}]$ to Ω which is a more general bounded smooth domain in \mathbb{R}^{2}. Later, Lin [L2] generalized the existence result to a bounded smooth domain in dimension- n.

When Ω is an unbounded domain, the situation is different, i.e. Supremum (1) becomes infinity. Hence the Trudinger-Moser inequality is not available for such domains (and in particular for \mathbb{R}^{n}).

However, if Ω is an unbounded domain in \mathbb{R}^{2}, Ruf $[\mathrm{BR}]$ replaced the Dirichlet norm $\|u\|_{D}$ by the standard Sobolev norm $\|u\|_{S}=\left(\int_{\Omega}\left(|\nabla u|^{2}+|u|^{2}\right) d x\right)^{\frac{1}{2}}$ on $W_{0}^{1,2}(\Omega)$ to show that

$$
\sup _{\|u\|_{s} \leq 1} \int_{\Omega}\left(e^{\alpha|u|^{2}}-1\right) d x=C(\alpha)\left\{\begin{array}{lll}
<+\infty & \text { when } & \alpha \leq 4 \pi \tag{2}\\
=+\infty & \text { when } & \alpha>4 \pi
\end{array}\right.
$$

In particular when $\alpha \leq 4 \pi$ the supremum can be attained. For $n \geq 3, \mathrm{Li}$ and Ruf [LR] generalized the result, which states that the supremum

$$
\begin{equation*}
\sup _{u \in W^{1, n}\left(\mathbb{R}^{n}\right), \int_{\mathbb{R}^{n}}\left(|\nabla u|^{n}+|u|^{n}\right) d x \leq 1} \int_{\mathbb{R}^{n}} \phi\left(\alpha|u|^{\frac{n}{n-1}}\right), \tag{3}
\end{equation*}
$$

is uniformly bounded and can be attained by some $u_{0} \in W^{1, n}\left(\mathbb{R}^{n}\right)$ with $\int_{\mathbb{R}^{n}}\left(\left|\nabla u_{0}\right|^{n}+\right.$ $\left.\left|u_{0}\right|^{n}\right) d x=1$, where $\alpha \leq \lambda_{n}$, and

$$
\phi(t)=e^{t}-\sum_{j=0}^{n-2} \frac{t^{j}}{j!}
$$

When $\alpha>\lambda_{n}$, the supremum is infinite.
Recently, due to a wide range of applications in geometric analysis and partial differential equations (see [AS, FOR, LL2] and reference therein), numerous generalizations, extensions and applications of the Moser-Trudinger inequality have been given. We recall in particular Lions concentration compactness principle obtained by Lions [L2], which says that if $\left\{u_{k}\right\}$ is a sequence of functions in $W_{0}^{1, n}(\Omega)$ with $\left\|\nabla u_{k}\right\|_{L^{n}(\Omega)}=1$ such that $u_{k} \rightharpoonup u \neq 0$ weakly in $W_{0}^{1, n}(\Omega)$, then for any $0<p<\left(1-\|\nabla u\|_{L^{n}(\Omega)}^{n}\right)^{-1 /(n-1)}$, one has

$$
\sup _{k} \int_{\Omega} e^{p \lambda_{n}\left|u_{k}\right|^{\frac{n}{n-1}}} d x<+\infty .
$$

Here the function $F(x)$ is convex, positive and homogeneous of degree 1, and its polar F^{o} represents a Finsler metric on \mathbb{R}^{n}. In particular, when Ω is a bounded domain, for $u \in W_{0}^{1, n}(\Omega),\left(\int_{\Omega} F^{n}(\nabla u) d x\right)^{\frac{1}{n}}$ is an equivalent norm of u, which can be called the anisotropic Dirichlet norm, while $\Omega=\mathbb{R}^{n},\left(\int_{\Omega} F^{n}(\nabla u)+|u|^{n} d x\right)^{\frac{1}{n}}$ is an equivalent Sobolev norm of $u \in W_{0}^{1, n}\left(\mathbb{R}^{n}\right)$, which can be called as the anisotropic Sobolev norm. In 2012, Wang and Xia [WX1] proved the anisotropic

45
Moser-Trudinger type inequality in a bounded domain Ω

$$
\begin{equation*}
\int_{\Omega} e^{\lambda u^{\frac{n}{n-1}}} d x \leq C(n)|\Omega| \tag{4}
\end{equation*}
$$

46 for all $u \in W_{0}^{1, n}(\Omega)$ with the anisotropic Dirichlet norm $\int_{\Omega} F(\nabla u)^{n} d x \leq 1$. Here
${ }_{47} \lambda \leq \alpha_{n}=n^{\frac{n}{n-1}} \kappa_{n}^{\frac{1}{n-1}}$ and $\kappa_{n}=\left|\left\{x \in \mathbb{R}^{n}: F^{o}(x) \leq 1\right\}\right|$. Moreover, α_{n} is optimal,
48 that means that if $\lambda>\alpha_{n}$ we can find a sequence $\left\{u_{k}\right\}$ such that $\int_{\Omega} e^{\lambda u_{k}^{\frac{n}{n-1}}} d x$
49 diverges. Recently, Zhou and Zhou [ZZ] generalized Lions type concentration com-
${ }_{50}$ pactness principle to the anisotropic case and then showed that supremum of the
51 anisotropic Moser-Trudinger functional can be attained.
In this paper, we continue to study the anisotropic Moser-Trudinger type inequality and its extremal functions in \mathbb{R}^{n}. We replace the isotropic Sobolev norm by the anisotropic Sobolve norm

$$
\|u\|_{F}=\left(\int_{\mathbb{R}^{n}} F^{n}(\nabla u)+|u|^{n} d x\right)^{\frac{1}{n}} .
$$

52 Our main results are
53 Theorem 1.1. For any $\alpha \in\left(0, \alpha_{n}\right)$, there exist a constant $C_{\alpha}>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \phi\left(\alpha\left(\frac{|u(x)|}{\|\nabla u\|_{L^{n}\left(\mathbb{R}^{n}\right)}}\right)^{\frac{n}{n-1}}\right) d x \leq C_{\alpha} \frac{\|u(x)\|_{L^{n}\left(\mathbb{R}^{n}\right)}^{n}}{\|\nabla u\|_{L^{n}\left(\mathbb{R}^{n}\right)}^{n}} \tag{5}
\end{equation*}
$$

54 for any $u \in W^{1, n}\left(\mathbb{R}^{n}\right) \backslash\{0\}$.
${ }_{55}$ Theorem 1.2. There exists a constant $d>0$ such that

$$
\begin{equation*}
\sup _{u \in W^{1, n}\left(\mathbb{R}^{n}\right),\|u\|_{F} \leq 1} \int_{\mathbb{R}^{n}} \phi\left(\alpha_{n}|u|^{\frac{n}{n-1}}\right) d x \leq d . \tag{6}
\end{equation*}
$$

56 Moreover, the inequality is sharp, i.e. for any $\alpha>\alpha_{n}$, the supremum is $+\infty$.
I we set

$$
S=\sup _{u \in W^{1, n}\left(\mathbb{R}^{n}\right),\|u\|_{F} \leq 1} \int_{\mathbb{R}^{n}} \phi\left(\alpha_{n}|u|^{\frac{n}{n-1}}\right) d x
$$

Theorem 1.3. S is attained. In other words, we can find a function $u \in W^{1, n}\left(\mathbb{R}^{n}\right)$, with $\|u\|_{F}=1$, s.t.

$$
S=\int_{\mathbb{R}^{n}} \phi\left(\alpha_{n}|u|^{\frac{n}{n-1}}\right) d x
$$

We would like to point out that the second part of Theorem 1.2 is trival. In fact, for any fixed $\alpha>\alpha_{n}$, we take $\beta \in\left(\alpha_{n}, \alpha\right)$, we can find a positive sequence $\left\{u_{k}\right\}$ in

$$
\left\{u \in W_{0}^{1, n}\left(\mathcal{W}_{1}\right): \int_{\mathcal{W}_{1}} F^{n}(\nabla u) d x=1\right\}
$$

such that

$$
\lim _{k \rightarrow+\infty} \int_{\mathcal{W}_{1}} e^{\beta u_{k}^{\frac{n}{n-1}}} d x=+\infty
$$

Here $\mathcal{W}_{1}=\left\{x \in \mathbb{R}^{n}: F^{o}(x) \leq 1\right\}$, which is defined in detail in the next section. By Anisotropic Lions type concentration compactness principle in [ZZ], we can get
$u_{k} \rightharpoonup 0$. Then by the compact embedding theorem, we may assume $\left\|u_{k}\right\|_{L^{p}\left(\mathcal{W}_{1}\right)} \rightarrow 0$ for any $p>1$. Hence we have

$$
\int_{\mathbb{R}^{n}}\left[F^{n}\left(\nabla u_{k}\right)+u_{k}^{n}\right] d x \rightarrow 1
$$

Since $\alpha\left(\frac{u_{k}}{\left\|u_{k}\right\|_{F}}\right)^{\frac{n}{n-1}}>\beta u_{k}^{\frac{n}{n-1}}$ when k is sufficiently large, we can get

$$
\lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n}} \phi\left(\alpha\left(\frac{u_{k}}{\left\|u_{k}\right\|_{F}}\right)^{\frac{n}{n-1}}\right) d x \geq \int_{\mathcal{W}_{1}}\left(e^{\beta u_{k}^{\frac{n}{n-1}}}-1\right) d x=+\infty
$$

Theorem 1.1 will be proved by convex symmetry with respect to $F^{o}(x)$. And Theorem 1.2 and Theorem 1.3 will be proved by blow up analysis. We will use the ideas from [L1] and [LR]. The key step is to establish the anisotropic Lions type concentration compactness principle for unbounded domain by using convex symmetric rearrangement. The other key step is to give the asymptotic representation of the anisotropic Green function G. Once we have obtained the anisotropic Lions type concentration compactness principle and the asymptotic representation of the anisotropic Green function G, we can apply the blowing up analysis to analyze the asymptotic behavior of the maximizing sequence near and away from the blow up point, and then to give the proof of Theorem 1.2 and Theorem 1.3. Here it is worthy to mention that we need not to distinguish the low dimension case of $n=2$ form the high dimension case of $n \geq 3$ to prove Theorem 1.3, which is different from the arguments in $[B R, L R]$.

2. Anisotropic Lions type concentration compactness principle

In this section, we will give the notations and preliminaries.
Throughout this paper, let $F: \mathbb{R}^{n} \mapsto \mathbb{R}$ be a nonnegative convex function of class $C^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ which is even and positively homogenous of degree 1 , so that

$$
F(t \xi)=|t| F(\xi) \quad \text { for any } \quad t \in R, \xi \in \mathbb{R}^{n}
$$

A typical example is $F(\xi)=\left(\sum_{i}|\xi|^{q}\right)^{\frac{1}{q}}$ for $q \in[1, \infty)$. We further assume that

$$
F(\xi)>0 \quad \text { for any } \quad \xi \neq 0
$$

Thanks to homogeneity of F, there exist two constants $0<a \leq b<\infty$ such that

$$
a|\xi| \leq F(\xi) \leq b|\xi|
$$

Usually, we shall assume that the $\operatorname{Hess}\left(F^{2}\right)$ is positively definite in $\mathbb{R}^{n} \backslash\{0\}$. Then by R.L.Xie and H.J.Gong [XG], $\operatorname{Hess}\left(F^{n}\right)$ is also positively definite in $\mathbb{R}^{n} \backslash\{0\}$. We consider the energy containing the expression

$$
\int_{\Omega} F^{n}(\nabla u) d x
$$

by replacing the usual energy. Its Euler equations contain operators of the form

$$
Q_{n} u:=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(F^{n-1}(\nabla u) F_{\xi_{i}}(\nabla u)\right) .
$$

Note that these operators are not linear unless F is the Euclidean norm in dimension two. We call this nonlinear operator as Finsler-Laplacian. This operator Q_{n} was studied by many mathematicians, see [WX, FK, WX1, AVP, BFK, XG] and the references therein.

Consider the map

$$
\phi: S^{n-1} \rightarrow \mathbb{R}^{n}, \phi(\xi)=F_{\xi}(\xi)
$$

Its image $\phi\left(S^{n-1}\right)$ is a smooth, convex hypersurface in \mathbb{R}^{n}, which is called Wulff shape of F. Let F^{o} be the support function of $K:=\left\{x \in \mathbb{R}^{n}: F(x) \leq 1\right\}$, which is defined by

$$
F^{o}(x):=\sup _{\xi \in K}\langle x, \xi\rangle .
$$

It is easy to verify that $F^{o}: \mathbb{R}^{n} \mapsto[0,+\infty)$ is also a convex, homogeneous function of class of $C^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. Actually F^{o} is dual to F in the sense that

$$
F^{o}(x)=\sup _{\xi \neq 0} \frac{\langle x, \xi\rangle}{F(\xi)}, \quad F(x)=\sup _{\xi \neq 0} \frac{\langle x, \xi\rangle}{F^{o}(\xi)}
$$

One can see easily that $\phi\left(S^{n-1}\right)=\left\{x \in \mathbb{R}^{n} \mid F^{o}(x)=1\right\}$. We denote $\mathcal{W}_{F}:=\{x \in$ $\left.\mathbb{R}^{n} \mid F^{o}(x) \leq 1\right\}$ and $\kappa_{n}:=\left|\mathcal{W}_{F}\right|$, the Lebesgue measure of \mathcal{W}_{F}. We also use the notion $\mathcal{W}_{r}\left(x_{0}\right):=\left\{x \in \mathbb{R}^{n} \mid F^{o}\left(x-x_{0}\right) \leq r\right\}$. we call $\mathcal{W}_{r}\left(x_{0}\right)$ a Wulff shape ball of radius r with center at x_{0}. For later use, we give some simple properties of the function F, which follows directly from the assumption on F, also see [WX, FK, BP]

Lemma 2.1. We have
(i) $|F(x)-F(y)| \leq F(x+y) \leq F(x)+F(y)$;
(ii) $\frac{1}{C} \leq|\nabla F(x)| \leq C$, and $\frac{1}{C} \leq\left|\nabla F^{o}(x)\right| \leq C$ for some $C>0$ and any $x \neq 0$;
(iii) $\langle x, \nabla F(x)\rangle=F(x),\left\langle x, \nabla F^{o}(x)\right\rangle=F^{o}(x)$ for any $x \neq 0$;
(iv) $F\left(\nabla F^{o}(x)\right)=1, F^{o}(\nabla F(x))=1$ for any $x \neq 0$;
(v) $F^{o}(x) F_{\xi}\left(\nabla F^{o}(x)\right)=x=F(x) F_{\xi}^{o}(\nabla F(x))$ for any $x \neq 0$;
(vi) $F_{\xi}(t \xi)=\operatorname{sgn}(t) F_{\xi}(\xi)$ for any $\xi \neq 0$ and $t \neq 0$.

It is well known (also see [FM]) that the co-area formula

$$
\begin{equation*}
\int_{\Omega}|\nabla u|_{F}=\int_{0}^{\infty} P_{F}(|u|>t) d t \tag{7}
\end{equation*}
$$

and the isoperimetric inequality

$$
\begin{equation*}
P_{F}(E) \geq n \kappa_{n}^{\frac{1}{n}}|E|^{1-\frac{1}{n}} \tag{8}
\end{equation*}
$$

holds.
In the sequel, we will use the convex symmetrization with respect to F^{o}. The convex symmetrization generalizes the Schwarz symmetrization (see [T3]). It was defined in [AVP] and will be an essential tool for this paper. Let us consider a measurable function u on $\Omega \subset \mathbb{R}^{n}$. The one dimensional decreasing rearrangement of u is

$$
u^{*}=\sup \{s \geq 0:|\{x \in \Omega:|u(x)|>s\}|>t\}, \quad \text { for } \quad t \in \mathbb{R}
$$

The convex symmetrization of u with respect to F is defined as

$$
u^{\star}(x)=u^{*}\left(\kappa_{n} F^{o}(x)^{n}\right), \quad \text { for } x \in \Omega^{*}
$$

Here $\kappa_{n} F^{o}(x)^{n}$ is just the Lebesgue measure of a homothetic Wulff ball with radius $F^{o}(x)$ and Ω^{*} is the homothetic Wulff ball centered at the origin having the same measure as Ω. Next we will attain concentration compactness principle in unbounded domain with Finsler metric.

Lemma 2.2. Let $u \in W^{1, n}\left(\mathbb{R}^{n}\right)$ and u^{\star} the convex symmetrization of u with respect to $F^{o}(x)$. If $\|u\|_{F} \leq 1$, then for each $R>0$ and $q>0$, there exist a positive constant $C=C(q, R, n)$ such that

$$
\int_{F^{o}(x) \geq R} \phi\left(q\left|u^{\star}\right|^{\frac{n}{n-1}}\right) d x \leq C(q, R, n) .
$$

95 Proof. By the monotone convergence theorem, we have

$$
\begin{aligned}
\int_{F^{o}(x) \geq R} \phi\left(q\left|u^{\star}\right|^{\frac{n}{n-1}}\right) d x & =\int_{F^{o}(x) \geq R}\left[\sum_{j=n-1}^{+\infty} \frac{\left(q\left|u^{\star}\right|^{\frac{n}{n-1}}\right)^{j}}{j!}\right] d x \\
& =\sum_{j=n-1}^{+\infty} \int_{F^{o}(x) \geq R} \frac{\left(q\left|u^{\star}\right|^{\frac{n}{n-1}}\right)^{j}}{j!} d x \\
& \leq \frac{q^{n-1}}{(n-1)!} \|\left. u^{\star}\right|_{L^{n}\left(\mathbb{R}^{n}\right)} ^{n}+\sum_{j=n}^{+\infty} \frac{q^{j}}{j!} \int_{F^{o}(x) \geq R}\left|u^{\star}\right|^{\frac{j n}{n-1}} d x
\end{aligned}
$$

96 In view of the radial symmetrization with respect to $F^{o}(x)$, then

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left|u^{\star}(x)\right|^{n} d x \geq \int_{\mathcal{W}_{r}}\left|u^{\star}(x)\right|^{n} d x & =\int_{0}^{r}\left|u^{*}\left(\kappa_{n} t^{n}\right)\right|^{n} d t \int_{F^{o}(x)=t} \frac{1}{\left|\nabla F^{o}(x)\right|} d s \\
& =\int_{0}^{r}\left|u^{*}\left(\kappa_{n} t^{n}\right)\right|^{n} n \kappa_{n} t^{n-1} d t \\
& \left.\geq\left(u^{\star}(x)\right)^{n}\right)\left.\right|_{F^{o}(x)=r} \kappa_{n} r^{n} .
\end{aligned}
$$

Since $\|u\|_{F} \leq 1$ implies that $\left\|u^{\star}\right\|_{L^{n}\left(\mathbb{R}^{n}\right)} \leq 1$, we have

$$
\left.u^{\star}(x)\right|_{F^{o}(x)=r} \leq \frac{\left\|u^{\star}\right\|_{L^{n}\left(\mathbb{R}^{n}\right)}}{\kappa_{n}^{\frac{1}{n}}} \frac{1}{r} \leq \frac{1}{r \kappa_{n}^{\frac{1}{n}}} .
$$

97 Thus for all $j \geq n$,

$$
\begin{aligned}
\int_{F^{o}(x) \geq R}\left|u^{\star}\right|^{\frac{j n}{n-1}} d x & \leq \int_{F^{o}(x) \geq R} \frac{1}{F^{o}(x)^{\frac{j n}{n-1}}}\left(\frac{1}{\kappa_{n}}\right)^{\frac{j}{n-1}} d x=\left(\frac{1}{\kappa_{n}}\right)^{\frac{j}{n-1}} \int_{F^{o}(x) \geq R} \frac{1}{F^{o}(x)^{\frac{j n}{n-1}}} d x \\
& =\left(\frac{1}{\kappa_{n}}\right)^{\frac{j}{n-1}} \int_{R}^{+\infty} \frac{1}{t^{\frac{j n}{n-1}}} d t \int_{F^{o}(x)=t} \frac{1}{\left|\nabla F^{o}(x)\right|} d s \\
& =\left(\frac{1}{\kappa_{n}}\right)^{\frac{j}{n-1}} \int_{R}^{+\infty} \frac{1}{t^{\frac{j n}{n-1}} n \kappa_{n} t^{n-1} d t=\frac{n-1}{j+1-n} \kappa_{n}^{1-\frac{j}{n-1}} R^{n-\frac{j n}{n-1}} .}
\end{aligned}
$$

From the equality above we can conclude that

$$
\int_{F^{o}(x) \geq R} \phi\left(q\left|u^{\star}\right|^{\frac{n}{n-1}}\right) d x \leq \frac{q^{n-1}}{(n-1)!}+\kappa_{n} R^{n} \sum_{j=n}^{+\infty} \frac{q^{j}}{j!} \frac{n-1}{j+1-n}\left(\frac{1}{\kappa_{n} R^{n}}\right)^{\frac{j}{n-1}}
$$

99 The conclusion follows form the convergence of the series of $\sum_{j=n}^{+\infty} \frac{q^{j}}{j!} \frac{n-1}{j+1-n}\left(\frac{1}{\kappa_{n} R^{n}}\right)^{\frac{j}{n-1}}$.

Lemma 2.3. For any $p>1$ and any $u \in W^{1, n}\left(\mathbb{R}^{n}\right)$, there holds

$$
\int_{\mathbb{R}^{n}} \phi\left(p|u|^{\frac{n}{n-1}}\right) d x<+\infty .
$$

Proof. Fix $p>1$ and $u \in W^{1, n}\left(\mathbb{R}^{n}\right)$, let u^{\star} be the convex symmetric rearrangement of u with respect to $F^{o}(x)$, we have
$\int_{\mathbb{R}^{n}} \phi\left(p|u|^{\frac{n}{n-1}}\right) d x=\int_{\mathbb{R}^{n}} \phi\left(p\left|u^{\star}\right|^{\frac{n}{n-1}}\right) d x=\int_{F^{o}(x) \geq R} \phi\left(p\left|u^{\star}\right|^{\frac{n}{n-1}}\right) d x+\int_{F^{o}(x) \leq R} \phi\left(p\left|u^{\star}\right|^{\frac{n}{n-1}}\right) d x$.
Since $W^{1, n}\left(\mathcal{W}_{R}\right)$ is a continuous embedding in $L^{q}\left(\mathcal{W}_{R}\right)$ for $q \geq 1$, we obtain that

$$
\int_{\mathcal{W}_{R}} \sum_{j=0}^{n-2}\left|u^{\star}(x)\right|^{\frac{j n}{n-1}} d x \leq C(R)
$$

101

Define $v(x)=u^{\star}(x)-u^{\star}(R), x \in \mathcal{W}_{R}$. Obvious, $v(x) \in W_{0}^{1, n}\left(\mathcal{W}_{R}\right)$. By calculating, we have, there exists a constant $A=A(n)$,

$$
\begin{aligned}
\left|u^{\star}(x)\right|^{\frac{n}{n-1}} & \leq\left(|v(x)|+\left|u^{\star}(R)\right|\right)^{\frac{n}{n-1}} \\
& \leq|v|^{\frac{n}{n-1}}+A|v|^{\frac{1}{n-1}}\left|u^{\star}(R)\right|+\left|u^{\star}(R)\right|^{\frac{n}{n-1}}
\end{aligned}
$$

and

$$
|v|^{\frac{1}{n-1}}\left|u^{\star}(R)\right|=\left(|v|^{\frac{n}{n-1}}\right)^{\frac{1}{n}}\left(\left|u^{\star}\right|^{\frac{n}{n-1}}\right)^{\frac{n-1}{n}} \leq \frac{\epsilon}{A}|v|^{\frac{n}{n-1}}+\left(\frac{\epsilon}{A}\right)^{-\frac{1}{n-1}}\left|u^{\star}(R)\right|^{\frac{n}{n-1}} .
$$

Thus,

$$
\left|u^{\star}(x)\right|^{\frac{n}{n-1}} \leq(1+\epsilon)|v|^{\frac{n}{n-1}}+C(\epsilon, n)\left|u^{\star}(R)\right|^{\frac{n}{n-1}},
$$

where $C(\epsilon, n)=A^{\frac{n}{n-1}} \epsilon^{-\frac{1}{n-1}}+1$. Choose $\epsilon>0$, by means of the Hölder inequality, we get
$\int_{\mathcal{W}_{R}} e^{p\left|u^{\star}(x)\right|^{\frac{n}{n-1}}} d x \leq\left(\int_{\mathcal{W}_{R}} e^{p s(1+\varepsilon)|v|^{\frac{n}{n-1}}} d x\right)^{\frac{1}{s}}\left(\int_{\mathcal{W}_{R}} e^{p s^{\prime} C(\epsilon, n)\left|u^{\star}(R)\right|^{\frac{n}{n-1}}}\right)^{\frac{1}{s^{\prime}}}<+\infty$, where $s>1, s^{\prime}>1$ and $\frac{1}{s}+\frac{1}{s^{\prime}}=1$. Together with Lemma 2.2, the calculation holds.

Now we establish the anisotropic Lions type concentration-compactness lemma in \mathbb{R}^{n}. Similar arguments under the isotropic Dirichlet norm can be seen in $[\mathrm{CCH}$, OMS]. The anisotropic Lions type concentration-compactness lemma in bounded domain can be found in [ZZ].
Theorem 2.4. Let $\left\{u_{k}\right\}$ be a nonnegative sequence in $W^{1, n}\left(\mathbb{R}^{n}\right)$ such that $\left\|u_{k}\right\|_{F}=$ 1 and $u_{k} \rightharpoonup u \not \equiv 0$ in $W^{1, n}\left(\mathbb{R}^{n}\right)$. If

$$
0<p<p_{n}(u)=\frac{1}{\left(1-\|u\|_{F}^{n}\right)^{\frac{1}{n-1}}}
$$

then

$$
\sup _{k} \int_{\mathbb{R}^{n}} \phi\left(p \alpha_{n}\left|u_{k}\right|^{\frac{n}{n-1}}\right) d x<+\infty .
$$

Furthermore, $p_{n}(u)$ is sharp in the sense that there exists a sequence u_{k} satisfying $\left\|u_{k}\right\|_{S}=1$ and $u_{k} \rightharpoonup u \not \equiv 0$ in $W^{1, n}\left(\mathbb{R}^{n}\right)$ such that the supremum is infinite for $p \geq p_{n}(u)$.
Proof. Case 1: $0<\|u\|_{F}<1$. Assume by contradiction that for some $p_{1}<p_{n}(u)$, we have

$$
\sup _{k} \int_{\mathbb{R}^{n}} \phi\left(p_{1} \alpha_{n}\left|u_{k}\right|^{\frac{n}{n-1}}\right) d x=+\infty
$$

This implies

$$
\sup _{k} \int_{\mathbb{R}^{n}} \phi\left(p_{1} \alpha_{n}\left|u_{k}^{\star}\right|^{\frac{n}{n-1}}\right) d x=+\infty
$$

where u_{k}^{\star} is the convex symmetrization of u_{k} with respect to $F^{o}(x)$. For fixed $R>0$, we write

$$
\int_{\mathbb{R}^{n}} \phi\left(p_{1} \alpha_{n}\left|u_{k}^{\star}\right|^{\frac{n}{n-1}}\right) d x=\int_{\mathcal{W}_{R}} \phi\left(p_{1} \alpha_{n}\left|u_{k}^{\star}\right|^{\frac{n}{n-1}}\right) d x+\int_{F^{o}(x) \geq R} \phi\left(p_{1} \alpha_{n}\left|u_{k}^{\star}\right|^{\frac{n}{n-1}}\right) d x
$$

Since $W^{1, n}\left(\mathcal{W}_{R}\right)$ is a continuous embedding in $L^{q}\left(\mathcal{W}_{R}\right)$ for $q \geq 1$, we infer that

$$
\int_{\mathcal{W}_{R}} \sum_{j=0}^{n-2}\left|u_{k}^{\star}\right|^{\frac{j n}{n-1}} d x \leq C(R) .
$$

From this estimate and Lemma 2.2 with $q=p_{1} \alpha_{n}$, we can conclude that

$$
\sup _{k} \int_{\mathcal{W}_{R}} e^{p_{1} \alpha_{n}\left|u_{k}^{\star}\right|^{\frac{n}{n-1}}} d x=+\infty .
$$

Define $v_{k}(x)=u_{k}^{\star}(x)-u_{k}^{\star}(R), x \in \mathcal{W}_{R}$. Obvious, $v_{k}(x) \in W_{0}^{1, n}\left(\mathcal{W}_{R}\right)$. By some similar arguments in Lemma 2.3, we have

$$
\left|u_{k}^{\star}(x)\right|^{\frac{n}{n-1}} \leq(1+\epsilon)\left|v_{k}\right|^{\frac{n}{n-1}}+C(\epsilon, n)\left|u_{k}^{\star}(R)\right|^{\frac{n}{n-1}},
$$

where $C(\epsilon, n)=A^{\frac{n}{n-1}} \epsilon^{-\frac{1}{n-1}}+1$. Choose $s>0$ and $\epsilon>0$, such that $(1+\epsilon) s p_{1}<$ $p_{n}(u)$. By means of the Hölder inequality, we get
$\int_{\mathcal{W}_{R}} e^{p_{1} \alpha_{n}\left|u_{k}^{\star}(x)\right|^{\frac{n}{n-1}}} d x \leq\left(\int_{\mathcal{W}_{R}} e^{(1+\epsilon) p_{1} s \alpha_{n}\left|v_{k}(x)\right|^{\frac{n}{n-1}}} d x\right)^{\frac{1}{s}}\left(\int_{\mathcal{W}_{R}} e^{\left.s^{\prime} p_{1} \alpha_{n} C(\epsilon, n)\left|u_{k}^{\star}(R)\right|^{\frac{n}{n-1}}\right)^{\frac{1}{s^{\prime}}},}\right.$
which implies

$$
\begin{equation*}
\sup _{k} \int_{\mathcal{W}_{R}} e^{\bar{p}_{1} \alpha_{n}\left|v_{k}\right|^{\frac{n}{n-1}}}=+\infty, \quad \bar{p}_{1}=(1+\epsilon) p_{1} s . \tag{9}
\end{equation*}
$$

Since $v_{k}(x)=u_{k}^{\star}(x)-u_{k}^{\star}(R)$, in view of the Pólya-Szegö inequality, we have

$$
\left\|F\left(\nabla v_{k}^{\star}\right)\right\|_{L^{n}\left(\mathcal{W}_{R}\right)} \leq\left\|F\left(\nabla v_{k}\right)\right\|_{L^{n}\left(\mathcal{W}_{R}\right)}=\left\|F\left(\nabla u_{k}^{\star}\right)\right\|_{L^{n}\left(\mathcal{W}_{R}\right)} \leq\left\|F\left(\nabla u_{k}\right)\right\|_{L^{n}\left(\mathcal{W}_{R}\right)} \leq 1
$$

114 Denoting $r=F^{o}(x)$ and taking a change of variable for $t=\kappa_{n} r^{n}$, it follows that

$$
\begin{align*}
\int_{\mathcal{W}_{R}} F^{n}\left(\nabla v_{k}^{\star}\right) d x & =\int_{\mathcal{W}_{R}} F^{n}\left(\nabla v_{k}^{*}\left(\kappa_{n} F^{o}(x)^{n}\right)\right) d x \\
& =\int_{0}^{R} F^{n}\left(\frac{d v_{k}^{*}(t)}{d t} \kappa_{n} n r^{n-1} \nabla F^{o}(x)\right) d r \int_{F^{o}(x)=r} \frac{1}{\left|\nabla F^{o}\right|} d x \\
& =\int_{0}^{R}\left[\left(-\frac{d v_{k}^{*}(t)}{d t}\right) n \kappa_{n} r^{n-1}\right]^{n} n \kappa_{n} r^{n-1} d r \\
& =\int_{0}^{\left|\mathcal{W}_{R}\right|}\left(n \kappa_{n}^{\frac{1}{n}}\left(-\frac{d v_{k}^{*}(t)}{d t}\right)\right)^{n} t^{n-1} d t \tag{10}
\end{align*}
$$

115
Then for $k \in \mathbb{N}$ we have

$$
\left(\int_{0}^{\left|\mathcal{W}_{R}\right|}\left(n \kappa_{n}^{\frac{1}{n}}\left(-\frac{d v_{k}^{*}(t)}{d t}\right)\right)^{n} t^{n-1} d t\right)^{\frac{1}{n}}=\left\|F\left(\nabla v_{k}^{\star}\right)\right\|_{L^{n}\left(\mathcal{W}_{R}\right)} \leq 1
$$

Since $v_{k}^{*}\left(\left|\mathcal{W}_{R}\right|\right)=0$, and v_{k}^{*} is locally absolutely continuous,

$$
\begin{equation*}
v_{k}^{*}(s)=\int_{s}^{\left|\mathcal{W}_{R}\right|}-\frac{d v_{k}^{*}}{d t} d t \quad \text { for } s \in\left(0,\left|\mathcal{W}_{R}\right|\right) \tag{11}
\end{equation*}
$$

Hölder inequality and (11) yield

$$
\begin{align*}
v_{k}^{*}(s) & \leq\left(\int_{s}^{\left|\mathcal{W}_{R}\right|}\left(n \kappa_{n}^{\frac{1}{n}}\left(-\frac{d v_{k}^{*}(t)}{d t}\right)\right)^{n} t^{n-1} d t\right)^{\frac{1}{n}}\left(\int_{s}^{\left|\mathcal{W}_{R}\right|} \frac{1}{n^{\frac{n}{n-1}} \kappa_{n}^{\frac{1}{n-1}}} \frac{d t}{t}\right)^{\frac{n-1}{n}} \\
& \leq\left\|F\left(\nabla v_{k}\right)\right\|_{L^{n}\left(\mathcal{W}_{R}\right)}\left(\frac{1}{n^{\frac{n}{n-1}} \kappa_{n}^{\frac{1}{n-1}}} \log \left(\frac{\left|\mathcal{W}_{R}\right|}{s}\right)\right)^{\frac{n-1}{n}} \\
& \leq\left(\frac{1}{n^{\frac{n}{n-1}} \kappa_{n}^{\frac{1}{n-1}}} \log \left(\frac{\left|\mathcal{W}_{R}\right|}{s}\right)\right)^{\frac{n-1}{n}} \quad \text { for } s \in\left(0,\left|\mathcal{W}_{R}\right|\right) . \tag{12}
\end{align*}
$$

Now we claim: for any $p_{2} \in\left(\overline{p_{1}}, p_{n}(u)\right)$ and every $k_{0} \in \mathbb{N}$ and every $s_{0} \in\left(0,\left|\mathcal{W}_{R}\right|\right)$ there exist $k \in \mathbb{N}, k>k_{0}$, and $s \in\left(0, s_{0}\right)$ such that

$$
v_{k}^{*}(s) \geq\left(\frac{1}{p_{2} n^{\frac{n}{n-1}} \kappa_{n}^{\frac{1}{n-1}}}\right)^{\frac{n-1}{n}} \log ^{\frac{n-1}{n}}\left(\frac{\left|\mathcal{W}_{R}\right|}{s}\right)
$$

Indeed, by contradiction, suppose that there exist $k_{0} \in \mathbb{N}$ and $s_{0} \in\left(0,\left|\mathcal{W}_{R}\right|\right)$ such that

$$
v_{k}^{*}(s)<\left(\frac{1}{p_{2} n^{\frac{n}{n-1}} \kappa_{n}^{\frac{1}{n-1}}}\right)^{\frac{n-1}{n}} \log \frac{\frac{n-1}{n}}{\left(\frac{\left|\mathcal{W}_{R}\right|}{s}\right) \quad \text { for every } s \in\left(0, s_{0}\right), k \geq k_{0} . . . ~ . ~}
$$

By the latter estimate and inequality (12), one has that, if $\overline{p_{1}}<p_{2}$ and $k \geq k_{0}$, then

$$
\begin{aligned}
\int_{\mathcal{W}_{R}} \exp \left(\alpha_{n} \overline{p_{1}}\left|v_{k}\right|^{\frac{n}{n-1}}\right) d x & =\int_{0}^{\left|\mathcal{W}_{R}\right|} \exp \left(\alpha_{n} \overline{p_{1}}\left|v_{k}^{*}\right|^{\frac{n}{n-1}}\right) d s \\
& \leq \int_{0}^{s_{0}}\left(\frac{\left|\mathcal{W}_{R}\right|}{s}\right)^{\frac{\overline{p_{1}}}{p_{2}}} d s+\int_{s_{0}}^{\left|\mathcal{W}_{R}\right|}\left(\frac{\left|\mathcal{W}_{R}\right|}{s}\right)^{\overline{p_{1}}} d s \\
& <+\infty,
\end{aligned}
$$

contradicting (9). Our claim is proved. Thus, possibly passing to a subsequence, there exist a sequence s_{k}, such that

$$
\begin{equation*}
v_{k}^{*}\left(s_{k}\right) \geq\left(\frac{1}{p_{2} n^{\frac{n}{n-1}} \kappa_{n}^{\frac{1}{n-1}}}\right)^{\frac{n-1}{n}} \log \frac{n-1}{n}\left(\frac{\left|\mathcal{W}_{R}\right|}{s_{k}}\right) \quad \text { and } \quad s_{k} \leq \frac{1}{k} \quad k \in \mathbb{N} . \tag{13}
\end{equation*}
$$

Now, given $L>0$, define the truncation operator T^{L} and T_{L} acting on any function $v: \mathcal{W}_{R} \rightarrow \mathbb{R}^{+} \cup\{0\}$ as

$$
T^{L}(v)=\min \{v, L\} \quad \text { and } \quad T_{L}(v)=v-T^{L}(v) .
$$

Since $\left\|T^{L}(u)\right\|_{F} \rightarrow\|u\|_{F}$ as $L \rightarrow+\infty$, taking $p_{3} \in\left(p_{2}, p_{n}(u)\right)$, and choose L so large that

$$
\begin{equation*}
\frac{1-\|u\|_{F}^{n}}{1-\left\|T^{L}(u)\right\|_{F}^{n}}>\left(\frac{p_{3}}{p_{n}(u)}\right)^{n-1} . \tag{14}
\end{equation*}
$$

It follows from (13) that $v_{k}^{*}\left(s_{k}\right) \rightarrow+\infty$ as $k \rightarrow+\infty$. Since $v_{k}^{*}\left(\left|\mathcal{W}_{R}\right|\right)=0$, by passing to a subsequence if necessary, we have that $v_{k}^{*}\left(s_{k}\right)>L$ for every $k \in \mathbb{N}$ large enough. Consequently, there exists $r_{k} \in\left(s_{k},\left|\mathcal{W}_{R}\right|\right)$ such that $v_{k}^{*}\left(r_{k}\right)=L$ for
every $k \in \mathbb{N}$. Owing to (13) and to Hölder inequality, via the same argument as in 128 the proof of (12) we obtain

$$
\begin{aligned}
& \left(\frac{1}{p_{2} n^{\frac{n}{n-1}} \kappa_{n}^{\frac{1}{n-1}}}\right)^{\frac{n-1}{n}} \log { }^{\frac{n-1}{n}}\left(\frac{\left|\mathcal{W}_{R}\right|}{s_{k}}\right)-L \leq v_{k}^{*}\left(s_{k}\right)-v_{k}^{*}\left(r_{k}\right)=\int_{s_{k}}^{r_{k}}-\frac{d v_{k}^{*}(t)}{d t} d t \\
& \quad \leq\left\|-\frac{d v_{k}^{*}(t)}{d t}\left(n \kappa_{n}^{\frac{1}{n}}\right) t^{\frac{n-1}{n}}\right\|_{L^{n}\left(s_{k}, r_{k}\right)} \cdot \frac{1}{n \kappa_{n}^{\frac{1}{n}}}\left(\log \left(\frac{\left|\mathcal{W}_{R}\right|}{s_{k}}\right)\right)^{\frac{n-1}{n}} \quad \text { for } k \in \mathbb{N} .
\end{aligned}
$$

129 Since $\log \frac{n-1}{n}\left(\frac{\left|\mathcal{W}_{R}\right|}{s_{k}}\right) \rightarrow+\infty$, for k large enough, we have

$$
\begin{align*}
\left(\frac{1}{p_{3}}\right)^{\frac{n-1}{n}} & \leq\left\|-\frac{d v_{k}^{*}(t)}{d t}\left(n \kappa_{n}^{\frac{1}{n}}\right) t^{\frac{n-1}{n}}\right\|_{L^{n}\left(s_{k}, r_{k}\right)}+o_{k}(1) \\
& \leq\left\|-\frac{d v_{k}^{*}(t)}{d t}\left(n \kappa_{n}^{\frac{1}{n}}\right) t^{\frac{n-1}{n}}\right\|_{L^{n}\left(0, r_{k}\right)}+o_{k}(1) . \tag{15}
\end{align*}
$$

130
By the definition of T^{L} and T_{L}, we can get

$$
\begin{aligned}
\int_{\mathcal{W}_{R}} F^{n}\left(\nabla T^{L}\left(v_{k}\right)\right) d x & +\int_{\mathcal{W}_{R}} F^{n}\left(\nabla T_{L}\left(v_{k}\right)\right) d x=\int_{\mathcal{W}_{R}} F^{n}\left(\nabla v_{k}\right) d x \\
& =\int_{\mathcal{W}_{R}} F^{n}\left(\nabla u_{k}^{\star}\right) d x \\
& =\int_{\mathcal{W}_{R}} F^{n}\left(\nabla T^{L}\left(u_{k}^{\star}\right)\right) d x+\int_{\mathcal{W}_{R}} F^{n}\left(\nabla T_{L}\left(u_{k}^{\star}\right)\right) d x
\end{aligned}
$$

and

$$
\int_{\mathcal{W}_{R}} F^{n}\left(\nabla T^{L}\left(u_{k}^{\star}\right)\right) d x \leq \int_{\mathcal{W}_{R}} F^{n}\left(\nabla T^{L}\left(v_{k}\right)\right) d x .
$$

Thus

$$
\int_{\mathcal{W}_{R}} F^{n}\left(\nabla T_{L}\left(v_{k}\right)\right) d x \leq \int_{\mathcal{W}_{R}} F^{n}\left(\nabla T_{L}\left(u_{k}^{\star}\right)\right) d x
$$

By using this inequality and Pólya-Szegö inequality, we have that

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} F^{n}\left(\nabla T_{L}\left(u_{k}\right)\right) d x & \geq \int_{\mathbb{R}^{n}} F^{n}\left(\nabla\left(T_{L}\left(u_{k}\right)\right)^{\star}\right) d x=\int_{\mathbb{R}^{n}} F^{n}\left(\nabla T_{L}\left(u_{k}^{\star}\right)\right) d x \\
& \geq \int_{\mathcal{W}_{R}} F^{n}\left(\nabla T_{L}\left(v_{k}\right)\right) d x \\
& =\left\|-\frac{d v_{k}^{*}(t)}{d t}\left(n \kappa_{n}^{\frac{1}{n}}\right) t^{\frac{n-1}{n}}\right\|_{L^{n}\left(0, r_{k}\right)}^{n} .
\end{aligned}
$$

132 Combining with (15) yields

$$
\begin{equation*}
\left(\frac{1}{p_{3}}\right)^{n-1} \leq \int_{\mathbb{R}^{n}} F^{n}\left(\nabla T_{L}\left(u_{k}\right)\right) d x+o_{k}(1) . \tag{16}
\end{equation*}
$$

133 As $u_{k}=T^{L}\left(u_{k}\right)+T_{L}\left(u_{k}\right)$ and $T^{L}\left(u_{k}\right) \leq u_{k}$ one has that

$$
\begin{align*}
1 & =\left\|u_{k}\right\|_{F}^{n}=\int_{\mathbb{R}^{n}} F^{n}\left(\nabla T^{L}\left(u_{k}\right)\right) d x+\int_{\mathbb{R}^{n}} F^{n}\left(\nabla T_{L}\left(u_{k}\right)\right) d x+\int_{\mathbb{R}^{n}}\left|u_{k}\right|^{n} d x \\
& \geq \int_{\mathbb{R}^{n}} F^{n}\left(\nabla T_{L}\left(u_{k}\right)\right) d x+\left\|T^{L}\left(u_{k}\right)\right\|_{F}^{n} \tag{17}
\end{align*}
$$

In view of (16), we have

$$
\begin{equation*}
\left\|T^{L}\left(u_{k}\right)\right\|_{F}^{n}+\left(\frac{1}{p_{3}}\right)^{n-1}+o_{k}(1) \leq 1 \tag{18}
\end{equation*}
$$

For $L>0$ fixed, $\left\{T^{L}\left(u_{k}\right)\right\}$ is also bounded in $W^{1, n}\left(\mathbb{R}^{n}\right)$. Hence, up to a subsequence, $T^{L}\left(u_{k}\right) \rightarrow T^{L}(u)$ almost everywhere in \mathbb{R}^{n} and $T^{L}\left(u_{k}\right) \rightharpoonup T^{L}(u)$ in $W^{1, n}\left(\mathbb{R}^{n}\right)$. By the lower semicontinuity of the norm in $W^{1, n}\left(\mathbb{R}^{n}\right)$ and the inequality (14), we obtain

$$
\begin{align*}
p_{3} & \geq \frac{1}{\left(1-\liminf _{k \rightarrow \infty\left\|T^{L}\left(u_{k}\right)\right\|_{F}^{n}}\right)^{\frac{1}{n-1}}} \geq \frac{1}{\left(1-\left\|T^{L}(u)\right\|_{F}^{n}\right)^{\frac{1}{n-1}}} \\
& >\frac{p_{3}}{p_{n}(u)} \frac{1}{\left(1-\|u\|_{F}^{n}\right)^{\frac{1}{n-1}}}=p_{3}, \tag{19}
\end{align*}
$$

which is a contradiction.
Case 2: $\|u\|_{F}=1$. In this case, since $u_{k} \rightharpoonup u$ weakly and $W^{1, n}\left(\mathbb{R}^{n}\right)$ is a uniformly convex Banach space, we have $u_{k} \rightarrow u$ strongly in $W^{1, n}\left(\mathbb{R}^{n}\right)$. Using Proposition 1 in [OMS], up to a subsequence, we have $|u(x)| \leq v(x)$ for almost $x \in \mathbb{R}^{n}$ and some $v \in W^{1, n}\left(\mathbb{R}^{n}\right)$. Hence, the proof follows from Lemma 2.3 and Lebesgue dominated convergence theorem.

We conclude by showing that the assumption $p<p_{n}(u)$ cannot be relaxed. For every $\alpha \in(0,1)$, we exhibit a sequence $\left\{u_{k}\right\} \subset W^{1, n}\left(\mathbb{R}^{n}\right)$ and a function $u \in W^{1, n}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{array}{r}
\left\|u_{k}\right\|_{F}=1, \quad u_{k} \rightharpoonup u \text { weakly in } W^{1, n}\left(\mathbb{R}^{n}\right), \\
\|u\|_{F}=\alpha \quad \text { and } \quad \int_{\mathbb{R}^{n}} \phi\left(\alpha_{n} p_{n}\left|u_{k}\right|^{\frac{n}{n-1}}\right) d x \rightarrow+\infty .
\end{array}
$$

Actually, Let us consider the sequence $v_{k} \in W^{1, n}\left(\mathbb{R}^{n}\right)$ and defined for $r>0$, for $k \in \mathbb{N}$, as

$$
v_{k}(x)= \begin{cases}0, & F^{o}(x) \geq r \\ \kappa_{n}^{-\frac{1}{n}} \log \left(\frac{r}{F^{o}(x)}\right) k^{-\frac{1}{n}}, & r e^{-\frac{k}{n}} \leq F^{o}(x)<r \\ \frac{1}{n} \kappa_{n}^{-\frac{1}{n}} k^{\frac{n-1}{n}}, & 0 \leq F^{o}(x) \leq r e^{-\frac{k}{n}}\end{cases}
$$

We have that

$$
\int_{\mathbb{R}^{n}} F^{n}\left(\nabla v_{k}\right) d x=\int_{r e^{-\frac{k}{n}}}^{r} \kappa_{n}^{-1} k^{-1} \frac{1}{t^{n}} n \kappa_{n} t^{n-1} d t=1 .
$$

Obvious $v_{k}(x) \rightharpoonup 0$ in $W^{1, n}\left(\mathbb{R}^{n}\right)$ and $\int_{\mathbb{R}^{n}}\left|v_{k}\right|^{p} d x \rightarrow 0$ for $p \geq 1$. Next for $R=3 r$, Next, define $u \in W^{1, n}\left(\mathbb{R}^{n}\right)$ by

$$
u(x)= \begin{cases}0, & F^{o}(x) \geq R, \\ 3 A-\frac{3 A}{R} F^{o}(x), & \frac{2}{3} R \leq F^{o}(x)<R, \\ A, & 0 \leq F^{o}(x) \leq \frac{2}{3} R\end{cases}
$$

where $A>0$ is chosen in such a way that $\|u\|_{F}=\alpha$. Finally, set

$$
w_{k}=u+\left(1-\alpha^{n}\right)^{\frac{1}{n}} v_{k} \quad \text { for } k \in \mathbb{N} .
$$

Since ∇u and ∇v_{k} have disjoint supports, we have

$$
\left\|F\left(\nabla w_{k}\right)\right\|_{L^{n}}^{n}=\|F(\nabla u)\|_{L^{n}}^{n}+1-\alpha^{n} .
$$

Combining with the fact

$$
\left\|w_{k}\right\|_{L^{n}}^{n}=\int_{\mathbb{R}^{n}}\left|u+\left(1-\alpha^{n}\right)^{\frac{1}{n}} v_{k}\right|^{n} d x=\|u\|_{L^{n}}^{n}+\xi_{k}
$$

where $\xi_{k} \rightarrow 0$, we have $\left\|w_{k}\right\|_{F}=1+\xi_{k}$. Finally, set $u_{k}=\frac{w_{k}}{1+\xi_{k}}$, we have

$$
\left\|u_{k}\right\|_{F}=1, \quad u_{k} \rightharpoonup u \text { in } W^{1, n}\left(\mathbb{R}^{n}\right), \quad\|u\|_{F}=\alpha
$$

Setting

$$
S_{\beta_{k}}(u)=\int_{\mathcal{W}_{R_{k}}} \phi\left(\beta_{k}|u|^{\frac{n}{n-1}}\right) d x
$$

and

$$
H=\left\{u \in W_{0}^{1, n}\left(\mathcal{W}_{R_{k}}\right): \int_{\mathcal{W}_{R_{k}}}\left(F^{n}(\nabla u)+|u|^{n}\right) d x=1\right\}
$$

153 We have
Lemma 3.1. For any fixed k, there exists an extremal functional function $u_{k} \in H$ and $u_{k} \geq 0$ such that

$$
S_{\beta_{k}}\left(u_{k}\right)=\sup _{u \in H} S_{\beta_{k}}(u) .
$$

Proof. There exists a sequence of $\left\{v_{i}\right\} \in H$ such that

$$
\lim _{i \rightarrow+\infty} S_{\beta_{k}}\left(v_{i}\right)=\sup _{u \in H} S_{\beta_{k}}(u)
$$

154 We set $v_{i}=0$ in $\mathbb{R}^{n} \backslash \mathcal{W}_{R_{k}}$. Since v_{i} is bounded in $W^{1, n}\left(\mathbb{R}^{n}\right)$, there exist a
subsequence, which will still be denoted by v_{i}, such that

Thus

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \phi\left(\alpha_{n} p_{n}\left|u_{k}\right|^{\frac{n}{n-1}}\right) d x \\
\geq & \int_{\mathcal{W}_{r e}-\frac{k}{n}} \exp \left[n^{\frac{n}{n-1}} \kappa_{n}^{\frac{1}{n-1}} \frac{\left|u_{k}\right|^{\frac{n}{n-1}}}{\left(1-\alpha^{n}\right)^{\frac{1}{n-1}}}\right] d x-\sum_{j=0}^{n-2} \frac{n^{\frac{n j}{n-1}} \kappa_{n}^{\frac{j}{n-1}}}{j!\left(1-\alpha^{n}\right)^{\frac{j}{n-1}}} \int_{\mathcal{W}_{r e}-\frac{k}{n}(0)}\left|u_{k}(x)\right|^{\frac{j n}{n-1}} d x \\
\geq & \int_{\mathcal{W}_{r e}-\frac{k}{n}} \exp \left[n^{\frac{n}{n-1}} \kappa_{n}^{\frac{1}{n-1}} \frac{\left.\left(\left(1+\xi_{k}\right)^{-1}\left[A+\left(1-\alpha^{n}\right)^{\frac{1}{n}} v_{k}\right]\right)^{\frac{n}{n-1}}\right] d x+C(u)+O_{k}(1)}{\left(1-\alpha^{n}\right)^{\frac{1}{n-1}}}=\int_{\mathcal{W}_{r e}-\frac{k}{n}} \exp \left[n^{\frac{n}{n-1}} \kappa_{n}^{\frac{1}{n-1}}\left(\left(1+\xi_{k}\right)^{-1}\left[C+v_{k}\right]\right)^{\frac{n}{n-1}}\right] d x+C(u)+O_{k}(1)\right. \\
= & C_{1} e^{-k} \exp \left(\left[\left(1+\xi_{k}\right)^{-1}\left(C_{2}+k^{\frac{n-1}{n}}\right)\right]^{\frac{n}{n-1}}\right)+C(u)+O_{k}(1) \rightarrow+\infty,
\end{aligned}
$$

for some positive constants C, C_{1}, C_{2}, where

$$
C(u)=-\sum_{j=0}^{n-2} \frac{n^{\frac{n j}{n-1}} \kappa_{n}^{\frac{j}{n-1}}}{j!\left(1-\alpha^{n}\right)^{\frac{j}{n-1}}} \int_{\mathcal{W}_{r e}-\frac{k}{n}}|u(x)|^{\frac{j n}{n-1}} d x .
$$

This concludes the proof.

3. The maximizing sequence

Let $\left\{R_{k}\right\}$ be an increasing sequence which diverges to infinity, and $\left\{\beta_{k}\right\}$ an increasing sequence which converges to α_{n}.

$$
\begin{gathered}
v_{i} \rightharpoonup u_{k} \quad \text { weakly in } \quad W^{1, n}\left(\mathbb{R}^{n}\right), \\
v_{i} \rightarrow u_{k} \quad \text { strongly in } \quad L^{s}\left(\mathbb{R}^{n}\right),
\end{gathered}
$$

for any $1<s<\infty$ as $i \rightarrow \infty$. Hence $v_{i} \rightarrow u_{k}$ a.e in \mathbb{R}^{n}, and

$$
g_{i}=\phi\left(\beta_{k}\left|v_{i}\right|^{\frac{n}{n-1}}\right) \rightarrow g_{k}=\phi\left(\beta_{k}\left|u_{k}\right|^{\frac{n}{n-1}}\right) \text { a.e in } \mathbb{R}^{n} .
$$

We claim that $u_{k} \not \equiv 0$. If not, then g_{i} is bounded in $L^{r}\left(\mathcal{W}_{R_{k}}\right)$ for some $r>1$, thus $g_{i} \rightarrow 0$ strongly in $L^{1}\left(\mathcal{W}_{R_{k}}\right)$. Therefore, $\sup _{u \in H} S_{\beta_{k}}(u)=0$, which is impossible. By Theorem 2.4, we have for any $p<p_{n}=\frac{1}{\left(1-\left\|u_{k}\right\|_{F}^{n}\right)^{\frac{1}{n-1}}}$,

$$
\sup _{i} \int_{\mathbb{R}^{n}} \phi\left(p \alpha_{n}\left|v_{i}\right|^{\frac{n}{n-1}}\right) d x<+\infty
$$

So $g_{i} \rightarrow g_{k}$ strongly in $L^{1}\left(\mathcal{W}_{R_{k}}\right)$, as $i \rightarrow+\infty$. Therefore, the extremal function is attained for the case $\beta_{k}<\alpha_{n}$ and $\left\|u_{k}\right\|_{F}=1$. From the form of $S_{\beta_{k}}\left(u_{k}\right)$, we can choose the function $u_{k} \geq 0$.

Similar as in [LR, LZ], we give the following
Lemma 3.2. Let u_{k} as above. Then u_{k} is a maximizing sequence for S and u_{k} may be chosen to be radially symmetric and decreasing with respect to $F^{o}(x)$.
Proof. Let η be a cut-off function which is 1 on \mathcal{W}_{1} and 0 on $\mathbb{R}^{n} \backslash \mathcal{W}_{2}$. Then given any $\varphi \in W^{1, n}\left(\mathbb{R}^{n}\right)$ with $\int_{\mathbb{R}^{n}}\left(F(\nabla \varphi)^{n}+|\varphi|^{n}\right) d x=1$, we have

$$
\tau^{n}(L):=\int_{\mathbb{R}^{n}}\left(F^{n}\left(\nabla\left(\eta\left(\frac{x}{L}\right) \varphi\right)\right)+\left|\eta\left(\frac{x}{L}\right) \varphi\right|^{n}\right) d x \rightarrow 1, \quad \text { as } \quad L \rightarrow+\infty
$$

Hence for a fixed L and $R_{k}>2 L$

$$
\begin{aligned}
\int_{\mathcal{W}_{L}} \phi\left(\beta_{k}\left|\frac{\varphi}{\tau(L)}\right|^{\frac{n}{n-1}}\right) d x & \leq \int_{\mathcal{W}_{2 L}} \phi\left(\beta_{k}\left|\frac{\eta\left(\frac{x}{L}\right) \varphi}{\tau(L)}\right|^{\frac{n}{n-1}}\right) d x \\
& \leq \int_{\mathcal{W}_{R_{k}}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x
\end{aligned}
$$

By the Levi Lemma, we can have

$$
\int_{\mathcal{W}_{L}} \phi\left(\alpha_{n}\left|\frac{\varphi}{\tau(L)}\right|^{\frac{n}{n-1}}\right) d x \leq \lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x
$$

Then, Letting $L \rightarrow+\infty$, we get

$$
\int_{\mathbb{R}^{n}} \phi\left(\alpha_{n}|\varphi|^{\frac{n}{n-1}}\right) d x \leq \lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x
$$

163
Hence, we get

$$
\lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x=\sup _{\|v\|_{F} \leq 1, v \in W^{1, n}\left(\mathbb{R}^{n}\right)} \int_{\mathbb{R}^{n}} \phi\left(\alpha_{n}|v|^{\frac{n}{n-1}}\right) d x
$$

Let u_{k}^{\star} be the convex symmetric rearrangement of u_{k} with respect to $F^{o}(x)$, then we have

$$
\tau_{k}^{n}:=\int_{\mathcal{W}_{R_{k}}}\left(F^{n}\left(\nabla u_{k}^{\star}\right)+u_{k}^{\star n}\right) d x \leq \int_{\mathcal{W}_{R_{k}}}\left(F^{n}\left(\nabla u_{k}\right)+u_{k}^{n}\right) d x=1 .
$$

It is well known that $\tau_{k}=1$ if and only if u_{k} is radial with respect to $F^{o}(x)$. Since

$$
\int_{\mathcal{W}_{R_{k}}} \phi\left(\beta_{k} u_{k}^{\star \frac{n}{n-1}}\right) d x=\int_{\mathcal{W}_{R_{k}}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x
$$

we have

$$
\int_{\mathcal{W}_{R_{k}}} \phi\left(\beta_{k}\left(\frac{u_{k}^{\star}}{\tau_{k}}\right)^{\frac{n}{n-1}}\right) d x \geq \int_{\mathcal{W}_{R_{k}}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x
$$

Hence $\tau_{k}=1$ and

$$
\int_{\mathcal{W}_{R_{k}}} \phi\left(\beta_{k} u_{k}^{\star \frac{n}{n-1}}\right) d x=\sup _{\int_{\mathcal{W}_{R_{k}}}\left(F^{n}(\nabla v)+|v|^{n}\right) d x=1, v \in W_{0}^{1, n}\left(\mathcal{W}_{R_{k}}\right)} \int_{\mathcal{W}_{R_{k}}} \phi\left(\beta_{k}|v|^{\frac{n}{n-1}}\right) d x .
$$

When $n \geq 3$, Since

$$
\begin{align*}
\lambda_{k} & =\int_{\mathbb{R}^{n}} u_{k}^{\frac{n}{n-1}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x=\int_{\mathbb{R}^{n}} u_{k}^{\frac{n}{n-1}} \sum_{j=n-2}^{\infty} \frac{\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right)^{j}}{j!} d x \\
& =\int_{\mathbb{R}^{n}}\left(\frac{\beta_{k}^{n-2} u_{k}^{n}}{(n-2)!}+\cdots\right) d x \geq \frac{\beta_{k}^{n-2}}{(n-2)!} \int_{\mathbb{R}^{n}} u_{k}^{n} d x \tag{22}
\end{align*}
$$

we have

$$
\int_{\mathbb{R}^{n}} u_{k}^{n} d x \leq C \int_{\mathbb{R}^{n}} u_{k}^{\frac{n}{n-1}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x \leq C \lambda_{k} \rightarrow 0
$$

So, we can assume $u_{k}=u_{k}(r)$ and $r=F^{o}(x), u_{k}(r)$ is decreasing.
Assume now $u_{k} \rightharpoonup u$ in $W_{0}^{1, n}\left(\mathcal{W}_{R_{k}}\right)$. Then, to prove Theorem 1.2 and Theorem 1.3 , we only need to show that

$$
\lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x=\int_{\mathbb{R}^{n}} \phi\left(\alpha_{n} u^{\frac{n}{n-1}}\right) d x
$$

4. BLOW UP ANALYSIS

In this section, the method of blow-up analysis will be used to analyze the asymptotic behavior of the maximizing sequence $\left\{u_{k}\right\}$.

After a direct computation, the Euler-Lagrange equation for the extremal function $u_{k} \in W_{0}^{1, n}\left(\mathcal{W}_{R_{k}}\right)$ can be written as

$$
\begin{equation*}
-Q_{n}\left(u_{k}\right)+u_{k}^{n-1}=\frac{u_{k}^{\frac{1}{n-1}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right)}{\lambda_{k}}, \tag{20}
\end{equation*}
$$

where λ_{k} is the constant satisfying

$$
\begin{equation*}
\lambda_{k}=\int_{\mathcal{W}_{R_{k}}} u_{k}^{\frac{n}{n-1}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x \tag{21}
\end{equation*}
$$

First, we need to prove the following result.
Lemma 4.1. $\liminf _{k \rightarrow+\infty} \lambda_{k}>0$.
Proof. We show this lemma by contradiction. Without loss of generality, we assume $\lambda_{k} \rightarrow 0$.

When $n=2$, since $e^{t}-1 \leq t e^{t}$ for any $t \geq 0$, we have

$$
\lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{2}}\left(e^{\beta_{k} u_{k}^{2}}-1\right) d x \leq \alpha_{n} \lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{2}} u_{k}^{2} e^{\beta_{k} u_{k}^{2}} d x=\alpha_{n} \lim _{k \rightarrow+\infty} \lambda_{k} \rightarrow 0
$$

Since $u_{k}=u_{k}(r)$ is decreasing, we have $u_{k}^{n}(L)\left|\mathcal{W}_{L}\right| \leq \int_{\mathcal{W}_{L}} u_{k}^{n} d x \leq 1$, and then

$$
\begin{equation*}
u_{k}(L) \leq \frac{1}{\kappa_{n}^{\frac{1}{n}} L} \tag{23}
\end{equation*}
$$

Set $\epsilon=\frac{1}{\kappa_{n}^{\frac{1}{n}} L}$. Then $u_{k}(x) \leq \epsilon$ for any $x \notin \mathcal{W}_{L}$, and hence we have, by using the form of the function $\phi(x)$, that

$$
\int_{\mathbb{R}^{n} \backslash \mathcal{W}_{L}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x \leq C \int_{\mathbb{R}^{n} \backslash \mathcal{W}_{L}} u_{k}^{n} d x \leq C \lambda_{k} \rightarrow 0
$$

Since

$$
\phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right)=\sum_{j=n-1}^{\infty} \frac{\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right)^{j}}{j!}=\sum_{j=n-2}^{\infty} \frac{\beta_{k} u_{k}^{\frac{n}{n-1}}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right)^{j}}{(j+1) j!} \leq \beta_{k} u_{k}^{\frac{n}{n-1}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right),
$$

$$
\int_{\mathbb{R}^{n}}\left(\phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right)-\frac{\beta_{k}^{n-1} u_{k}^{n}}{(n-1)!}\right) d x=\int_{\mathcal{W}_{L}}\left(\phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right)-\frac{\beta_{k}^{n-1} u_{k}^{n}}{(n-1)!}\right) d x+O\left(\epsilon^{\frac{n^{2}}{n-1}-n}\right)
$$

we have

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty} \int_{\mathcal{W}_{L}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x=\lim _{k \rightarrow+\infty}\left(\int_{\mathcal{W}_{L} \cap\left\{u_{k} \geq 1\right\}}+\int_{\mathcal{W}_{L} \cap\left\{u_{k} \leq 1\right\}}\right) \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x \\
\leq & \lim _{k \rightarrow+\infty}\left[C \int_{\mathcal{W}_{L}} u_{k}^{\frac{n}{n-1}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x+\int_{\left\{x \in \mathcal{W}_{L} \mid u_{k}(x) \leq 1\right\}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x\right] \\
\leq & \lim _{k \rightarrow+\infty}\left(C \lambda_{k}+C \int_{\mathcal{W}_{L}} u_{k}^{n} d x\right)=0 .
\end{aligned}
$$

This is impossible. Thus we get a contradiction.
We denote $c_{k}=\max _{x \in \mathbb{R}^{n}} u_{k}(x)=u_{k}(0)$. It is clear $\sup _{k} c_{k}$ can be infinite. However $\sup _{k} c_{k}$ can be finite, we have the following result.

Lemma 4.2. If $\sup _{k} c_{k}<+\infty$, then Theorem 1.2 and Theorem 1.3 hold.
Proof. By Lemma 4.1 and Theorem 1 in [L3], then $u_{k} \rightarrow u$ in $C_{l o c}^{1}\left(\mathbb{R}^{n}\right)$. For any $\epsilon>0$, by (23), we are able to find L such that $u_{k}(x) \leq \epsilon$ for $x \notin \mathcal{W}_{L}$. Since

$$
\begin{aligned}
& \int_{\mathbb{R}^{n} \backslash \mathcal{W}_{L}}\left(\phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right)-\frac{\beta_{k}^{n-1} u_{k}^{n}}{(n-1)!}\right) d x \\
\leq & C \int_{\mathbb{R}^{n} \backslash \mathcal{W}_{L}} u_{k}^{\frac{n^{2}}{n-1}} d x \leq C \epsilon^{\frac{n^{2}}{n-1}-n} \int_{\mathbb{R}^{n}} u_{k}^{n} d x \leq C \epsilon^{\frac{n^{2}}{n-1}-n},
\end{aligned}
$$

we have

It follows from $\sup _{k} c_{k}<+\infty$ that

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x & =\int_{\mathcal{N}_{L}}\left(\phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right)-\frac{\beta_{k}^{n-1} u_{k}^{n}}{(n-1)!}\right) d x+\int_{\mathbb{R}^{n}} \frac{\beta_{k}^{n-1} u_{k}^{n}}{(n-1)!} d x+O\left(\epsilon^{\frac{n^{2}}{n-1}-n}\right) \\
& \leq C(L)
\end{aligned}
$$

Thus, Theorem 1.2 holds.
Next we show Theorem 1.3. We proceed by dividing two cases.
Case 1: $u \neq 0$.

In this case, we first show that $\int_{\mathbb{R}^{n}} u_{k}^{n} d x \rightarrow \int_{\mathbb{R}^{n}} u^{n} d x$. By (24) we have

$$
\begin{align*}
S & =\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x \\
& =\int_{\mathbb{R}^{n}} \phi\left(\alpha_{n} u^{\frac{n}{n-1}}\right) d x+\frac{\alpha_{n}^{n-1}}{(n-1)!} \lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n}}\left(u_{k}^{n}-u^{n}\right) d x . \tag{25}
\end{align*}
$$

Set

$$
\tau^{n}=\lim _{k \rightarrow+\infty} \frac{\int_{\mathbb{R}^{n}} u_{k}^{n} d x}{\int_{\mathbb{R}^{n}} u^{n} d x}
$$

By the Levi Lemma, we have $\tau \geq 1$.
Let $\tilde{u}=u\left(\frac{x}{\tau}\right)$. Then, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} F^{n}(\nabla \tilde{u}) d x & =\int_{\mathbb{R}^{n}} F^{n}(\nabla u) d x \leq \lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n}} F^{n}\left(\nabla u_{k}\right) d x \\
\int_{\mathbb{R}^{n}} \tilde{u}^{n} d x & =\tau^{n} \int_{\mathbb{R}^{n}} u^{n} d x=\lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n}} u_{k}^{n} d x .
\end{aligned}
$$

Then

$$
\int_{\mathbb{R}^{n}}\left(F^{n}(\nabla \tilde{u})+\tilde{u}^{n}\right) d x \leq \lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n}}\left(F^{n}\left(\nabla u_{k}\right)+u_{k}^{n}\right) d x=1 .
$$

Hence, we have by (25)

$$
\begin{aligned}
S & \geq \int_{\mathbb{R}^{n}} \phi\left(\alpha_{n} \tilde{u}^{\frac{n}{n-1}}\right) d x \\
& =\tau^{n} \int_{\mathbb{R}^{n}} \phi\left(\alpha_{n} u^{\frac{n}{n-1}}\right) d x \\
& =\left[\int_{\mathbb{R}^{n}} \phi\left(\alpha_{n} u^{\frac{n}{n-1}}\right) d x+\left(\tau^{n}-1\right) \int_{\mathbb{R}^{n}} \frac{\alpha_{n}^{n-1}}{(n-1)!} u^{n} d x\right] \\
& +\left(\tau^{n}-1\right) \int_{\mathbb{R}^{n}}\left(\phi\left(\alpha_{n} u^{\frac{n}{n-1}}\right)-\frac{\alpha_{n}^{n-1}}{(n-1)!} u^{n}\right) d x \\
& =\lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n}}\left(\phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x\right. \\
& +\left(\tau^{n}-1\right) \int_{\mathbb{R}^{n}}\left(\phi\left(\alpha_{n} u^{\frac{n}{n-1}}\right)-\frac{\alpha_{n}^{n-1}}{(n-1)!} u^{n}\right) d x \\
& =S+\left(\tau^{n}-1\right) \int_{\mathbb{R}^{n}}\left(\phi\left(\alpha_{n} u^{\frac{n}{n-1}}\right)-\frac{\alpha_{n}^{n-1}}{(n-1)!} u^{n}\right) d x .
\end{aligned}
$$

Since $\phi\left(\alpha_{n} u^{\frac{n}{n-1}}\right)-\frac{\alpha_{n}^{n-1}}{(n-1)!} u^{n}>0$, we have $\tau=1$, and then

$$
S=\int_{\mathbb{R}^{n}} \phi\left(\alpha_{n} u^{\frac{n}{n-1}}\right) d x
$$

Thus we obtain that u is an extremal function.

Case 2: $u=0$.
In this case, since $u_{k} \rightarrow 0$ in $C_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, we have

$$
\lim _{k \rightarrow+\infty} \int_{\mathcal{W}_{L}} \phi\left(\alpha_{n} u_{k}^{\frac{n}{n-1}}\right) d x=\int_{\mathcal{W}_{L}} \phi\left(\lim _{k \rightarrow+\infty} \alpha_{n} u_{k}^{\frac{n}{n-1}}\right) d x=0
$$

By (24) and letting $L \rightarrow+\infty$, we obtain

$$
\begin{aligned}
\lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n}} \phi\left(\alpha_{n} u_{k}^{\frac{n}{n-1}}\right) d x & =\lim _{k \rightarrow+\infty}\left(\frac{\alpha_{n}^{n-1}}{(n-1)!} \int_{\mathbb{R}^{n}} u_{k}^{n} d x+o_{k}(1)\right) \\
& \leq \frac{\alpha_{n}^{n-1}}{(n-1)!} .
\end{aligned}
$$

In the following, we show that $u=0$ will not happen. Indeed, for any fixed $v \in W^{1, n}\left(\mathbb{R}^{n}\right)$ with $v \neq 0$, we can introduce a family of functions v_{t} for $t>0$ that

$$
v_{t}(x)=t^{\frac{1}{n}} v\left(t^{\frac{1}{n}} x\right)
$$

We easily verify that

$$
\left\|F\left(\nabla v_{t}\right)\right\|_{L^{n}\left(\mathbb{R}^{n}\right)}^{n}=t\|F(\nabla v)\|_{L^{n}\left(\mathbb{R}^{n}\right)}^{n},\left\|v_{t}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p}=t^{\frac{p-n}{n}}\|v\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p}
$$

Hence, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \phi\left(\alpha_{n}\left(\frac{v_{t}}{\left\|v_{t}\right\|_{F}}\right)^{\frac{n}{n-1}}\right) d x & \geq \frac{\alpha_{n}^{n-1}\left\|v_{t}\right\|_{L^{n}\left(\mathbb{R}^{n}\right)}^{n}}{(n-1)!\left\|v_{t}\right\|_{F}^{n}}+\frac{\alpha_{n}^{n}\left\|v_{t}\right\|_{L^{n^{2} /(n-1)}\left(\mathbb{R}^{n}\right)}^{n^{2} /(n-1)}}{n!\left\|v_{t}\right\|_{F}^{n^{2} /(n-1)}} \\
& =\frac{\alpha_{n}^{n-1}}{(n-1)!}+\frac{\alpha_{n}^{n-1}}{(n-1)!} g_{v}(t)
\end{aligned}
$$

where

$$
\begin{aligned}
g_{v}(t)= & \frac{\alpha_{n}}{n}\left(\frac{1}{t\|F(\nabla v)\|_{L^{n}\left(\mathbb{R}^{n}\right)}^{n}+\|v\|_{L^{n}\left(\mathbb{R}^{n}\right)}^{n}}\right)^{\frac{n}{n-1}} t^{\frac{1}{n-1}}\|v\|_{L^{n^{2} /(n-1)}\left(\mathbb{R}^{n}\right)}^{n^{2} /(n-1)} \\
& -\frac{t\|F(\nabla v)\|_{L^{n}\left(\mathbb{R}^{n}\right)}^{n}}{t\|F(\nabla v)\|_{L^{n}\left(\mathbb{R}^{n}\right)}^{n}+\|v\|_{L^{n}\left(\mathbb{R}^{n}\right)}^{n}} \\
= & \frac{\alpha_{n}\|v\|_{L^{n^{2} /(n-1)}\left(\mathbb{R}^{n}\right)}^{n^{2} /(n-1)}}{n\|v\|_{L^{n}\left(\mathbb{R}^{n}\right)}^{n^{2} /(n-1)}} t^{\frac{1}{n-1}}(1+O(t))-\frac{\|F(\nabla v)\|_{L^{n}\left(\mathbb{R}^{n}\right)}^{n} t(1+O(t)) .}{\|v\|_{L^{n}\left(\mathbb{R}^{n}\right)}^{n}} t\left(\begin{array}{l}
\text { (}
\end{array}\right)
\end{aligned}
$$

Note that $g_{v}(0)=0$. Once we show that $g_{v}(t)>0$ for small $t>0$ for some v, it leads to $S>\frac{\alpha_{n}^{n-1}}{(n-1)!}$, which is a contradiction. Thus we finish the proof of Theorem.

Indeed, when $n \geq 3$, it is clear that $g_{v}(t)>0$ for some v when t is small enough. When $\mathrm{f} n=2$, we know that

$$
\begin{aligned}
g_{v}(t) & =\left(\frac{\alpha_{2}\|v\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{4}}{2\|v\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{4}}-\frac{\|F(\nabla v)\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}}{\|v\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}}\right) t(1+O(t)) \\
& =\frac{\|F(\nabla v)\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}}{\|v\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}}\left(\frac{\alpha_{2}}{2} \frac{\|v\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{4}}{\|v\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}\|F(\nabla v)\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}}-1\right)(t+O(t)) .
\end{aligned}
$$ We claim that $\bar{B}_{2}:=\sup _{u \in W^{1,2}\left(\mathbb{R}^{n}\right) \backslash\{0\}} \frac{\|u\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{4}}{\|u\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}\|F(\nabla u)\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}}$ is attained by some function $g\left(F^{o}(x)\right) \in W^{1,2}\left(\mathbb{R}^{n}\right)$, and $\bar{B}_{2}>\frac{2}{\alpha_{2}}$. Thus we can take $v=g\left(F^{o}(x)\right)$, and hence

$$
g_{v}(t)=\frac{\|F(\nabla v)\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}}{\|v\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}}\left(\frac{\alpha_{2}}{2} \bar{B}_{2}-1\right)(t+O(t))>0
$$

for some small $t>0$.

Next we show the above claim. By using Pólya-Szëgo principle, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} F^{2}\left(\nabla u^{\star}\right) d x & \leq \int_{\mathbb{R}^{2}} F^{2}(\nabla u) d x \\
\int_{\mathbb{R}^{2}}\left|u^{\star}\right|^{2} d x & =\int_{\mathbb{R}^{2}}|u|^{2} d x, \\
\int_{\mathbb{R}^{2}}\left|u^{\star}\right|^{4} d x & =\int_{\mathbb{R}^{2}}|u|^{4} d x .
\end{aligned}
$$

Set $E=\left\{u \in W^{1,2}\left(\mathbb{R}^{2}\right): u(x)\right.$ is radially symmetric and decreasing with respect to $\left.F^{o}(x)\right\}$, then we have

$$
\sup _{u \in W^{1,2}\left(\mathbb{R}^{n}\right) \backslash\{0\}} \frac{\|u\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{4}}{\|u\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}\|F(\nabla u)\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}}=\sup _{u \in E \backslash\{0\}} \frac{\|u\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{4}}{\|u\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}\|F(\nabla u)\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}} .
$$

For any $u \in E \backslash\{0\}$, Due to

$$
\begin{aligned}
\int_{\mathbb{R}^{2}}\left|u^{\star}\right|^{2} d x & =\int_{\mathbb{R}^{2}}\left|u^{\#}\right|^{2} d x \\
\int_{\mathbb{R}^{2}}\left|u^{\star}\right|^{4} d x & =\int_{\mathbb{R}^{2}}\left|u^{\#}\right|^{4} d x, \\
\int_{\mathbb{R}^{2}} F^{2}\left(\nabla u^{\star}\right) d x & =\frac{\kappa_{2}}{\pi} \int_{\mathbb{R}^{2}}\left|\nabla u^{\#}\right|^{2} d x
\end{aligned}
$$

where $u^{\#}$ is the Schwarz symmetric rearrangement of $u(x)$, we have

$$
\sup _{u \in E \backslash\{0\}} \frac{\|u\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{4}}{\|u\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}\|F(\nabla u)\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}}=\frac{\pi}{\kappa_{2}} \sup _{u \in H \backslash\{0\}} \frac{\|u\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{4}}{\|u\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}\|\nabla u\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}}
$$

Here $H=\left\{u \in W^{1,2}\left(\mathbb{R}^{n}\right): u\right.$ is the Schwarz symmetric function $\}$. Recall that [I, W], there is some function $g(x) \in H$ and

$$
\sup _{u \in H \backslash\{0\}} \frac{\|u\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{4}}{\|u\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}\|\nabla u\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}}=\frac{\|g\|_{L^{4}\left(\mathbb{R}^{2}\right)}^{4}}{\|g\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}\|\nabla g\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}}>\frac{1}{2 \pi} .
$$

213
It implies $\bar{B}_{2}>\frac{1}{2 \kappa_{2}}$. Therefore the claim is proved.
From now on, we assume $c_{k} \rightarrow+\infty$ as $k \rightarrow+\infty$. We define

$$
r_{k}^{n}=\frac{\lambda_{k}}{c_{k}^{\frac{n}{n-1}} e^{\beta_{k} c_{k}^{\frac{n}{n-1}}}} .
$$

By (23) we can find a sufficiently large L such that $u_{k} \leq 1$ on $\mathbb{R}^{n} \backslash \mathcal{W}_{L}$, and

$$
\int_{\mathcal{W}_{L}} F^{n}\left(\nabla\left(u_{k}-u_{k}(L)\right)^{+}\right) d x \leq 1
$$

Hence, by Moser-Trudinger inequality involving the anisotropic Dirichlet Norm in [ZZ], we have

$$
\int_{\mathcal{W}_{L}} e^{\alpha_{n}\left[\left(u_{k}-u_{k}(L)\right)^{+}\right]^{\frac{n}{n-1}}} d x \leq C(L) .
$$

Clearly, for any $p<\alpha_{n}$ we can find a constant $C(p)$, such that

$$
p u_{k}^{\frac{n}{n-1}} \leq \alpha_{n}\left[\left(u_{k}-u_{k}(L)\right)^{+}\right]^{\frac{n}{n-1}}+C(p)
$$

and then we get

$$
\int_{\mathcal{W}_{L}} e^{p u_{k}^{\frac{n}{n-1}}} d x<C=C(L, p)
$$

Hence,

$$
\begin{aligned}
\lambda_{k} e^{-\frac{\beta_{k}}{2} c_{k}^{\frac{n}{n-1}}} & =e^{-\frac{\beta_{k}}{2} c_{k}^{\frac{n}{n-1}}}\left[\int_{\mathbb{R}^{n} \backslash \mathcal{W}_{L}} u_{k}^{\frac{n}{n-1}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x+\int_{\mathcal{W}_{L}} u_{k}^{\frac{n}{n-1}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x\right] \\
& \leq C \int_{\mathbb{R}^{n} \backslash \mathcal{W}_{L}} u_{k}^{\frac{n}{n-1}} d x e^{-\frac{\beta_{k}}{2} c_{k}^{\frac{n}{n-1}}}+\int_{\mathcal{W}_{L}} e^{\frac{\beta_{k}}{2} u_{k}^{\frac{n}{n-1}}} u_{k}^{\frac{n}{n-1}} d x .
\end{aligned}
$$

Since u_{k} converges strongly in $L^{q}\left(\mathcal{W}_{L}\right)$ for any $q>1$, we get

$$
\lambda_{k} \leq C e^{\frac{\beta_{k}}{2} c_{k}^{\frac{n}{n-1}},}
$$

and hence

$$
r_{k}^{n} \leq C e^{-\frac{\beta_{k}}{2} c_{k}^{\frac{n}{n-1}}}
$$

Now, we set

$$
\begin{aligned}
v_{k}(x) & =\frac{u_{k}\left(r_{k} x\right)}{c_{k}} \\
w_{k}(x) & =c_{k}^{\frac{1}{n-1}}\left(v_{k}(x)-c_{k}\right)
\end{aligned}
$$

where v_{k} and w_{k} are defined on $\Omega_{k}=\left\{x \in \mathbb{R}^{n} \mid r_{k} x \in \mathcal{W}_{1}\right\}$.
By a direct calculation we obtain that
$-\operatorname{div}\left(F^{n-1}\left(\nabla v_{k}\right) F_{\xi}\left(\nabla v_{k}\right)\right)+\frac{u_{k}^{n-1}\left(r_{k} x\right) r_{k}^{n}}{c_{k}^{n-1}}=\frac{v_{k}^{\frac{1}{n-1}}}{c_{k}^{n}} e^{\beta_{k}\left(u_{k}^{\frac{n}{n-1}}\left(r_{k} x\right)-c_{k}^{\frac{n}{n-1}}\right)}+O\left(r_{k}^{n} c_{k}^{n}\right)$.
Since $0 \leq v_{k} \leq 1$ and $\frac{v_{k}^{\frac{1}{n-1}}}{c_{k}^{n}} e^{\beta_{k}\left(u_{k}^{\frac{n}{n-1}}\left(r_{k} x\right)-c_{k}^{\frac{n}{n-1}}\right)} \rightarrow 0$ in $\mathcal{W}_{r}(0)$ for any $r>0$, which implies $\frac{v_{k}^{\frac{1}{n-1}}}{c_{k}^{n}} e^{\beta_{k}\left(u_{k}^{\frac{n}{n-1}}\left(r_{k} x\right)-c_{k}^{\frac{n}{n-1}}\right)}$ is uniformly bounded in $L^{\infty}\left(\overline{\mathcal{W}_{r}(0)}\right)$, by Theorem 1 in [T2], v_{k} is uniformly bounded in $C^{1, \alpha}\left(\overline{\mathcal{W}_{\frac{r}{2}}(0)}\right)$. By Ascoli-Arzela's theorem, we can find a sequence $k_{j} \rightarrow+\infty$ such that $v_{k_{j}} \rightarrow v$ in $C_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, where $v \in C^{1}\left(\mathbb{R}^{n}\right)$ and satisfies

$$
-\operatorname{div}\left(F^{n-1}(\nabla v) F_{\xi}(\nabla v)\right)=0 \quad \text { in } \mathbb{R}^{n}
$$

Furthermore, we have $0 \leq v \leq 1$ and $v(0)=1$, and the Liouville theorem (see $[\mathrm{HKM}]$) leads to $v \equiv 1$.

Also we have

$$
\begin{equation*}
-\operatorname{div}\left(F^{n-1}\left(\nabla w_{k}\right) F_{\xi}\left(\nabla w_{k}\right)\right)=v_{k}^{\frac{1}{n-1}} e^{\beta_{k}\left(u_{k}^{\frac{n}{n-1}}\left(r_{k} x\right)-c_{k}^{\frac{n}{n-1}}\right)}+O\left(r_{k}^{n} c_{k}^{n}\right) \text { in } \Omega_{k} \tag{26}
\end{equation*}
$$

For any $r>0$, since $0 \leq u_{k}\left(r_{k} x\right) \leq c_{k}$ we have $-\operatorname{div}\left(F^{n-1}\left(\nabla w_{k}\right) F_{\xi}\left(\nabla w_{k}\right)\right)=O(1)$ in $\mathcal{W}_{r}(0)$ for large k. Then form $w_{k}(0)=0$ and Theorem 1 in [T2] and AscoliArzela's theorem, there exist $w \in C^{1}\left(\mathbb{R}^{n}\right)$ such that w_{k} converges to w in $C_{l o c}^{1}\left(\mathbb{R}^{n}\right)$. Therefore we have

$$
\begin{align*}
u_{k}^{\frac{n}{n-1}}\left(r_{k} x\right)-c_{k}^{\frac{n}{n-1}} & =c_{k}^{\frac{n}{n-1}}\left(v_{k}^{\frac{n}{n-1}}(x)-1\right) \\
& =\frac{n}{n-1} w_{k}(x)\left(1+O\left(\left(v_{k}(x)-1\right)^{2}\right)\right) \tag{27}
\end{align*}
$$

By taking $\epsilon \rightarrow 0$, we know that w satisfies

$$
\begin{equation*}
-\operatorname{div}\left(F^{n-1}(\nabla w) F_{\xi}(\nabla w)\right)=e^{\frac{n}{n-1} \alpha_{n} w} . \tag{28}
\end{equation*}
$$

$$
\limsup _{k \rightarrow+\infty} \int_{\mathbb{R}^{n}}\left(F^{n}\left(\nabla u_{k}^{A}\right)+\left|u_{k}^{A}\right|^{n}\right) d x \leq \frac{1}{A}
$$

Proof. Since $\left|\left\{x \left\lvert\, u_{k} \geq \frac{c_{k}}{A}\right.\right\}\right|\left|\frac{c_{k}}{A}\right|^{n} \leq \int_{u_{k} \geq \frac{c_{k}}{A}} u_{k}^{n} d x \leq 1$, we can find a sequence $\rho_{k} \rightarrow 0$ such that

$$
\left\{x \left\lvert\, u_{k} \geq \frac{c_{k}}{A}\right.\right\} \subset \mathcal{W}_{\rho_{k}}
$$

Since u_{k} converges in $L^{p}\left(\mathcal{W}_{1}\right)$ for any $p>1$, we have

$$
\lim _{k \rightarrow+\infty} \int_{u_{k} \geq \frac{c_{k}}{A}}\left|u_{k}^{A}\right|^{p} d x \leq \lim _{k \rightarrow+\infty} \int_{u_{k} \geq \frac{c_{k}}{A}} u_{k}^{p} d x=0
$$

and

$$
\lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n}}\left(u_{k}-\frac{c_{k}}{A}\right)^{+} u_{k}^{p} d x=0
$$

for any $p>0$.
We chose $\left(u_{k}-\frac{c_{k}}{A}\right)^{+}$as a test function of (20) to get

$$
\begin{align*}
& -\int_{\mathbb{R}^{n}}\left(u_{k}-\frac{c_{k}}{A}\right)^{+} \operatorname{div}\left(F^{n-1}\left(\nabla u_{k}\right) F_{\xi}\left(\nabla u_{k}\right)\right) d x+\int_{\mathbb{R}^{n}}\left(u_{k}-\frac{c_{k}}{A}\right)^{+} u_{k}^{n-1} d x \\
= & \int_{\mathbb{R}^{n}} \frac{\left(u_{k}-\frac{c_{k}}{A}\right)^{+} u_{k}^{\frac{1}{n-1}}}{\lambda_{k}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x . \tag{31}
\end{align*}
$$

For any $L>0$, the estimation of (31) is

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \frac{\left(u_{k}-\frac{c_{k}}{A}\right)^{+} u_{k}^{\frac{1}{n-1}}}{\lambda_{k}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x \\
\geq & \int_{\mathcal{W}_{L r_{k}}} \frac{\left(u_{k}-\frac{c_{k}}{A}\right)^{+} u_{k}^{\frac{1}{n-1}}}{\lambda_{k}} e^{\beta_{k} u_{k}^{\frac{n}{n-1}}} d x+o_{k}(1) \\
= & \int_{\mathcal{W}_{L}(0)}\left(u_{k}\left(r_{k} x\right)-\frac{c_{k}}{A}\right)^{+} \frac{r_{k}^{n} u_{k}\left(r_{k} x\right)^{\frac{1}{n-1}}}{\lambda_{k}} e^{\beta_{k} u_{k}^{\frac{n}{n-1}}\left(r_{k} x\right)} d x+o_{k}(1) \\
= & \int_{\mathcal{W}_{L}(0)}\left(v_{k}-\frac{1}{A}\right)^{+} v_{k}^{\frac{1}{n-1}} e^{\beta_{k}\left(u^{\frac{n}{n-1}}\left(r_{k} x\right)-c_{k}^{\frac{n}{n-1}}\right)} d x+o_{k}(1) \\
\rightarrow & \int_{\mathcal{W}_{L}(0)}\left(1-\frac{1}{A}\right) e^{\frac{n}{n-1} \alpha_{n} w} d x . \tag{32}
\end{align*}
$$

234 Notice that

$$
\begin{align*}
& -\int_{\mathbb{R}^{n}}\left(u_{k}-\frac{c_{k}}{A}\right)^{+} \operatorname{div}\left(F^{n-1}\left(\nabla u_{k}\right) F_{\xi}\left(\nabla u_{k}\right)\right) d x+\int_{\mathbb{R}^{n}}\left(u_{k}-\frac{c_{k}}{A}\right)^{+} u_{k}^{n-1} d x \\
& =-\int_{\mathbb{R}^{n}}\left(u_{k}-\frac{c_{k}}{A}\right)^{+} \operatorname{div}\left(F^{n-1}\left(\nabla\left(u_{k}-\frac{c_{k}}{A}\right)^{+}\right) F_{\xi}\left(\nabla\left(u_{k}-\frac{c_{k}}{A}\right)^{+}\right)\right) d x+o_{k}(1) \\
& =\int_{\mathbb{R}^{n}} F^{n}\left(\nabla\left(u_{k}-\frac{c_{k}}{A}\right)^{+}\right) d x+o_{k}(1) . \tag{33}
\end{align*}
$$

235 Now we put (31)(32)(33) together, and take $L \rightarrow \infty$ first and then $k \rightarrow \infty$, we
236 obtain

$$
\liminf _{k \rightarrow+\infty} \int_{\mathbb{R}^{n}} F^{n}\left(\nabla\left(u_{k}-\frac{c_{k}}{A}\right)^{+}\right) d x \geq 1-\frac{1}{A}
$$

237 Since

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left(F^{n}\left(\nabla u_{k}^{A}\right)+\left|u_{k}^{A}\right|^{n}\right) d x \\
= & \int_{u_{k} \leq \frac{c_{k}}{A}}\left(F^{n}\left(\nabla u_{k}\right)+\left|u_{k}\right|^{n}\right) d x+\int_{u_{k} \geq \frac{c_{k}}{A}}\left(\frac{c_{k}}{A}\right)^{n} d x \\
= & 1-\int_{u_{k} \geq \frac{c_{k}}{A}}\left(F^{n}\left(\nabla u_{k}\right)+\left|u_{k}\right|^{n}\right) d x+\int_{u_{k} \geq \frac{c_{k}}{A}}\left(\frac{c_{k}}{A}\right)^{n} d x \\
= & 1-\int_{\mathbb{R}^{n}} F^{n}\left(\nabla\left(u_{k}-\frac{c_{k}}{A}\right)^{+}\right) d x \\
\leq & 1-\left(1-\frac{1}{A}\right)+o_{k}(1) .
\end{aligned}
$$

238 Thus the conclusion holds.
Lemma 4.4. We have

$$
\lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n} \backslash \mathcal{W}_{\delta}}\left(F^{n}\left(\nabla u_{k}\right)+\left|u_{k}\right|^{n}\right) d x=0
$$

239 for any $\delta>0$, and then $u=0$.
Proof. Since $\left\{x \mid u_{k} \leq c\right\} \subset\left\{x \left\lvert\, u_{k} \leq \frac{c_{k}}{A}\right.\right\}$ for any constant c, we have

$$
\int_{u_{k} \leq c}\left(F^{n}\left(\nabla u_{k}\right)+\left|u_{k}\right|^{n}\right) d x \leq \int_{\mathbb{R}^{n}}\left(F^{n}\left(\nabla u_{k}^{A}\right)+\left|u_{k}^{A}\right|^{n}\right) d x
$$

for any $p>0$.

Since by Lemma 4.3, it follows from the anisotropic Moser-Trudinger inequality in [ZZ] to get

$$
\sup _{k} \int_{\mathcal{W}_{L}} e^{p^{\prime} \beta_{k}\left(\left(u_{k}^{A}-u_{k}(L)\right)^{+}\right)^{\frac{n}{n-1}}} d x<+\infty
$$

for any $p^{\prime}<A^{\frac{1}{n-1}}$. Since for any $p<p^{\prime}$

$$
p\left(u_{k}^{A}\right)^{\frac{n}{n-1}} \leq p^{\prime}\left(\left(u_{k}^{A}-u_{k}(L)\right)^{+}\right)^{\frac{n}{n-1}}+C\left(p, p^{\prime}\right)
$$

we have

$$
\begin{equation*}
\sup _{k} \int_{\mathcal{W}_{L}} \phi\left(p \beta_{k}\left(u_{k}^{A}\right)^{\frac{n}{n-1}}\right) d x<+\infty . \tag{37}
\end{equation*}
$$

for any $p<A^{\frac{1}{n-1}}$. Then on \mathcal{W}_{L}, we get

$$
\lim _{k \rightarrow+\infty} \int_{\mathcal{W}_{L}} \phi\left(\beta_{k}\left(u_{k}^{A}\right)^{\frac{n}{n-1}}\right) d x=\int_{\mathcal{W}_{L}} \phi(0) d x=0
$$

Taking $k \rightarrow \infty$ first and then take $A \rightarrow+\infty$, the result follows from Lemma 4.3 and (23).

Lemma 4.5. There holds

and consequently

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \frac{c_{k}}{\lambda_{k}}=0 \quad \text { and } \quad \sup _{k} \frac{c_{k}^{\frac{n}{n-1}}}{\lambda_{k}}<+\infty \tag{35}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) \\
\leq & \int_{\left\{u_{k} \leq \frac{c_{k}}{A}\right\}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x+\int_{\left\{u_{k}>\frac{c_{k}}{A}\right\}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x \\
\leq & \int_{\mathbb{R}^{n}} \phi\left(\beta_{k}\left(u_{k}^{A}\right)^{\frac{n}{n-1}}\right) d x+A^{\frac{n}{n-1}} \frac{\lambda_{k}}{c_{k}^{\frac{n}{n-1}}} \int_{\left\{u_{k}>\frac{c_{k}}{A}\right\}} \frac{u_{k}^{\frac{n}{n-1}}}{\lambda_{k}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x .
\end{aligned}
$$

Applying (23), we can find L such that $u_{k} \leq 1$ on $\mathbb{R}^{n} \backslash \mathcal{W}_{L}$. Then by Lemma 4.4 and the form of ϕ, we have

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n} \backslash \mathcal{W}_{L}} \phi\left(p \beta_{k}\left(u_{k}^{A}\right)^{\frac{n}{n-1}}\right) d x \leq C(p) \lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n} \backslash \mathcal{W}_{L}} u_{k}^{n} d x=0 \tag{36}
\end{equation*}
$$

Hence, by (21), we have

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x \\
\leq & \lim _{L \rightarrow+\infty} \lim _{k \rightarrow+\infty} A^{\frac{n}{n-1}} \frac{\lambda_{k}}{c_{k}^{\frac{n}{n-1}}} \int_{\mathcal{W}_{L}} \frac{u_{k}^{\frac{n}{n-1}}}{\lambda_{k}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x \\
= & \lim _{k \rightarrow+\infty} A^{\frac{n}{n-1}} \frac{\lambda_{k}}{c_{k}^{\frac{n}{n-1}}} .
\end{aligned}
$$

In view of (27), we obtain

$$
\begin{aligned}
\int_{\mathcal{W}_{L r_{k}}}\left(e^{\beta_{k}\left|u_{k}\right|^{\frac{n}{n-1}}}-1\right) d x & =r_{k}^{n} \int_{\mathcal{W}_{L}} e^{\beta_{k}\left|u_{k}\left(r_{k} y\right)\right|^{\frac{n}{n-1}}} d y+o_{k}(1) \\
& =\frac{\lambda_{k}}{c_{k}^{\frac{n}{n-1}}}\left(\int_{\mathcal{W}_{L}} e^{\frac{n}{n-1} \alpha_{n} w} d y+o_{k}(1)\right)+o_{k}(1) \\
& =\frac{\lambda_{k}}{c_{k}^{\frac{n}{n-1}}}\left(1+o_{L}(1)+o_{k}(1)\right)+o_{k}(1) .
\end{aligned}
$$

252 Therefore

$$
\begin{equation*}
\lim _{L \rightarrow+\infty} \lim _{k \rightarrow+\infty} \int_{\mathcal{W}_{L r_{k}}}\left(e^{\beta_{k}\left|u_{k}\right|^{\frac{n}{n-1}}}-1\right) d x=\limsup _{k \rightarrow+\infty} \frac{\lambda_{k}}{c_{k}^{\frac{n}{n-1}}} \tag{38}
\end{equation*}
$$

253 Then taking $A \rightarrow 1$, we obtain (34).
If $\frac{\lambda_{k}}{c_{k}}$ is bounded or $\limsup _{k \rightarrow+\infty} \frac{c_{k}^{\frac{n}{n-1}}}{\lambda_{k}}=+\infty$, it would follow from (34) and Lemma 3.2 that

$$
\sup _{\|v\|_{F} \leq 1, v \in W^{1, n}\left(\mathbb{R}^{n}\right)} \int_{\mathbb{R}^{n}} \phi\left(\alpha_{n}|v|^{\frac{n}{n-1}}\right) d x=0
$$

254 which is impossible.
255 Now we claim that

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n}} \frac{c_{k}}{\lambda_{k}} u_{k}^{\frac{1}{n-1}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x=1 . \tag{39}
\end{equation*}
$$

To this purpose, we denote $\varphi_{k}=\frac{c_{k}}{\lambda_{k}} u_{k}^{\frac{1}{n-1}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right)$. Clearly

$$
\int_{\mathbb{R}^{n}} \varphi_{k} d x=\int_{\left\{u_{k}<\frac{c_{k}}{A}\right\}} \varphi_{k} d x+\int_{\left\{u_{k} \geq \frac{c_{k}}{A} \backslash \mathcal{W}_{r_{k} L}\right\}} \varphi_{k} d x+\int_{\mathcal{W}_{r_{k} L}} \varphi_{k} d x .
$$

256 We estimate the three integrates on the right hands respectively. By (35) (36) (37)
257 and Lemma (4.4), for any $1<p<A^{\frac{1}{n-1}}$ and $\frac{1}{p}+\frac{1}{q}=1$, we have

$$
\begin{align*}
0 \leq \int_{\left\{u_{k}<\frac{c_{k}}{A}\right\}} \varphi_{k} d x & =\frac{c_{k}}{\lambda_{k}} \int_{\left\{u_{k}<\frac{c_{k}}{A}\right\}} u_{k}^{\frac{1}{n-1}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x \\
& \leq \frac{c_{k}}{\lambda_{k}}\left\|u_{k}^{\frac{1}{n-1}}\right\|_{L^{q}\left(\mathbb{R}^{n}\right)}\left\|e^{\beta_{k}\left|u_{k}^{A}\right| \frac{n}{n-1}}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \rightarrow 0 \tag{40}
\end{align*}
$$

258 and

$$
\begin{aligned}
\int_{\left\{u_{k} \geq \frac{c_{k}}{A} \backslash \mathcal{W}_{\left.r_{k} L\right\}}\right.} \varphi_{k} d x & \leq A \int_{\left\{\mathbb{R}^{n} \backslash \mathcal{W}_{r_{k} L}\right\}} \frac{u_{k}^{\frac{n}{n-1}}}{\lambda_{k}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x \\
& =A\left(1-\int_{\mathcal{W}_{r_{k} L}} \frac{u_{k}^{\frac{n}{n-1}}}{\lambda_{k}} e^{\beta_{k} u_{k}^{\frac{n}{n-1}}} d x+o_{k}(1)\right) \\
& =A\left(1-\int_{\mathcal{W}_{L}} e^{\frac{n}{n-1} \alpha_{n} w} d x+o_{k}(1)\right),
\end{aligned}
$$

259
and

$$
\int_{\mathcal{W}_{r_{k} L}} \varphi_{k} d x=\int_{\mathcal{W}_{L}} e^{\frac{n}{n-1} \alpha_{n} w} d x+o_{k}(1) .
$$

260 Letting $k \rightarrow+\infty$ first and then letting $L \rightarrow+\infty$, we conclude (39).
where \vec{n} is the unit external normal vector of $\partial \mathcal{W}_{R_{k}}$.
Let η be a radially symmetric cut off function with respect to $F^{\circ}(x)$ which satisfies that $\eta=1$ in $\mathcal{W}_{\frac{R}{2}}, \eta=0$ in $\mathcal{W}_{R}^{c}, F(\nabla \eta) \leq \frac{C}{R}$. Hence, when R large enough, we have
$\int_{\mathcal{W}_{R}} F^{n}\left(\nabla\left(\eta U_{k}^{t}\right)\right) d x \leq \int_{\mathcal{W}_{R}}\left|U_{k}^{t}\right|^{n} F^{n}(\nabla \eta) d x+\int_{\mathcal{W}_{R}}|\eta|^{n} F^{n}\left(\nabla U_{k}^{t}\right) d x \leq C(R) t+C_{0}(R)$.
Taking t large enough such that $C(R) t>C_{0}(R)$, then we have

$$
\int_{\mathcal{W}_{R}} F^{n}\left(\nabla\left(\eta U_{k}^{t}\right)\right) d x \leq 2 C(R) t
$$

Set $\left|\mathcal{W}_{\rho}\right|=\left|\left\{x \in \mathcal{W}_{R}: U_{k} \geq t\right\}\right|$. We have

$$
\begin{equation*}
\inf _{\psi \in W_{0}^{1, n}\left(\mathcal{W}_{R}\right), \psi \mid \mathcal{W}_{\rho}=t} \int_{\mathcal{W}_{R}} F^{n}(\nabla \psi) d x \leq \int_{\mathcal{W}_{R}} F^{n}\left(\nabla\left(\eta U_{k}^{t}\right)\right) d x \leq 2 C(R) t \tag{44}
\end{equation*}
$$

The above infimum can be attained (see [Y, ZZ]) by

$$
\psi_{1}(x)= \begin{cases}t \log \frac{R}{F^{o}(x)} / \log \frac{R}{\rho} & \text { in } \mathcal{W}_{R} \backslash \mathcal{W}_{\rho}, \\ t & \text { in } \mathcal{W}_{\rho}\end{cases}
$$

By calculating $\left\|F\left(\nabla \psi_{1}\right)\right\|_{L^{n}\left(\mathcal{W}_{R}\right)}^{n}$, we have by (44), $\rho \leq R e^{-C_{1} t}$ for some constant $C_{1}>0$. Hence

$$
\left|\left\{x \in \mathcal{W}_{R}: U_{k} \geq t\right\}\right|=\left|\mathcal{W}_{\rho}\right| \leq \kappa_{n} R^{n} e^{-n C_{1} t}
$$

$$
\begin{aligned}
\int_{\mathcal{W}_{R}} F^{q}\left(\nabla U_{k}\right) d x & \leq \int_{\mathcal{W}_{R}} \frac{F^{n}\left(\nabla U_{k}\right)}{\left(1+U_{k}^{+}\right)\left(1+2 U_{k}\right)} d x+\int_{\mathcal{W}_{R}}\left(\left(1+U_{k}\right)\left(1+2 U_{k}\right)\right)^{\frac{q}{n-q}} d x \\
& \leq C_{4}\left(1+\int_{\mathcal{W}_{R}} e^{\delta U_{k}} d x\right) \leq C_{5}
\end{aligned}
$$

for some constants C_{3} and C_{5} depending only on q, n and \mathcal{W}_{R}. Then the (43) holds.
Hence U_{k} is bounded in $L^{q}(\Omega)$ for any $q>0$. By Lemma 4.4 and Theorem 1.1, we can get $e^{\beta_{k} u_{k}^{\frac{n}{n-1}}}$ is also bounded in $L^{q}(\Omega)$ for any $q>0$. Thanks to theorem 2 in [J] and theorem 1 in $[\mathrm{T} 2],\left\|U_{k}\right\|_{C^{1, \alpha}(\Omega)} \leq C$, then by Ascoli-Arzela's theorem, U_{k} converges to G in $C^{1}(\Omega)$.

For the Green function G, we have the following results:
Lemma 4.7. $G \in C_{l o c}^{1, \alpha}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ and near 0 we can write

$$
\begin{equation*}
G=-\frac{n}{\alpha_{n}} \log r+C_{G}+o_{r}(1) ; \tag{45}
\end{equation*}
$$

where C_{G} is a constant and $r=F^{o}(x)$. Moreover, for any $\delta>0$, we have

$$
\begin{align*}
& \lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n} \backslash \mathcal{W}_{\delta}}\left(F^{n}\left(\nabla\left(c_{k}^{\frac{1}{n-1}} u_{k}\right)\right)+\left(c_{k}^{\frac{1}{n-1}} u_{k}\right)^{n}\right) d x \\
= & \int_{\mathbb{R}^{n} \backslash \mathcal{W}_{\delta}}\left(F^{n}(\nabla G)+G^{n}\right) d x=G(\delta)\left(1-\int_{\mathcal{W}_{\delta}} G^{n-1} d x\right) . \tag{46}
\end{align*}
$$

Proof. We will prove (45) in section 6. Here we will use (45) to prove (46). Firstly, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n} \backslash \mathcal{W}_{\delta}} u_{k}^{\frac{n}{n-1}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x \leq C \int_{\mathbb{R}^{n} \backslash \mathcal{W}_{\delta}} u_{k}^{n} d x \rightarrow 0 . \tag{47}
\end{equation*}
$$

Recall that $U_{k}=c_{k}^{\frac{1}{n-1}} u_{k} \in W_{0}^{1, n}\left(\mathcal{W}_{R_{k}}\right)$, by Equation (42) we get

$$
\begin{aligned}
& \int_{\mathbb{R}^{n} \backslash \mathcal{W}_{\delta}}\left(F^{n}\left(\nabla U_{k}\right)+U_{k}^{n}\right) d x \\
= & \frac{c_{k}^{\frac{n}{n-1}}}{\lambda_{k}} \int_{\mathbb{R}^{n} \backslash \mathcal{W}_{\delta}} u_{k}^{\frac{n}{n-1}} \phi^{\prime}\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x-\int_{\partial \mathcal{W}_{\delta}} \frac{\partial U_{k}}{\partial n} F^{n-1}\left(\nabla U_{k}\right) U_{k} d S .
\end{aligned}
$$

Proof of Theorem 1.2: From (36) we have

$$
\int_{\mathbb{R}^{n} \backslash \mathcal{W}_{R}} \phi\left(\beta_{k} u_{k}^{\frac{n}{n-1}}\right) d x \leq C
$$

So, we only need to prove on \mathcal{W}_{R},

$$
\int_{\mathcal{W}_{R}} e^{\beta_{k} u_{k}^{\frac{n}{n-1}}} d x \leq C=C(R)
$$

By Lemma 4.6, for any fixed $R>0$, we have $c_{k}^{\frac{1}{n-1}} u_{k}(R) \rightarrow G(R)$ as $k \rightarrow+\infty$, i.e. $u_{k}(R)=O\left(\frac{1}{c_{k}^{\frac{1}{n-1}}}\right)$. Hence we have

$$
\begin{aligned}
u_{k}^{\frac{n}{n-1}} & \leq\left(\left(u_{k}-u_{k}(R)\right)^{+}+u_{k}(R)\right)^{\frac{n}{n-1}} \\
& \leq\left(\left(u_{k}-u_{k}(R)\right)^{+}\right)^{\frac{n}{n-1}}+C_{1} .
\end{aligned}
$$

Then, we get

$$
\int_{\mathcal{W}_{R}} e^{\beta_{k} u_{k}^{\frac{n}{n-1}}} d x \leq C .
$$

Proof of Theorem 1.1: To prove Theorem 1.1, we use an idea of [SK]. By means of symmetrization, it suffices to show the desired inequality (5) for functions $u(x)=u\left(F^{o}(x)\right)$, which are non-negative, radially symmetric with respect to $F^{o}(x)$ and decreasing.

Define

$$
\begin{equation*}
w(t)=n \kappa_{n}^{\frac{1}{n}} u\left(e^{-\frac{t}{n}}\right), \quad F^{o}(x)=e^{-\frac{t}{n}} \tag{48}
\end{equation*}
$$

294

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty} \int_{\mathbb{R}^{n} \backslash \mathcal{W}_{\delta}}\left(F^{n}\left(\nabla U_{k}\right)+U_{k}^{n}\right) d x \\
= & -\lim _{k \rightarrow+\infty} \int_{\partial \mathcal{W}_{\delta}} \frac{\partial U_{k}}{\partial n} F^{n-1}\left(\nabla U_{k}\right) U_{k} d S \\
= & -G(\delta) \int_{\partial \mathcal{W}_{\delta}} \frac{\partial G}{\partial n} F^{n-1}(\nabla G) d S=G(\delta)\left(1-\int_{\mathcal{W}_{\delta}} G^{n-1} d x\right) .
\end{aligned}
$$

Then $w(t)$ is defined on $(-\infty,+\infty)$, and we have

$$
\begin{align*}
\int_{\mathbb{R}^{n}} F^{n}(\nabla u) d x & =\int_{-\infty}^{+\infty}|\dot{w}(t)|^{n} d t \tag{49}\\
\int_{\mathbb{R}^{n}} \phi\left(\alpha u^{\frac{n}{n-1}}\right) & =\kappa_{n} \int_{-\infty}^{+\infty} \phi\left(\frac{\alpha}{\alpha_{n}} w(t)^{\frac{n}{n-1}}\right) e^{-t} d t \tag{50}\\
\int_{\mathbb{R}^{n}}|u(x)|^{n} d x & =\frac{1}{n^{n}} \int_{-\infty}^{+\infty}|w(t)|^{n} e^{-t} d t \tag{51}
\end{align*}
$$

For the following proof, one can refer to [SK] for details.

5. Existence of the extremal function

In this section, we will show that the existence of the extremal functions. For this purpose, it is sufficient to show that the maximizing sequence u_{k} does not blow up. To this point, we argue by contradiction. We assume the maximizing sequence u_{k} blows up, i.e. $c_{k} \rightarrow+\infty$ as $k \rightarrow \infty$, then we will establish the upper bound of S which is the supremum of our Moser-Trudinger functional. On the other hand, we can construct an explicit test function, which provides a lower bound of S, which is a contradiction.

To get the upper bound of S, we will use the following Carleson-Chang type inequality which is shown in [ZZ].

Lemma 5.1. Assume that u_{k} is a normalized concentrating sequence in $W_{0}^{1, n}\left(\mathcal{W}_{1}\right)$ with a blow up point at the origin, i.e. $\int_{\mathcal{W}_{1}} F^{n}\left(\nabla u_{k}\right) d x=1, u_{k} \rightharpoonup 0$ weakly in $W_{0}^{1, n}\left(\mathcal{W}_{1}\right)$, and $\lim _{k \rightarrow \infty} \int_{\mathcal{W}_{1} \backslash \mathcal{W}_{r}} F^{n}\left(\nabla u_{k}\right) d x=0$ for any $0<r<1$, then

$$
\begin{equation*}
\limsup _{k \rightarrow+\infty} \int_{\mathcal{W}_{1}}\left(e^{\alpha_{n}\left|u_{k}\right| \frac{n}{n-1}}-1\right) d x \leq \kappa_{n} e^{1+\frac{1}{2}+\cdots+\frac{1}{n-1}} \tag{52}
\end{equation*}
$$

Lemma 5.2. If S cannot be attained, then

$$
S \leq \kappa_{n} e^{\alpha_{n} C_{G}+1+\frac{1}{2}+\cdots+\frac{1}{n-1}}
$$

where C_{G} is the constant in (45).
Proof. Set $\tilde{u}_{k}=\frac{\left(u_{k}(x)-u_{k}(\delta)\right)^{+}}{\left\|F\left(\nabla u_{k}\right)\right\|_{L^{n}\left(\mathcal{W}_{\delta}\right)}}$ which is in $W_{0}^{1, n}\left(\mathcal{W}_{\delta}\right)$. Then by Lemma 5.1, we have

$$
\limsup _{k \rightarrow+\infty} \int_{\mathcal{W}_{\delta}} e^{\beta_{k} \tilde{u}_{k}^{\frac{n}{n-1}}} d x \leq\left|\mathcal{W}_{\delta}\right|\left(1+e^{1+\frac{1}{2}+\cdots+\frac{1}{n-1}}\right) .
$$

By Lemma 4.7 we have

$$
\int_{\mathbb{R}^{n} \backslash \mathcal{W}_{\delta}}\left(F^{n}\left(\nabla c_{k}^{\frac{1}{n-1}} u_{k}\right)+\left(c_{k}^{\frac{1}{n-1}} u_{k}\right)^{n}\right) d x \rightarrow G(\delta)\left(1-\int_{\mathcal{W}_{\delta}} G^{n-1} d x\right)
$$

Hence we get

$$
\begin{align*}
\int_{\mathcal{W}_{\delta}} F^{n}\left(\nabla u_{k}\right) d x & =1-\int_{\mathbb{R}^{n} \backslash \mathcal{W}_{\delta}}\left(F^{n}\left(\nabla u_{k}\right)+u_{k}^{n}\right) d x-\int_{\mathcal{W}_{\delta}} u_{k}^{n} d x \\
& =1-\frac{G(\delta)+\epsilon_{k}(\delta)}{c_{k}^{\frac{n}{n-1}}}, \tag{53}
\end{align*}
$$

where $\lim _{\delta \rightarrow 0} \lim _{k \rightarrow+\infty} \epsilon_{k}(\delta)=0$.
By (36) and Lemma 4.5 we have

$$
\lim _{L \rightarrow+\infty} \lim _{k \rightarrow+\infty} \int_{\mathcal{W}_{\rho} \backslash \mathcal{W}_{L r_{k}}} e^{\beta_{k} u_{k}^{\frac{n}{n-1}}} d x=\left|\mathcal{W}_{\rho}\right|
$$

${ }_{313}$ for any $\rho<\delta$. Furthermore, on \mathcal{W}_{ρ} we have by (53)

$$
\begin{aligned}
\left(\tilde{u}_{k}\right)^{\frac{n}{n-1}} & \leq \frac{u_{k}^{\frac{n}{n-1}}}{\left(1-\frac{G(\delta)+\epsilon_{k}(\delta)}{c_{k}^{\frac{n}{n-1}}}\right)^{\frac{1}{n-1}}} \\
& =u_{k}^{\frac{n}{n-1}}\left(1+\frac{1}{n-1} \frac{G(\delta)+\epsilon_{k}(\delta)}{c_{k}^{\frac{n}{n-1}}}+O\left(\frac{1}{c_{k}^{\frac{2 n}{n-1}}}\right)\right) \\
& =u_{k}^{\frac{n}{n-1}}+\frac{1}{n-1} G(\delta)\left(\frac{u_{k}}{c_{k}}\right)^{\frac{n}{n-1}}+O\left(c_{k}^{-\frac{n}{n-1}}\right) \\
& \leq u_{k}^{\frac{n}{n-1}}-\frac{n \log \delta}{(n-1) \alpha_{n}} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \lim _{L \rightarrow+\infty} \lim _{k \rightarrow+\infty} \int_{\mathcal{W}_{\rho} \backslash \mathcal{W}_{L r_{k}}} e^{\beta_{k} \tilde{u}_{k}^{\frac{n}{n-1}}} d x \\
\leq & O\left(\delta^{-n}\right) \lim _{L \rightarrow+\infty} \lim _{k \rightarrow+\infty} \int_{\mathcal{W}_{\rho} \backslash \mathcal{W}_{L r_{k}}} e^{\beta_{k} u_{k}^{\frac{n}{n-1}}} d x \rightarrow\left|\mathcal{W}_{\rho}\right| O\left(\delta^{-n}\right) .
\end{aligned}
$$

Since $\tilde{u}_{k} \rightarrow 0$ on $\mathcal{W}_{\delta} \backslash \mathcal{W}_{\rho}$, we get $\lim _{k \rightarrow+\infty} \int_{\mathcal{W}_{\delta} \backslash \mathcal{W}_{\rho}}\left(e^{\beta_{k} \tilde{u}_{k}^{\frac{n}{n-1}}}-1\right) d x=0$, then

$$
0 \leq \lim _{L \rightarrow+\infty} \lim _{k \rightarrow+\infty} \int_{\mathcal{W}_{\delta} \backslash \mathcal{W}_{L r_{k}}}\left(e^{\beta_{k} \tilde{u}_{k}^{\frac{n}{n-1}}}-1\right) d x \leq\left|\mathcal{W}_{\rho}\right| O\left(\delta^{-n}\right)
$$

Letting $\rho \rightarrow 0$, we get

$$
\lim _{L \rightarrow+\infty} \lim _{k \rightarrow+\infty} \int_{\mathcal{W}_{\delta} \backslash \mathcal{W}_{L r_{k}}}\left(e^{\beta_{k} \tilde{u}_{k}^{\frac{n}{n-1}}}-1\right) d x=0
$$

This implies

$$
\lim _{L \rightarrow+\infty} \lim _{k \rightarrow+\infty} \int_{\mathcal{W}_{L r_{k}}}\left(e^{\beta_{k} \tilde{u}_{k}^{\frac{n}{n-1}}}-1\right) d x \leq\left|\mathcal{W}_{\delta}\right| e^{1+\frac{1}{2}+\cdots+\frac{1}{n-1}}
$$

It is easy to check that

$$
\frac{\tilde{u}_{k}\left(r_{k} x\right)}{c_{k}} \rightarrow 1 \quad \text { and } \quad\left(\tilde{u}_{k}\left(r_{k} x\right)\right)^{\frac{1}{n-1}} u_{k}(\delta) \rightarrow G(\delta) .
$$

By using that $u_{k}(\delta)=O\left(\frac{1}{c_{k}^{\frac{1}{n-1}}}\right)$ and $\left\|F\left(\nabla u_{k}\right)\right\|_{L^{n}\left(\mathcal{W}_{\delta}\right)}=1+O\left(\frac{1}{c_{k}^{\frac{n}{n-1}}}\right)$, for a fixed L and any $x \in \mathcal{W}_{L r_{k}}$, we have

$$
\begin{aligned}
\beta_{k} u_{k}^{\frac{n}{n-1}} & =\beta_{k}\left(\frac{u_{k}}{\left\|F\left(\nabla u_{k}\right)\right\|_{L^{n}\left(\mathcal{W}_{\delta}\right)}}\right)^{\frac{n}{n-1}}\left(\int_{\mathcal{W}_{\delta}} F^{n}\left(\nabla u_{k}\right) d x\right)^{\frac{1}{n-1}} \\
& =\beta_{k}\left(\tilde{u}_{k}+\frac{u_{k}(\delta)}{\left\|F\left(\nabla u_{k}\right)\right\|_{L^{n}\left(\mathcal{W}_{\delta}\right)}}\right)^{\frac{n}{n-1}}\left(\int_{\mathcal{W}_{\delta}} F^{n}\left(\nabla u_{k}\right) d x\right)^{\frac{1}{n-1}} \\
& =\beta_{k}\left(\tilde{u}_{k}+u_{k}(\delta)+O\left(\frac{1}{c_{k}^{(n+1) /(n-1)}}\right)\right)^{\frac{n}{n-1}}\left(\int_{\mathcal{W}_{\delta}} F^{n}\left(\nabla u_{k}\right) d x\right)^{\frac{1}{n-1}} \\
& =\beta_{k} \tilde{u}_{k}^{\frac{n}{n-1}}\left(1+\frac{u_{k}(\delta)}{\tilde{u}_{k}}+O\left(\frac{1}{c_{k}^{2 n /(n-1)}}\right)\right)^{\frac{n}{n-1}}\left(1-\frac{G(\delta)+\epsilon_{k}(\delta)}{\left.c_{k}^{n /(n-1)}\right)^{\frac{1}{n-1}}}\right. \\
& =\beta_{k} \tilde{u}_{k}^{\frac{n}{n-1}}\left[1+\frac{n}{n-1} \frac{u_{k}(\delta)}{\tilde{u}_{k}}-\frac{1}{n-1} \frac{G(\delta)+\epsilon_{k}(\delta)}{c_{k}^{n /(n-1)}}+O\left(\frac{1}{c_{k}^{2 n /(n-1)}}\right)\right] .
\end{aligned}
$$

So, we get

$$
\begin{aligned}
& \lim _{L \rightarrow+\infty} \lim _{k \rightarrow+\infty} \int_{\mathcal{W}_{L r_{k}}}\left(e^{\beta_{k} u_{k}^{\frac{n}{n-1}}}-1\right) d x \\
= & \lim _{L \rightarrow+\infty} \lim _{k \rightarrow+\infty} e^{\alpha_{n} G(\delta)} \int_{\mathcal{W}_{L r_{k}}}\left(e^{\beta_{k} \tilde{u}_{k}^{\frac{n}{n-1}}}-1\right) d x \\
\leq & e^{\alpha_{n}\left(\left(-\frac{n}{\alpha_{n}}\right) \log \delta+C_{G}+O_{\delta}(1)\right)} \delta^{n} \kappa_{n} e^{1+\frac{1}{2}+\cdots+\frac{1}{n-1}} .
\end{aligned}
$$

Letting $\delta \rightarrow 0$, then together with Lemma 4.5 implies Lemma 5.2.
Next we will construct a function $u_{\epsilon} \in W^{1, n}\left(\mathbb{R}^{n}\right)$ with $\left\|u_{\epsilon}\right\|_{F}=1$ which satisfies

$$
\int_{\mathbb{R}^{n}} \phi\left(\alpha_{n}\left|u_{\epsilon}\right|^{\frac{n}{n-1}}\right) d x>\kappa_{n} e^{1+\frac{1}{2}+\cdots+\frac{1}{n-1}}
$$

for $\epsilon>0$ sufficiently small. To this purpose we set

$$
u_{\epsilon}= \begin{cases}C+C^{-\frac{1}{n-1}}\left(-\frac{n-1}{\alpha_{n}} \log \left(1+\kappa_{n}^{\frac{1}{n-1}}\left(\frac{F^{o}(x)}{\epsilon}\right)^{\frac{n}{n-1}}\right)+b\right), & x \in \overline{\mathcal{W}_{R \epsilon}(0)}, \tag{54}\\ C^{-\frac{1}{n-1}} G, & x \in \mathcal{W}_{R \epsilon}^{c}(0),\end{cases}
$$

where $R=-\log \epsilon, b, C$ are functions of ϵ (which will be defined later). In order to assure that $u_{\epsilon} \in W^{1, n}\left(\mathbb{R}^{n}\right)$, we set

$$
\begin{equation*}
C+C^{-\frac{1}{n-1}}\left(-\frac{n-1}{\alpha_{n}} \log \left(1+\kappa_{n}^{\frac{1}{n-1}} R^{\frac{n}{n-1}}\right)+b\right)=C^{-\frac{1}{n-1}} G(R \epsilon) \tag{55}
\end{equation*}
$$

322 323
we make sure that $\int_{\mathbb{R}^{n}} F^{n}\left(\nabla u_{\epsilon}\right)+u_{\epsilon}^{n} d x=1$. By the coarea formula (8), we have

$$
\begin{aligned}
\int_{\mathcal{W}_{R \epsilon}(0)} \frac{\left(\frac{F^{o}(x)}{\epsilon}\right)^{\frac{n}{n-1}} \frac{1}{\epsilon^{n}}}{\left(1+\kappa_{n}^{\frac{1}{n-1}}\left(\frac{F^{o}(x)}{\epsilon}\right)^{\frac{n}{n-1}}\right)^{n}} d x & =n \kappa_{n} \int_{0}^{R \epsilon} \frac{\left(\frac{s}{\epsilon}\right)^{\frac{n}{n-1}} \frac{1}{\epsilon^{n}}}{\left(1+\kappa_{n}^{\frac{1}{n-1}}\left(\frac{s}{\epsilon}\right)^{\frac{n}{n-1}}\right)^{n}} s^{n-1} d s \\
& =\frac{n-1}{\kappa_{n}^{\frac{1}{n-1}}} \int_{0}^{\kappa_{n}^{\frac{1}{n-1}} R^{\frac{n}{n-1}} \frac{t^{n-1}}{(1+t)^{n}} d t}
\end{aligned}
$$

which leads to

$$
\begin{align*}
\int_{\mathcal{W}_{R \epsilon}(0)} F^{n}\left(\nabla u_{\epsilon}\right) d x= & C^{-\frac{n}{n-1}} \frac{n-1}{\alpha_{n}} \int_{0}^{\kappa_{n}^{\frac{1}{n-1}} R^{\frac{n}{n-1}}} \frac{t^{n-1}}{(1+t)^{n}} d t \\
= & C^{-\frac{n}{n-1}} \frac{n-1}{\alpha_{n}} \int_{0}^{\kappa_{N}^{\frac{1}{n-1}} R^{\frac{n}{n-1}}} \frac{(t+1-1)^{n-1}}{(1+t)^{n}} d t \\
= & C^{-\frac{n}{n-1}} \frac{n-1}{\alpha_{n}}\left(\sum_{k=0}^{n-2} \frac{C_{n-1}^{k}(-1)^{n-1-k}}{n-k-1}\right. \\
& \left.+\log \left(1+\kappa_{n}^{\frac{1}{n-1}} R^{\frac{n}{n-1}}\right)+O\left(R^{-\frac{n}{n-1}}\right)\right) \\
= & C^{-\frac{n}{n-1}} \frac{n-1}{\alpha_{n}}\left(-\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)\right. \\
& \left.+\log \left(1+\kappa_{n}^{\frac{1}{n-1}} R^{\frac{n}{n-1}}\right)+O\left(R^{-\frac{n}{n-1}}\right)\right), \tag{56}
\end{align*}
$$

where we have used the fact that

$$
-\sum_{k=0}^{n-2} \frac{C_{n-1}^{k}(-1)^{n-1-k}}{n-k-1}=1+\frac{1}{2}+\cdots+\frac{1}{n-1}
$$

Moreover, we have

$$
\begin{align*}
\int_{\mathcal{W}_{R \epsilon}^{c}}\left(F^{n}\left(\nabla u_{\epsilon}\right)+u_{\epsilon}^{n}\right) d x & =\frac{1}{C^{n /(n-1)}}\left(\int_{\mathcal{W}_{R \epsilon}^{c}} F^{n}(\nabla G) d x+\int_{\mathcal{W}_{R \epsilon}^{c}} G^{n} d x\right) \\
& =\frac{1}{C^{n /(n-1)}} \int_{\partial \mathcal{W}_{R \epsilon}} G(R \epsilon) F^{n-1}(\nabla G) \frac{\partial G}{\partial n} d S \\
& =\frac{G(R \epsilon)}{C^{n /(n-1)}}\left(1-\int_{\mathcal{W}_{R \epsilon}} G^{n-1} d x\right), \tag{58}
\end{align*}
$$

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(F^{n}\left(\nabla u_{\epsilon}\right)+u_{\epsilon}^{n}\right) d x= & \frac{1}{\alpha_{n} C^{\frac{n}{n-1}}}\left\{-(n-1)\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)+\alpha_{n} C_{G}\right. \\
& \left.+(n-1) \log \left(1+\kappa_{n}^{\frac{1}{n-1}} R^{\frac{n}{n-1}}\right)-\log (R \epsilon)^{n}+\varphi_{\varepsilon}(C)\right\},
\end{aligned}
$$

$328 \quad$ where $\varphi_{\varepsilon}(C)=O\left((R \epsilon)^{n} C^{n} \log R+(R \epsilon)^{n} \log ^{n}(R \epsilon)+R^{-\frac{n}{n-1}}\right)$. Since $\int_{\mathbb{R}^{n}}\left(F^{n}\left(\nabla u_{\epsilon}\right)+\right.$ $\left.329 u_{\epsilon}^{n}\right) d x=1$, we have

$$
\begin{equation*}
\alpha_{n} C^{\frac{n}{n-1}}=-(n-1)\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)+\alpha_{n} C_{G}+\log \kappa_{n}-\log \epsilon^{n}+\varphi_{\varepsilon}(C) \tag{59}
\end{equation*}
$$

By (55) we have

$$
\alpha_{n} C^{\frac{n}{n-1}}-(n-1) \log \left(1+\kappa_{n}^{\frac{1}{n-1}} R^{\frac{n}{n-1}}\right)+\alpha_{n} b=\alpha_{n} G(R \epsilon),
$$

and hence

$$
-(n-1)\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)+\alpha_{n} C_{G}-\log (R \epsilon)^{n}+\varphi_{\varepsilon}(C)+\alpha_{n} b=\alpha_{n} G(R \epsilon)
$$

This implies that

$$
\begin{equation*}
b=-\frac{n-1}{\alpha_{n}}\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)+\varphi_{\varepsilon}(C) . \tag{60}
\end{equation*}
$$

$$
\begin{aligned}
\alpha_{n}\left|u_{\epsilon}(x)\right|^{\frac{n}{n-1} \geq} & \alpha_{n} C^{\frac{n}{n-1}}-n \log \left(1+\kappa_{n}^{\frac{1}{n-1}}\left(\frac{F^{o}(x)}{\epsilon}\right)^{\frac{n}{n-1}}\right)+\frac{n \alpha_{n}}{n-1} b+O\left(R^{-\frac{2 n}{n-1}}\right) \\
\geq & -n \log \epsilon+\log \kappa_{n}+\alpha_{n} C_{G}+\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right) \\
& -n \log \left(1+\kappa_{n}^{\frac{1}{n-1}}\left(\frac{F^{o}(x)}{\epsilon}\right)^{\frac{n}{n-1}}\right)+\varphi_{\varepsilon}(C)
\end{aligned}
$$

where we use the inequality $|1-t|^{\frac{n}{n-1}} \geq 1-\frac{n}{n-1} t+O\left(t^{3}\right)$ for $|t|<1$. Since by using the fact that

$$
\sum_{k=0}^{n-2} \frac{C_{n-2}^{k}(-1)^{n-k-2}}{n-k-1}=\frac{1}{n-1}
$$

332 we have

$$
\begin{aligned}
& \int_{\mathcal{W}_{R \epsilon}(0)} e^{-n \log \epsilon-n \log \left(1+\kappa_{n}^{\frac{1}{n-1}}\left(\frac{F^{o}(x)}{\epsilon}\right)^{\frac{n}{n-1}}\right)} d x \\
= & \frac{1}{\epsilon^{n}} \int_{\mathcal{W}_{R \epsilon}(0)} \frac{1}{\left(1+\kappa_{n}^{\frac{1}{n-1}}\left(\frac{F^{o}(x)}{\epsilon}\right)^{\frac{n}{n-1}}\right)^{n}} d x \\
= & (n-1) \int_{0}^{\kappa_{n}^{\frac{1}{n-1}} R^{\frac{n}{n-1}}} \frac{t^{n-2}}{(1+t)^{n}} d t \\
= & (n-1) \int_{0}^{\kappa_{n}^{\frac{1}{n-1}} R^{\frac{n}{n-1}}} \frac{(t+1-1)^{n-2}}{(1+t)^{n}} d t \\
\geq & \left.(n-1)\left(\frac{1}{n-1}+O\left(R^{-\frac{n}{n-1}}\right)\right)=1+O\left(R^{-\frac{n}{n-1}}\right)\right),
\end{aligned}
$$

333 we obtain that

$$
\int_{\mathcal{W}_{R \epsilon}(0)} e^{\alpha_{n}\left|u_{\epsilon}(x)\right|^{\frac{n}{n-1}}} d x \geq \kappa_{n} e^{\alpha_{n} C_{G}+\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)}+\varphi_{\varepsilon}(C)
$$

334 and further to get that

$$
\int_{\mathcal{W}_{R \epsilon}(0)} \phi\left(\alpha_{n}\left|u_{\epsilon}(x)\right|^{\frac{n}{n-1}}\right) d x \geq \kappa_{n} e^{\alpha_{n} C_{G}+\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)}+\varphi_{\varepsilon}(C) .
$$

335
Moreover, on $\mathbb{R}^{n} \backslash \mathcal{W}_{R \epsilon}$ we have the estimate

$$
\int_{\mathbb{R}^{n} \backslash \mathcal{W}_{R \epsilon}} \phi\left(\alpha_{n}\left|u_{\epsilon}(x)\right|^{\frac{n}{n-1}}\right) d x \geq \frac{\alpha_{n}^{n-1}}{(n-1)!} \int_{\mathbb{R}^{n} \backslash \mathcal{W}_{R \epsilon}}\left|\frac{G(x)}{C^{1 /(n-1)}}\right|^{n} d x,
$$

336 and thus we get

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} \phi\left(\alpha_{n}\left|u_{\epsilon}(x)\right|^{\frac{n}{n-1}}\right) d x \tag{61}\\
\geq & \kappa_{n} e^{\alpha_{n} C_{G}+\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)}+\frac{\alpha_{n}^{n-1}}{(n-1)!C^{n /(n-1)}} \int_{\mathbb{R}^{n} \backslash \mathcal{W}_{R \epsilon}}|G(x)|^{n} d x+\varphi_{\varepsilon}(C) .
\end{align*}
$$

Next we show that that there exists a $C=C(\epsilon)$ which solves Equation (59). To this point, we set

$$
\begin{aligned}
f(t) & =-\alpha_{n} t^{n /(n-1)}-(n-1)\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right) \\
& +\alpha_{n} C_{G}+\log \kappa_{n}-\log \epsilon^{n}+\varphi_{\varepsilon}(t)
\end{aligned}
$$

Since for sufficient small ε we have

$$
f\left(\left(-\frac{2}{\alpha_{n}} \log \epsilon^{n}\right)^{(n-1) / n}\right)=\log \epsilon^{n}+O(1)+\varphi_{\varepsilon}\left(\left(-\frac{2}{\alpha_{n}} \log \epsilon^{n}\right)^{(n-1) / n}\right)<0
$$

and

$$
f\left(\left(-\frac{1}{2 \alpha_{n}} \log \epsilon^{n}\right)^{(n-1) / n}\right)=-\frac{1}{2} \log \epsilon^{n}+O(1)+\varphi_{\varepsilon}\left(\left(-\frac{2}{\alpha_{n}} \log \epsilon^{n}\right)^{(n-1) / n}\right)>0
$$

then $f(t)$ has a zero point in

$$
\left(\left(-\frac{1}{2 \alpha_{n}} \log \epsilon^{n}\right)^{(n-1) / n},\left(-\frac{2}{\alpha_{n}} \log \epsilon^{n}\right)^{(n-1) / n}\right) .
$$

We denote this zero point by C, then it satisfies $\alpha_{n} C^{n /(n-1)}=-\log \epsilon^{n}+O(1)$.
Therefore, as $\epsilon \rightarrow 0$, we have

$$
\frac{\log R}{C^{n /(n-1)}} \rightarrow 0
$$

and

$$
(R \epsilon)^{n} C^{n} \log R+(R \epsilon)^{n} \log ^{n}(R \epsilon)+R^{-\frac{n}{n-1}} \rightarrow 0 .
$$

Therefore, we can conclude from (62) that for $\epsilon>0$ sufficiently small

$$
\int_{\mathbb{R}^{n}} \phi\left(\alpha_{n}\left|u_{\epsilon}(x)\right|^{\frac{n}{n-1}}\right) d x>\kappa_{n} e^{\alpha_{n} C_{G}+\left(1+\frac{1}{2}+\cdots+\frac{1}{n-1}\right)} .
$$

6. Asymptotic Representation of G

In this section we will give the asymptotic representation of the anisotropic Green function G by using similar arguments in [Y, WX1, KV].

The proof of Lemma 4.7: Since $c_{k}^{\frac{n}{n-1}} u_{k} \geq 0$ in $\mathbb{R}^{n} \backslash\{0\}$, we have $G \geq 0$ in $\mathbb{R}^{n} \backslash\{0\}$. Theorem 1 in [S1] gives

$$
\begin{equation*}
\frac{1}{K} \leq \frac{G}{-\log r} \leq K \quad \text { in } \quad \mathbb{R}^{n} \backslash\{0\} \tag{62}
\end{equation*}
$$

for some constant $K>0$. Assume $\Gamma(r)=-c(n) \log r, c(n)=\left(n \kappa_{n}\right)^{-\frac{1}{n-1}}$. Set $G_{k}(x)=\frac{G\left(r_{k} x\right)}{\Gamma\left(r_{k}\right)}$, which is defined in $\left\{x \in \mathbb{R}^{n} \backslash\{0\}, r_{k} x \in \mathcal{W}_{\delta}\right\}$ for some small $\delta>0$. Here $r_{k} \rightarrow 0$ as $k \rightarrow+\infty$. Then G_{k} satisfies the equation

$$
-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(F^{n-1}\left(\nabla G_{k}\right) F_{\xi}\left(\nabla G_{k}\right)\right)+r_{k}^{n} G_{k}^{n-1}=0
$$

By theorem 1 in [T2], when $r_{k} \rightarrow 0, G_{k}$ converges to G^{*} in $C_{l o c}^{1}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ and G^{*} is bounded, where G^{*} satisfies

$$
-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(F^{n-1}\left(\nabla G^{*}\right) F_{\xi}\left(\nabla G^{*}\right)\right)=0 .
$$

From serrin's result (see [S1]) and (62), 0 is a removable singularity and G^{*} can be extended to $\hat{G} \in C^{1}\left(\mathbb{R}^{n}\right)$. Consequently, form Liouville type theorem (see [HKM]),
\hat{G} must be a constant. Let $\gamma_{k}=\sup _{\mathcal{W}_{\delta} \backslash \mathcal{W}_{r_{k}}} \frac{G(x)}{\Gamma(x)}$, and $\gamma=\lim _{k \rightarrow+\infty} \gamma_{k},(\gamma>0)$. This means the constant function $\hat{G}=\gamma$.

Set

$$
\begin{aligned}
& G_{\eta}^{+}(x)=(\gamma+\eta)(\Gamma(x)-\Gamma(\delta))-c(n)(\gamma+\eta)\left(F^{o}(x)-\delta\right)+\sup _{\partial \mathcal{W}_{\delta}} G \\
& G_{\eta}^{-}(x)=(\gamma-\eta)(\Gamma(x)-\Gamma(\delta))+c(n)(\gamma-\eta)\left(F^{o}(x)-\delta\right)+\inf _{\partial \mathcal{W}_{\delta}} G
\end{aligned}
$$

A straightforward calculation shows

$$
\begin{aligned}
-Q_{n} G_{\eta}^{+}(x) & =c^{n-1}(n)(\gamma+\eta)^{n-1} \frac{n-1}{F^{o}(x)}\left(\frac{1}{F^{o}(x)}+1\right)^{n-2}, \\
-Q_{n} G_{\eta}^{-}(x) & =-c^{n-1}(n)(\gamma-\eta)^{n-1} \frac{n-1}{F^{o}(x)}\left(\frac{1}{F^{o}(x)}-1\right)^{n-2} .
\end{aligned}
$$

It is clear that, for any fixed $0<\eta<\gamma$, we have

$$
\begin{array}{r}
-Q_{n} G_{\eta}^{+}(x) \geq-Q_{n} G \quad \text { in } \quad \mathcal{W}_{\delta} \backslash \mathcal{W}_{r_{k}}, \\
\left.G_{\eta}^{+}\right|_{\partial \mathcal{W}_{\delta}} \geq\left. G\right|_{\partial \mathcal{W}_{\delta}},\left.\quad G_{\eta}^{+}\right|_{\partial \mathcal{W}_{r_{k}}} \geq\left. G\right|_{\partial \mathcal{W}_{r_{k}}},
\end{array}
$$

provided that δ are sufficiently small and $r_{k}<\delta$. By the comparison principle (see [XG]), we have

$$
\begin{equation*}
G \leq(\gamma+\eta) \Gamma(x)+C_{\delta} \quad \text { in } \quad \mathcal{W}_{\delta} \backslash \mathcal{W}_{r_{k}} \tag{63}
\end{equation*}
$$

for some constant C_{δ}. Letting $\eta \rightarrow 0$ first, then $k \rightarrow \infty$, one has

$$
G \leq \gamma \Gamma(x)+C_{\delta} \quad \text { in } \quad \mathcal{W}_{\delta} \backslash\{0\}
$$

A similar argument gives $G \geq \gamma \Gamma(x)+C_{\delta}^{\prime}$ in $\mathcal{W}_{\delta} \backslash\{0\}$ for some constant C_{δ}^{\prime}. Hence $G-\gamma \Gamma(x)$ is bounded in $L^{\infty}\left(\mathcal{W}_{\delta}\right)$.

Next we prove the continuity of $G-\gamma \Gamma(x)$ at 0 . To this point, we consider the points where the bounded function $G-\gamma \Gamma(x)$ achieves its supremum in $\overline{\mathcal{W}_{\delta}}$. We set $\lambda=\frac{\sup }{\overline{\mathcal{W}_{\delta}}}(G-\gamma \Gamma(x))$.

If λ achieves at some point in $\mathcal{W}_{\delta} \backslash\{0\}$, then $G-\gamma \Gamma(x)-\gamma c(n) F^{o}(x)$ also achieves at some point in $\mathcal{W}_{\delta} \backslash\{0\}$. It follows from comparison principle (see [D1]) that $G-\gamma \Gamma(x)-\gamma c(n) F^{o}(x)$ is a constant. This implies the continuity of $G-\gamma \Gamma(x)$ at 0.

Next we assume that λ achieves at 0 . We can set

$$
w_{r}(x)=G(r x)-\gamma \Gamma(r) \quad \text { in } \quad \mathcal{W}_{\frac{\delta}{r}} \backslash\{0\} .
$$

It is clear that w_{r} satisfies

$$
-Q_{n}\left(w_{r}(x)\right)+r^{n} G^{n-1}(r x)=0 .
$$

We also have

$$
r^{n} G^{n-1}(r x) \in L^{\infty}\left(\mathcal{W}_{R}\right), \quad\left|w_{r}-\gamma \Gamma(x)\right| \leq C_{0}
$$

for $C_{0}=\sup _{\mathcal{W}_{\delta} \backslash\{0\}}|G-\gamma \Gamma(x)|$ and $R>0$. By Theorem 1 in [T2], when $r \rightarrow 0$, $w_{r} \rightarrow w$ in $C_{l o c}^{1}\left(\mathbb{R}^{n} \backslash\{0\}\right)$, where $w \in C^{1}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ satisfies $-Q_{n}(w)=0$. For the sequence $\xi_{j}=\frac{x_{r_{j}}}{r_{j}}, F^{o}\left(\xi_{j}\right)=1$, which maybe assumed to converge to $\xi^{0} \in \partial \mathcal{W}_{1}$, we have

$$
w_{r_{j}}\left(\xi_{j}\right)-\gamma \Gamma\left(\xi_{j}\right)=G\left(x_{r_{j}}\right)-\gamma \Gamma\left(x_{r_{j}}\right) \rightarrow \lambda .
$$

Hence

$$
w(x) \leq \gamma \Gamma(x)+\lambda \quad \text { and } \quad w\left(\xi^{0}\right)=\gamma \Gamma\left(\xi^{0}\right)+\lambda
$$

By maximum principle (see [D1]), $w(x)=\gamma \Gamma(x)+\lambda$ and hence $w_{r} \rightarrow \gamma \Gamma(x)+\lambda$ in $C_{l o c}^{1}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. This implies

$$
\begin{equation*}
\lim _{r \rightarrow 0}(G(r x)-\gamma \Gamma(r x))=\lambda, \quad \lim _{r \rightarrow 0} \nabla_{x}(G(r x)-\Gamma(r x))=0 . \tag{64}
\end{equation*}
$$

The above equalities lead to the continuity of $G-\gamma \Gamma$ and $\lim _{x \rightarrow 0} F^{o}(x) \nabla(G-\gamma \Gamma)=0$.
Finally, we assume that λ achieves at some point on $\partial \mathcal{W}_{\delta}$, i.e. $\sup _{x \in \mathcal{W}_{\delta}}(G-\gamma \Gamma)=$ $\sup _{F^{o}(x)=\delta}(G-\gamma \Gamma)$. We define w_{r} as the above, then $w_{r} \rightarrow w$ in $C_{l o c}^{1}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ and $|w-\gamma \Gamma| \leq C_{0}$. We now look at the points where $w-\gamma \Gamma$ achieves its supremum in \mathbb{R}^{n}. Set $\tilde{\lambda}=\sup _{\mathbb{R}^{n}}(w-\gamma \Gamma)$.

If $\tilde{\lambda}$ is achieved at some point in $\mathbb{R}^{n} \backslash\{0\}$, then $w-\gamma \Gamma$ equals to some constant by strong maximum principle (see [D1]), which implies $G(r x)-\gamma \Gamma(r x) \rightarrow \tilde{\lambda}$ in $C_{l o c}^{1}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ as $r \rightarrow 0$. For any fixed $\epsilon>0$, there exists n_{0} such that $n \geq n_{0}$ and $x \in \partial \mathcal{W}_{1}$, we have

$$
\gamma \Gamma\left(r_{n} x\right)+\tilde{\lambda}-\epsilon \leq G\left(r_{n} x\right) \leq \gamma \Gamma\left(r_{n} x\right)+\tilde{\lambda}+\epsilon
$$

Applying maximum principle in $\mathcal{W}_{r_{n_{0}}} \backslash \mathcal{W}_{r_{n}}$ we obtain

$$
\gamma \Gamma(x)+\tilde{\lambda}-\epsilon \leq G(x) \leq \gamma \Gamma(x)+\tilde{\lambda}+\epsilon
$$

which leads to (64) with λ replaced by $\tilde{\lambda}$.
If $\tilde{\lambda}$ is achieved at 0 , we can use the similar arguments as above to deduce

$$
\begin{equation*}
\lim _{x \rightarrow 0}(w-\gamma \Gamma)=\tilde{\lambda} \quad \text { and } \quad \text { hence } \quad \lim _{x \rightarrow 0} \lim _{r_{n} \rightarrow 0}\left(G\left(r_{n} x\right)-\gamma \Gamma\left(r_{n} x\right)\right)=\tilde{\lambda} \tag{65}
\end{equation*}
$$

If $\tilde{\lambda}$ is achieved at ∞, the same idea can be applied when we defined $\lambda(R)=$ $\max _{\delta \leq F^{o}(x) \leq R}(w-\gamma \Gamma)=\max _{\partial \mathcal{W}_{R}}(w-\gamma \Gamma)$. Letting R tend to ∞, we can obtain

$$
\begin{equation*}
\lim _{x \rightarrow \infty}(w-\gamma \Gamma)=\tilde{\lambda}, \quad \lim _{x \rightarrow \infty} \lim _{r_{n} \rightarrow 0}\left(G\left(r_{n} x\right)-\gamma \Gamma\left(r_{n} x\right)\right)=\tilde{\lambda} \tag{66}
\end{equation*}
$$

As long as we have (65) and (66), we can have use maximum principle again to conclude (64) as before.

Integrating by parts on both sides of over \mathcal{W}_{δ}, we have

$$
\begin{equation*}
-\int_{\mathcal{W}_{\delta}} \operatorname{div}\left(F^{n-1}(\nabla G) F_{\xi}(\nabla G)\right) d x+\int_{\mathcal{W}_{\delta}} G^{n-1} d x=1 \tag{67}
\end{equation*}
$$

Since $G(x)=\gamma \Gamma(x)+o(1)$ and $\nabla G(x)=\gamma \nabla \Gamma(x)+o\left(\frac{1}{F^{\circ}(x)}\right)$ as $x \rightarrow 0$., we insert the above two equalities into (67), then let $\delta \rightarrow 0$ to obtain $\gamma=1$.

References

[AS] Adimurthi, K. Sandeep, A Singular Moser-Trudinger embedding and its applications, NoDEA Nolinear Differential Equations Appl., 13 (2007),585-603.
[AVP] A. Alvino, V. Ferone, G. Trombetti, P.L. Lions, convex symmetrization and applications, Ann. Inst.H. Poincare. Anal. Nonlineaire, Vol. 14 No. 6 (1997)275-293.
[BFK] M. Belloni, V. Ferone, B. Kawohl, Isoperimetric inequalities, wulffshape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys., 54(2003)771-783.
[BP] G. Bellettini, M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J., Vol. 25 No. 3 (1996)537-566.
[BR] B. Ruf, A sharp Trudinger-Moser inequality for unbounded domains in R^{2}, J. Funct. Anal., 219 (2005),340-367.
[CL1] W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, duke. Math. J., 63(3) (1991)615-623.
[CL2] W. Chen, C. Li Qualitative properties of solutions of some nonlinear elliptic equations in R^{2}, duke. Math. J., 71(2) (1993)427-439.
[CC] L. Carleson, S.Y.A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., Vol. 100 No. 6 (1986)113-127.
[CCH] R. Cerny, A. Cianchi, S. Henel, Concentration-compactness principles for Moser-Trudinger inequalities:new results and proofs, Ann. Mat. Pura. Appl., 192 (2013) 225-243.
[D1] L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H.Poincare Anal. Non Lineaire, 15 (1998) 493-516.
[F] M. Flucher, Extremal functions of for the Trudinger-Moser inequality in two dimensions, Comm. Math. Helv., 67 (1992) 471-497.
[FK] V. Ferone, B. Kawohl, Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., Vol. 137 No. 1 (2009)247-253.
[FM] I. Fonseca, S. Muller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh Scet., Vol. 119 No. 6 (1991)125-136.
[FOR] D. G. DE Figueiredo, J. M. DO O, B. Ruf, Elliptic equations and systems with critical Trudinger-Moser nonlinearities, Discrete Contin. Dyn. Syst., 30(2011),455-476.
[HKM] J. Heinonen, T. Kilpelainen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, 1993.
[I] M. Ishiwata, Existence and nonexistence of maximizers for variational problems associated with Trudinger-Moser type inequalities in \mathbb{R}^{n}, Math. Ann., 351 (2011) 781-804.
[J] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., Vol. 20 No. 6 (1971)1077-1092.
[KV] S. Kichenassamy, L. Veron, Singular Solutions of the p Laplace Equation, Math. Ann., 275 (1986), 599-615.
[L] K. Lin, Extremal functions for moser's inequality, Trans. Amer. Math. Soc., Vol. 348 (1996)2663-2671.
[LL] G. Z. Lu, Y. Y. Li, Sharp constant and extremal functiion for the improved Moser-Trudinger inequality involving L^{p} norm in two dimension, Discrete Contin. Dyn. Syst., 25 (2009), 963979.
[L1] Y. X. Li, Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds, Ser. A. Mathematics. Vol. 48 No. 5 (2005)618-648.
[LR] Y. X. Li, Bernhard.Ruf, A shape Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^{N}, Indiana Univ. Math. J., Vol. 57 No. 1 (2008)451-480.
[L3] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. T. M. A., 12 (1988), 1203C1219.
[LL2] N. Lam, G.Z. Lu,Existence and multiplicity of solutions to equations of n-Laplacian type with critical exponential growth in \mathbb{R}^{n}, J. Funct. Anal., 262(2012),1132-1165.
[L2] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case,part 1, Rev. Mat. Iberoamericana, 1 (1985),145-201.
[LZ] G. Z. Lu, M. C. Zhu, A sharp Trudinger-Moser type inequality involving L^{n} norm in the entire space \mathbb{R}^{n}, arXiv:1703.00901v1.
[M] M. Flucher, Extremal functions of for the Trudinger-Moser inequality in two dimensions, Comm. Math. Helv., Vol. 67 No. 6 (1992)471-497.
[OMS] J. M. Do Ò, E. Medeiros, U. Severo, On a quasilinear nonhomogeneneous elliptic equation with critical growth in \mathbb{R}^{n}, J. Differential Equations, 246 (2009) 1363-1386.
[PB] F. D. Pietra, G. D. Blasio, Blow-up solutions for some nonlinear elliptic equations involving a Finsler-Laplacian, Publicacions matematiques, Vol. 61 No. 1 (2017)213-228.
[S] M. Struwe, Positive solution of critical semilinear elliptic equations on non-contractible planar domain, J. Eur. Math.Soc., No. 2 (2000)329-388.
[SK] S. Adachi, K. Tanaka, Trudinger type inequalities in \mathbb{R}^{n} and their best exponent, Proc. Amer. Math. Soc., 128 (2000),2051-2057.
[S] S. Pohozaev, The sobolev embedding in the special case $p l=n$, Proceedings of the Technical Scientific Conference on Advances of Scientific Reseach.Mathmatic sections, Mosco. Energet. inst., (1965)158-170.
[S1] J. Serrin, Local behavior of solutions of quasi-linear equations, Acta. Math., 111 (1964), 247C302.
[S2] J. Serrin, Isolated singularities of solutions quasilinear equations, Acta. Math., 113 (1965), 219-240.
[T] N. S. Trudinger, On embedding into Orlicz space and some applications, J. Math. Mech., Vol. 17 No. 6 (1967)473-484.
[T2] P. Tolksdorf, Regularity for a more general class of qusilinear elliptic equations, J. Differential Equations, Vol. 51 (1984)126-150.
[T3] G. Talenti, Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa. Ci. Sci., Vol. 3 No. 6 (1976)697-718.
[W] W. Beckner, Estimates on Moser embedding, Potential Anal, 20 (2004) 345-359.
[WX1] G. F. Wang, C. Xia, Blow-up analysis of a Finsler-Liouville equation in two dimensions, J. Differential. Equations, Vol. 252 No. 6 (2012)1668-1700.
[WX2] G. F. Wang, C. Xia, An optimal anisotropic poincare inequality for convex domains, Pacific Journal of mathematics. Vol. 258 No. 2 (2012)305-325.
[WX] G. F. Wang, C. Xia, A characterization of the wuff shape by an overdetermined anisotropic PDE, Arch. Ration. Mech. Anal., Vol. 99 No. 6 (2011)99-115.
[WY] G. F. Wang, D, Ye. A hardy-Moser-Trudinger inequality, Advances in Mathmatics, 230 (2012), 294-320.
[XG] R. L. Xie, H. J. Gong, A priori estimates and blow-up behavior for solutions of $-Q_{N} u=V e^{u}$ in bounded domain in \mathbb{R}^{N}, Science China Mathematics, Vol. 59 No. 3 (2016)479-492.
[Y] Y. Y. Yang, A sharp form of Moser-Trudinger inequality in high dimension, J. Funct. Anal., Vol. 239 No. 6 (2006)100-126.
[ZZ] C. L. Zhou, C. Q. Zhou, Moser-Trudinger inequality involving the anisotropic dirichlet Norm $\left(\int_{\Omega} F^{n}(\nabla u) d x\right)^{\frac{1}{n}}$ on $W_{0}^{1, n}(\Omega)$, J. Funct. Anal., vol. 276 No. 9 (2019) 2901-2935.
[ZJ] J. Y. Zhu, Improved Moser-Trudinger Inequality Involving L^{p} Norm in n Dimensions, Advanced Nonlinear Studies, 14(2014) 273C293.

[^0]: The authors are supported partially by NSFC of China (No. 11771285). The first author is also supported by the funding for the Doctoral Research of ECUT under grant No. DHBK2018053. The corresponding author are Chunqin Zhou, cqzhou@sjtu.edu.cn, Changliang Zhou, zhzhl1980@126.com .

