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ABSTRACT. In this paper, we investigate a sharp Moser-Trudinger inequality
which involves the anisotropic Sobolev norm in unbounded domains. Un-
der this anisotropic Sobolev norm, we establish the Lions type concentration-
compactness alternative firstly. Then by using a blow-up procedure, we obtain
the existence of extremal functions for this sharp geometric inequality. In par-
ticular, we combine the low dimension case of n = 2 and the high dimension
case of n > 3 to prove the existence of the extremal functions, which is different
from the arguments of isotropic case, see [BR, LR].

Key words: Moser-Trudinger inequality, anisotropic Sobolev norm, blow-up
analysis, existence of extremal functions

1. INTRODUCTION

Let © € R™ denote a domain with n > 2. When € is a bounded domain, the

1,n

classical Trudinger-Moser inequality states that for all functions v € Wy""(£2) with
Dirichlet norm ||u||p = ([, |[Vu|"dz)= it holds that

< 400 when o < \,,
=+ when o > A\,

sup /Q(e"“ulﬁ —1)dz = C(Q, ) { (1)

llullp<1

n—1

n_1, and wy,_1 is the measure of the unit sphere in R™. Moreover,

where A\, = nw

when a < \,,, the supremum can be attained by some u € W,"™(Q) with ||u||p = 1.

It is well known that whether the extremal functions exist or not is an interesting
question about Moser-Trudinger inequalities. There are lots of contributions in this
direction. The first result is due to Carleson and Chang [CC], who proved that the
supremum is attained when €2 is a unit ball in R”. Then Struwe [S] got the existence
of extremals for €2 close to a ball. Struwe’s technique was then used and extended by
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Flucher [F] to  which is a more general bounded smooth domain in R2. Later, Lin
[L2] generalized the existence result to a bounded smooth domain in dimension-n.

When Q is an unbounded domain, the situation is different, i.e. Supremum (1)
becomes infinity. Hence the Trudinger-Moser inequality is not available for such
domains ( and in particular for R™).

However, if Q is an unbounded domain in R?, Ruf [BR] replaced the Dirich-
let norm ||ul|p by the standard Sobolev norm ||ulls = ([,(|Vul* + [u|?)dz)z on
Wy2(2) to show that

alul? _ < 400 when o < 4,
||us|l|lsp§1 /Q(e Lde = C(e) { = 400 when « > 4. (2)

In particular when o < 47 the supremum can be attained. For n > 3, Li and Ruf
[LR] generalized the result, which states that the supremum

), 3)

sup Hlafu
u€WLn(R™), [on (|Vu|?+|u|?)de<1 JR?

is uniformly bounded and can be attained by some ug € W™ (R") with [, (|Vuo|"+

|ug|™)dx = 1, where o < Ay, and

o(t) :et—zﬁ_.

When « > A, the supremum is infinite.

Recently, due to a wide range of applications in geometric analysis and partial
differential equations (see [AS, FOR, LL2] and reference therein), numerous gen-
eralizations, extensions and applications of the Moser-Trudinger inequality have
been given. We recall in particular Lions concentration compactness principle ob-
tained by Lions [L2], which says that if {uz} is a sequence of functions in W™ (Q)
with [[Vug||pn@) = 1 such that up — u # 0 weakly in Wy (), then for any
O<p<(1—| VUHEH(Q))_U(”_U, one has

sup/ ePAnlusl "1 gy < oo
k Ja
Here Q is a bounded domain. This conclusion gives more precise information than
(1) when uy, — u # 0 weakly in Wy ().

A typical generalization is about the anisotropic Moser-Trudinger type inequality
which involves a Finsler-Laplacian operator @,

Quu = 32 (I (V) Fe (V).
i=1 "

Here the function F(x) is convex, positive and homogeneous of degree 1, and its

polar F° represents a Finsler metric on R™. In particular, when € is a bounded

domain, for u € W,"™(Q), (Jo F™(Vu)dz)w is an equivalent norm of u, which can

be called the anisotropic Dirichlet norm, while Q@ = R"™, ([, F"(Vu) + lu|"dz) "

is an equivalent Sobolev norm of u € VVO1 "(R™), which can be called as the

anisotropic Sobolev norm. In 2012, Wang and Xia [WX1] proved the anisotropic
2
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Moser-Trudinger type inequality in a bounded domain 2

/ T gy < C(n)|9 )
Q

for all u € Wy""(2) with the anisotropic Dirichlet norm Jo F(Vu)"dr < 1. Here

_1
n—1

A<a, =n"1kg; " and K, = |[{z € R" : F°(z) < 1}|. Moreover, a, is optimal,

_n_
n—1

that means that if A > a, we can find a sequence {u;} such that [,e s+  dx
diverges. Recently, Zhou and Zhou [ZZ] generalized Lions type concentration com-
pactness principle to the anisotropic case and then showed that supremum of the
anisotropic Moser-Trudinger functional can be attained.

In this paper, we continue to study the anisotropic Moser-Trudinger type in-
equality and its extremal functions in R™. We replace the isotropic Sobolev norm
by the anisotropic Sobolve norm

ull = ( / F"(Vu) + [uf"dz)

Our main results are

Theorem 1.1. For any « € (0,ay,), there exist a constant Cy > 0 such that

/¢(a( lu(z)| )ﬁ)dx<c”u(z)”z"(w)

HVUHL”(R") - HV’U’HZn(]Rn)
for any u € WH™(R™)\{0}.
Theorem 1.2. There exists a constant d > 0 such that

sup B(ap|u|7T)dz < d. (6)
ueWbm(R"),|ul| <1 JR™

Moreover, the inequality is sharp, i.e. for any a > ay,, the supremum is +00.

I we set
S = sup B(ap|u|7T ) da.
ueWh.n(R"),[|ul|p <1 JR™
Theorem 1.3. S is attained. In other words, we can find a function u € WHm(R"),
with |ul|lp =1, s.t.

S = B(a|u|71)d.
R7l
We would like to point out that the second part of Theorem 1.2 is trival. In fact,
for any fixed a > «,, we take 5 € (ay,,a), we can find a positive sequence {uy} in

{ue Wy " (W) : /W F*(Vu)dx =1}

such that

n
n—1

lim P dr = 400.
k—+oo Wi
Here Wy = {z € R™ : F°(x) < 1}, which is defined in detail in the next section.
By Anisotropic Lions type concentration compactness principle in [ZZ], we can get
3
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ug — 0. Then by the compact embedding theorem, we may assume ||ug||zr ;) — 0
for any p > 1. Hence we have

/n[F"(Vuk) +upldz — 1.

Since «f( m)ﬁ > fu, " when k is sufficiently large, we can get

n

. Uk
lim «
k——+oco R™ ||uk|\p

Ya-T)da > / (65“:?1 — 1)dx = +o0.
Wi

Theorem 1.1 will be proved by convex symmetry with respect to F°(z). And
Theorem 1.2 and Theorem 1.3 will be proved by blow up analysis. We will use the
ideas from [L1] and [LR]. The key step is to establish the anisotropic Lions type
concentration compactness principle for unbounded domain by using convex sym-
metric rearrangement. The other key step is to give the asymptotic representation
of the anisotropic Green function G . Once we have obtained the anisotropic Lions
type concentration compactness principle and the asymptotic representation of the
anisotropic Green function G, we can apply the blowing up analysis to analyze
the asymptotic behavior of the maximizing sequence near and away from the blow
up point, and then to give the proof of Theorem 1.2 and Theorem 1.3. Here it is
worthy to mention that we need not to distinguish the low dimension case of n = 2
form the high dimension case of n > 3 to prove Theorem 1.3, which is different
from the arguments in [BR, LR].

2. ANISOTROPIC LIONS TYPE CONCENTRATION COMPACTNESS PRINCIPLE

In this section, we will give the notations and preliminaries.
Throughout this paper, let F : R® — R be a nonnegative convex function of
class C2(R™\{0}) which is even and positively homogenous of degree 1, so that

F(t&) = [t|F(&) for any te R, £eR™
A typical example is F'(§) = (3, |§|‘1)% for ¢ € [1,00). We further assume that
F) >0 for any £#0.
Thanks to homogeneity of F, there exist two constants 0 < a < b < oo such that

alg] < F(§) < bl¢].

Usually, we shall assume that the Hess(F?) is positively definite in R"\{0}. Then
by R.L.Xie and H.J.Gong [XG], Hess(F™) is also positively definite in R™\{0}. We
consider the energy containing the expression

/QF”(Vu)dx

by replacing the usual energy. Its Euler equations contain operators of the form

Qui=3_ A (Vu)F (V).

Note that these operators are not linear unless F' is the Euclidean norm in dimension
two. We call this nonlinear operator as Finsler-Laplacian. This operator @, was
studied by many mathematicians, see [WX, FK, WX1, AVP, BFK, XG] and the
references therein.
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Consider the map
¢: 8"t 5 R, $(€) = Fe(€).
Its image ¢(S™~!) is a smooth, convex hypersurface in R™, which is called Wulff

shape of F. Let F° be the support function of K := {x € R" : F(z) < 1}, which is
defined by

F(z) := sup(z,§).
€EK

It is easy to verify that F° : R™ — [0, 400) is also a convex, homogeneous function
of class of C2(R™\{0}). Actually F° is dual to F in the sense that

0 (z,) (z,€)
F°(z) = sup F(x) 21;[0) Fo(e)
One can see easily that ¢(S"~ 1) = {x € R" |F°(z) = 1}. We denote Wp = {z €
R™F°(z) < 1} and &y, := |[Wr|, the Lebesgue measure of Wp. We also use the
notion Wy(zg) := {z € R"|F°(x — xo) < r}. we call W,(zg) a Wulff shape ball
of radius r with center at xy. For later use, we give some simple properties of the
function F, which follows directly from the assumption on F, also see [WX, FK, BP]

Lemma 2.1. We have

() [F(z) - Fy)| < F(x +y) < F(z) + F(y);

(it <|VF(z)| < C, and } <|VF°(z)| < C for some C > 0 and any x # 0;
(iii VF(z)) = F(x ) (, VF"(:::)) = F°(x) for any x # 0;

(iv VF°(x)) =1, FO(VF(z)) =1 for any x # 0;

(v) Fo@)Fe(VF°(@)) = & = F(@)F(VF(x)) for any z # 0;

(vi) Fe(t§) = sgn(t)Fe(§) for any £ # 0 and t # 0.

It is well known (also see [FM]) that the co-area formula

/Q |Vulp = /0OC Pr(Ju| > t)dt (7)

and the isoperimetric inequality

1
C
z,

(
F(
FO
F,

ooz

Pr(E) > nxg |E|'"* (8)

holds.

In the sequel, we will use the convex symmetrization with respect to F°. The
convex symmetrization generalizes the Schwarz symmetrization (see [T3]). It was
defined in [AVP] and will be an essential tool for this paper. Let us consider a
measurable function v on @ C R™. The one dimensional decreasing rearrangement
of u is

u* =sup{s > 0:|{z € Q:|u(x)| > s} > t}, for teR.
The convex symmetrization of u with respect to F' is defined as
u(x) = u (ko FO(2)"), for x € Q*.

Here £, F°(z)™ is just the Lebesgue measure of a homothetic Wulff ball with ra-
dius F°(z) and Q* is the homothetic Wulff ball centered at the origin having the
same measure as 2. Next we will attain concentration compactness principle in
unbounded domain with Finsler metric.

5
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Lemma 2.2. Letu € WE(R™) and u* the conver symmetrization of u with respect
to F°(x). If||ul||r <1, then for each R > 0 and q > 0, there exist a positive constant
C =C(q,R,n) such that

/ b(qlu*| 750 )dz < C(g, R, n).
Fo(z)>R

Proof. By the monotone convergence theorem, we have

/ o(qlu”
Fo(z)>R

* ﬁ)j

+oo
P de = / 'y (glur|—T)’
Fo(a)>

il
R j=n—1 J:

_ Z/ q\u*|n1>dx

j=n—1

qn— *[|n = qj / L
u n n + Ty |u |nild$
(’I’L—l)'” HL (R™) ;]l Fo(2)>R

In view of the radial symmetrization with respect to F°(x), then

r 1
uw(z "de/ w(z)|"dx = / uw (kpt" "dt/ ——ds
/n\ (@) [ ) Cweanra | em
_ / [ (o) it Lt
0

(u* (x))n) ‘F"(x):rﬂnrn~

Since [|ul[r < 1 implies that ||u*||zn@») < 1, we have

|dx

vV

Hu*|L7L Rnl 1
W (@) po(ey=r < 2~ < —.
K r TRy

Thus for all j > n,

1 1.5 1

1 i
/ |u* |” Tdr < / —— ()" Tdr = (*)”*1/ —n
Fe(z)>R Fe(z)>R Fo(z)n-1 Fn Kn Fo(z)>R Fo(z)n-

1.5 [t 1 1
] I e
Kn Rt Jpo(w)=t |IVF(2)]

1.5 [t 1 -1 i
- (7)ﬁ / Tnl{ntnildt - ni/ﬁ‘,i

Kn R =T j+1l—n

From the equality above we can conclude that

/ é(al *Ll)d _ ¢! . Rn+°°qj n—1 ( 1 ) i
w*| "1 )dx ———— + Ky - T,
Fe(z)>R 1 o (n - 1)' j=n j' J +1—n K‘,an

The conclusion follows form the convergence of the series of Z —

O

j=n j! j+1—n

Lemma 2.3. For any p > 1 and any u € WH™(R"™), there holds

o(plu| ™7 )dr < +oo.
R

6

1

jnl(l)%.

dx



Proof. Fix p > 1and u € WH(R"), let u* be the convex symmetric rearrangement
of u with respect to F°(zx), we have

ool 7)o = [ olplu| e = [

Since W™ (Wg) is a continuous embedding in LY(Wpg) for ¢ > 1, we obtain that

n—2 -
/W S (@) B da < O(R).

R j=0
101 Define v(z) = u*(z) —u*(R), © € Wg. Obvious, v(z) € Wy (Wg). By calculating,

102 we have, there exists a constant A = A(n),

[ (@)[7T < (o) + [ut (R)]) 7T

< o7 4 Al

$(plu* 7T )dar+ / H(plu*| 77 ) d.

R" °(x)>R Fo(z)<R

n

et (R + [u (R,

and
ol Tt (R)] = (o] 757) % (ju*|77) " < Z ol 71 4 ()77 fu* (B)] =7

Thus,
where C(e,n) = AwTe~ 77 + 1. Choose € > 0, by means of the Hélder inequality,

we get
/ el @17 gy < (/ eps<1+s)|v\ﬁdx)é(/ eps Clemlu (R ™Ty L 4 oo
Wr Wr Wr
103 where s > 1,8 > 1 and % + é = 1. Together with Lemma 2.2, the calculation
104 holds.
105 (Il
106 Now we establish the anisotropic Lions type concentration-compactness lemma

107 in R™. Similar arguments under the isotropic Dirichlet norm can be seen in [CCH,
108 OMS]. The anisotropic Lions type concentration-compactness lemma in bounded
100 domain can be found in [ZZ].

Theorem 2.4. Let {uy} be a nonnegative sequence in W1 ™(R™) such that ||ug||r =
1 and up — u # 0 in WL(R"). If

1
(1 = [fullz) ™=

then
1) dx < +00.

sup | ¢(panuy
k Jrn

10 Furthermore, p,(u) is sharp in the sense that there exists a sequence uy satisfying
w |juglls = 1 and ur, = u # 0 in WH(R™) such that the supremum is infinite for
112 p > pu(u).

Proof. Case 1: 0 < ||u||r < 1. Assume by contradiction that for some p; < p,(u),
we have
sup [ ¢(pram|ug| 7T )de = +oc.
k

R’Vl
7



This implies

71 ) dx = 400,

sup [ ¢(pro|ug
k R

where u} is the convex symmetrization of u; with respect to F°(z). For fixed
R > 0, we write

%)dx

d(prov |uf|» 7 )dz = d(pro |uy,

") + / $(pram
R~ Wr Fe(z)>R

Since W1 ™(Wg) is a continuous embedding in L9(Wg) for ¢ > 1, we infer that

n—2
[, X
w

R j=0

#1dz < C(R).

From this estimate and Lemma 2.2 with ¢ = p;«,,, we can conclude that

=
sup/ ePromluil "t gy — 4o
k Jwg

Define vy, (z) = uf(z) — ui(R), * € Wg. Obvious, v (z) € W, " (Wg). By some
similar arguments in Lemma 2.3, we have

()| 7T < (14 €)ug| 7T + C(e, n)[ufy(R)| 7=,

where C(e,n) = A7~ 1 4 1. Choose s > 0 and € > 0, such that (14 ¢€)sp1 <
pr(u). By means of the Holder inequality, we get

/ emauu;(ml‘"”d:ﬂg(/ e<1+e>msan\vk<x>|ﬁdx)é(/ s/ PranClem)lui (R 7Ty 2
Wr Wr Wr

13 which implies

sup / P — oo By = (L4 eprs. (9)
k Jwp

Since vg(z) = uj(x) — uj(R), in view of the Pélya-Szegd inequality, we have

IE (Vo Lnowr) < IF(Vor)llrove) = E(Vui)llonovg) < IF (V)| o ovg) < 1.

114 Denoting r = F°(z) and taking a change of variable for t = k,7", it follows that

/ F*(Vup)dx = F" (Vv (k, F°(2)"))dx
Wr Wr
R
dvi(t) _ 1
= Fr(— g IV ( dr/ ———dx
A ( dt ( )) Fo(x)=r ‘VFO‘
R *
= /0 [(—L};t(t))nnnrnfl]”nnnrnfldr
[Wr| i *
_ / (st (= ) g1y (10)

115 Then for kK € N we have

Wk 1 v )
([ ek (- e tany < (o)

Lrowr) < L.

8
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Since v;(|Wr|) = 0, and v; is locally absolutely continuous,

[Wr| dv*
v;;(s):/ ~Shgr for s (0,/Wal). (11)
S
Holder inequality and (11) yield
[Wr| 1 dot(t N [Wr| 1 dt w1
i) < ([ ek CEED a0
s s nr-Try !
]. WR n—1
< PVl oviy (— e loa(V2])
nn=1K,
1 w n—1
< (— g™ for s € (0, Wl (12)
nﬁli»ﬁhl S

Now we claim: for any ps € (1, pn(u)) and every kg € N and every sg € (0, [Wg|)
there exist k € N, k > ko, and s € (0, sg) such that
* 1 n—1
vp(s) = (ﬁ) "
PonTT Ky !

[Wh|

).

n—1
logT(

Indeed, by contradiction, suppose that there exist kg € N and s¢ € (0, |[Wg|) such
that
]. n—1 n—1 ‘WR|
vp(s) < (————=) = log' " (——
pan Tk

) for every s € (0,s9), k> ko.

By the latter estimate and inequality (12), one has that, if o1 < ps and k > ko,
then

L ‘WR' n
/ exp(anprlvg|*~T)de = / exp(ompr|vi|=T)ds
S0 W T Wk W o
< / (7‘ R|)$d3+/ (|7R|)plds
0 S 0 S
<  +00,

contradicting (9). Our claim is proved. Thus, possibly passing to a subsequence,
there exist a sequence sg, such that
N 1 n-1_. n=1 |Wpg
IES Y m——— L P
pan TRy, Sk

keN. (13)

T =

Now, given L > 0, define the truncation operator T* and T}, acting on any function
v:Wg — RTU{0} as

TE(v) =min{v, L} and Tp(v) =v—T*@).

Since ||[TE(u)||r — ||ul|r as L — +oo, taking ps € (p2, pn(u)), and choose L so
large that
1 — [lull P3 \n-1

Tl ) -
It follows from (13) that vj(sy) — 400 as k — +oo. Since vi(|Wg]|) = 0, by
passing to a subsequence if necessary, we have that v} (sx) > L for every k € N
large enough. Consequently, there exists 7, € (sg, |Wg|) such that v} (ry) = L for

9
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128

129

130

131

132

133

134

every k € N. Owing to (13) and to Holder inequality, via the same argument as in

the proof of (12) we obtain

1 aot . na |W . i} e du(t
(——) 7 1og™™ () - 1 <o) —oitrn) = [ -2
T T Sk s dt

p2nn—tRkn k
dvj Lo n-1 1 w n—1
<1l 2O () ey o) for ke,
nKg Sk
Since lognT_1 (%) — +o0, for k large enough, we have
1 na dvi(t) 1l n-1
< 1= T ) o + 0n(1)
dv (t) E T §
< = ZE D )T oo, + on (D) (15)
By the definition of T L and Ty, we can get
/ FY(NT*(vg))dr  + / F"(VTy(vy))dr = / F"(Vuy,)dx
Wr Wr Wr
= / F"(Vuy)dx
Wr
= / F(VTE (uf))dx +/ F"(VTy(u}))dx
WR WR
and
/ FY(VTE(uf))de < / F(VT*(vg))dz.
WR WR
Thus
F™"(VTg(vg))dx < F™ (VT (uy))d.
WR WR
By using this inequality and Pdlya-Szego inequality, we have that
/ F*"(VTy(ug))dz > / F™"(V(Ty(ug))*)dz = / F™"(VTy(uy))dx
2 / F"(VTL(vk))dx
Wr
d'U*(t) 1l o n-1 n
= |- #(nm’{)t | (0,0
Combining with (15) yields
1
()"t < [ FU(VTL(uk))dz + ox(1). (16)
b3 Rn
As up, = TT(up) + T (ug) and TT (ug) < ug, one has that
1 = Jul|p = / F(VTY (uy))dx + F™"(VTy(ug))dx +/ |ug|" dx
R R n
> F™(V Ty (ug))d + || T (u) |- (17)
R’n,
In view of (16), we have
1
|T" ()| + (p—g)“*1 +or(1) < 1. (18)

10
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For L > 0 fixed, {TF(ux)} is also bounded in W1 (R"). Hence, up to a sub-
sequence, TY(up) — T¥(u) almost everywhere in R™ and T*(u,) — T*(u) in
Whn(R"). By the lower semicontinuity of the norm in W1 (R") and the inequal-
ity (14), we obtain

p3 > L > !
3 = .. 1 = 1
(L= lminfy o oopreuyn) ™" (L= [[TE(u)|[E) 7T

D3 1
i — D3, (19)
Pa(W) (1 — [Jul|) 7

which is a contradiction.

Case 2: ||ul|r = 1. In this case, since upy — u weakly and W1 (R") is a
uniformly convex Banach space, we have ux — u strongly in W1?(R"). Using
Proposition 1 in [OMS], up to a subsequence, we have |u(z)| < v(z) for almost
r € R™ and some v € W™ (R™). Hence, the proof follows from Lemma 2.3 and
Lebesgue dominated convergence theorem.

We conclude by showing that the assumption p < p,(u) cannot be relaxed.
For every a € (0,1), we exhibit a sequence {uy} C W1m(R") and a function
u € WHm(R™) such that

llugllr =1, up — u weakly in WH™(R™),

HUHF =a and / ¢(anpn|uk ﬁ)dLC — +o00.
R’n,

Actually, Let us consider the sequence vy, € W™ (R") and defined for r > 0, for
k€N, as

0, Fo(z) =,
1 1
vp(r) =< K" log(F%(z))k_ﬁ, re=n < Feo(z) <,
1
lfi;ﬁle, OSFO(x)STe’f.

‘We have that

r 1
/ F"(Vug)dx :/ . ko Lkt —nkat" N dE = 1.

n
e n t

Obvious vy (x) = 0 in WH™(R™) and [, |vx|Pdz — 0 for p > 1. Next for R = 3r,
Next, define u € W1 (R") by

0, Fe(z) > R,
u(r) = 34— 3F°(z), SR<F°(z) <R,
A, 0< F°(z) < 2R.

where A > 0 is chosen in such a way that ||u||r = «. Finally, set
wk:u—i—(l—a")%vk for ke N.
Since Vu and Vv have disjoint supports, we have
IE(Vwi)l|zn = [[F(Vu)l|Zn +1—a".
Combining with the fact

1
il = / fut (1 — o) kg Pde = |[ullfn + &,

11



where §; — 0, we have |[wg|[r =1+ . Finally, set up = 1%, we have
up|lr =1, up —win WH(R™),  ||jul|r = o
s Thus
[ otnpalun|5)do
S 7% S g
> expln™T Kyt ————|dx — —_— lug (z)| =T dx
Ws O (L—am)m " 1 —am)7 T Jw o
w1 ((1 A+ (1 — a®)wog])neT
> [ it RS AR BT g, 4 o)+ 0400
W _k(0) (I—an)m—T

re mn

- / expln ™1 /T ((1+ €)Y C + ) 7T ]de + C(u) + Ox(1)
w _3(0)
= Cre *eap([(1+ &) H(Co + k™5 )]|7T) + C(u) + Op(1) — +oo,

for some positive constants C, C1, Csy, where

J

n—2 n’njll<;n71 )
= in
C(u) = — 7711/ lu(z)|»-Tdx.

=0 J(1 —am)==1 Jw _£(0)
149 This concludes the proof. (I
150 3. THE MAXIMIZING SEQUENCE
151 Let {Rr} be an increasing sequence which diverges to infinity, and {f;} an
152 increasing sequence which converges to .

Setting
Sauw) = [ oAl
Wr,
and

H = {u e Wh"(Wa,) : /W (F"(Vu) + [u[")dz = 1}.

153 We have
Lemma 3.1. For any fixed k, there exists an extremal functional function ux € H
and ug > 0 such that
S (ur) = sup Sg, (u).
ueH

Proof. There exists a sequence of {v;} € H such that

i—4o00

lim S, (v;) = sup Sa, (u).
ueH
154 We set v; = 0 in R™ \ Wg,. Since v; is bounded in W17 (R"), there exist a
155 subsequence, which will still be denoted by v;, such that
v;i = ur weakly in  W1L(R"),
v; = ug  strongly in  L5(R™),
for any 1 < s < co as ¢ — oco. Hence v; — uy a.e in R™, and
gi = S(Belvi| " T) = g = ¢(Br|uk|7T) a.e in R™.
12




156
157
158

159

160
161

162

163

We claim that uy # 0. If not, then g; is bounded in L"(Wg, ) for some r > 1, thus
gi — 0 strongly in L*(Wg, ). Therefore, sup,cp Ss,(u) = 0, which is impossible.
By Theorem 2.4, we have for any p < p,, = 1

1 9
(A=fluk|lF) =1

sup [ @(pan|vg| 71 )da < +o0.
i Jre

So gi — gk strongly in L'(Wg, ), as i — +oo. Therefore, the extremal function is
attained for the case B < ay, and ||Jug||r = 1. From the form of Sg, (ux), we can
choose the function uy > 0. (I

Similar as in [LR, LZ], we give the following

Lemma 3.2. Let up as above. Then uy is a mazximizing sequence for S and ug
may be chosen to be radially symmetric and decreasing with respect to F°(x).

Proof. Let n be a cut-off function which is 1 on Wy and 0 on R*"\Wj,. Then given
any ¢ € WH(R™) with [, (F(Ve)™ + |¢|™)dx = 1, we have

mL)i= [ (FEE0) + (el 51 as Lo oc,

Hence for a fixed L and R > 2L

IR N M EE

¢(5kU,§ 1) .

WRk

1) da

IN

By the Levi Lemma, we can have

¢(an| |77 )dz < lim ¢(6ku” YYdz.

( ) k—+o00

Then, Letting L — +oo7 we get

n

B(o || 1)dx < 11m o(Bruy " )dx.
R’!L Rﬂ
Hence, we get
lim (b(ﬁku" 1) = sup P(an 0|71 )da.
k—+oo Jrn [lv]|p<1,oeWbn(R?) JRn

Let u} be the convex symmetric rearrangement of uy with respect to F°(x), then
we have

- ;:/ (F"(vu;)+u;”)dxg/ (F™(Vug) + ) = 1.
Wr, Wa,

It is well known that 7, = 1 if and only if uy is radial with respect to F°(x). Since

ST )dr = | S(Brul ),
WRk WRk
we have .
u* n—1 .
(Br(£)  )dx > qﬁ(ﬁku;; )dz.
Wk, Tk Wk,

13



164

165

167
168
169

170

171

172

173
174
175

176

178

Hence 7, = 1 and

OBy, ™7 )da = sup O(Belo| ™) da
Wk, wak (F™(Vo)+|o|m)de=1veW, ™" (W, ) Y W,
So, we can assume uy = u(r) and r = F°(z), ug(r) is decreasing. O

Assume now uy — u in Wol’"(WRk_). Then, to prove Theorem 1.2 and Theorem
1.3, we only need to show that

1 n—1 — % .
k_l)IEOO q’)(ﬁkuk Ydx = . d(apu™=T1)dz

4. BLOW UP ANALYSIS

In this section, the method of blow-up analysis will be used to analyze the
asymptotic behavior of the maximizing sequence {uy,}.

After a direct computation, the Euler-Lagrange equation for the extremal func-
tion ug € Wy (Wg, ) can be written as

~Quu) +p = O (20)

where Ay is the constant satisfying
M= [T B e (21)
Wr,

First, we need to prove the following result.

Lemma 4.1. hm inf A > 0.
k——+o0
Proof. We show this lemma by contradiction. Without loss of generality, we assume
)\k — 0.
When n = 2, since e* — 1 < te! for any ¢t > 0, we have

2
lim (eﬂk“k — 1dz < ,, lim B’C“kdx =qa, lim Ay — 0,
k—+oo R2 k—+oo R2 k—+oco

this is a contradiction.
When n > 3, Since

_n_

wroxe (Brug )
)‘k = /" d) (Bku )dx = /n Uy, j;n_Q %d%
n—2_n n—2
_ kY oo k n
= /n((n o T2 /R updr, (22)

we have

/ upde <C [ uy qub (ﬁkuk Ydz < CA\, — 0.
8 Rn

Since uy = ug(r) is decreasing, we have ui (L)|[Wr| < [}, ujdr <1, and then

—_

ugp(L) < (23)

L.

S3|=

K
14



179

180

181

182

183

184

186

187

188
189

191

Set € = ——. Then uy(z) < € for any « ¢ Wy, and hence we have, by using the
KL
form of t e function ¢(z), that
/ gf)(ﬁku,:%l)dx <C updr < CAp — 0.
R \Wr R™\Wp,
Since
L N 5kun ) Brul ﬂku" o =
S(Bruy )= Y B )? Z . i < Brug ¢ (Brug ),
4 (j+1)j
j=n—1 j=n—2
we have
im [ ol e =, lim + [ (G yda
k—+o0 k=400 Sy, n{ue>1}  JWrn{ur<1}
< lim [C uk e (6ku Y)dz +/ B(Bruy " )dz]
k=toom Jyy, {zeWp |uy(z)<1}
< lim (CAg + C'/ updz) = 0.
k——+oo Wi,
This is impossible. Thus we get a contradiction. O

We denote ¢ = max ug(z) = ux(0). It is clear supy, ¢ can be infinite. However
ZERn

supy, ¢ can be finite, we have the following result.

Lemma 4.2. Ifsupcy < +oo, then Theorem 1.2 and Theorem 1.3 hold.
k

Proof. By Lemma 4.1 and Theorem 1 in [L3], then ux — u in C} _(R"). For any
€ > 0, by (23), we are able to find L such that ug(z) < e for z € Wy,. Since
_n_ Zﬁluz
(P(Brug ") — )dx
/]R“’\WL k (n - 1)'
’IL2
< C uy; 1dm<Cen 1 "/ updr < Cen-17",
RrA\W;, N

we have

nfluz n 1

=y P - Wy P vk i-n
[ @™ - = [ @@l - e+ o),

It follows from sup ¢ < 400 that
k

n—1

[ o = [ T - Ethe s [ s o

< C(L). (24)

Thus, Theorem 1.2 holds.
Next we show Theorem 1.3. We proceed by dividing two cases.
Case 1: u # 0.

15



192

193
194

195

196
197
198
199

In this case, we first show that [, upde — [, u"dz. By (24) we have

_n__

S = lim d(Bruy " )dx
k—oo Jrn

= [, dlemu 1>d“ﬁklm / Pt

Set

n
urdr
™" = lim 7&{" k

k—+oo fR undx

By the Levi Lemma, we have 7 > 1.

Let @ = u(%). Then, we have

F*(Vu)de = /F”(Vu)dacg lim F*(Vug)dx

R k— o0 R
/ dr = T"/ u"dr = lim upda.
n n k—+oo Jrn
Then
/(F”(Vﬂ)+a”)dx§ im [ (F"(Vuy) + ul)da = 1.
n k—+o00 Rn
Hence, we have by (25)
S > P(ant™T)da
Rn
= 7" d(apu™T)dx
R‘IL

= | qﬁ(anuﬁ)dx + (" — 1)/ o u"dz)

Rn
an—

+ (=1 /n(qﬁ(anuﬁ) — 0 7: 1)!u”)d:€

= lim (qﬁ(ﬁku” dx

k——+o0 Rn

Lo —1)/n(¢(anu%) - e

n [0

= S+ (-1) /n(¢(anuﬁ) - (ni 1)!u")dav.

Since @(apum-T1) — %u” > 0, we have 7 = 1, and then

S = H(opu™T)da.
R"'L

Thus we obtain that v is an extremal function.

Case 2: u=0.
In this case, since u, — 0 in C} (R™), we have
kll)rfoo - dlonu, ™" )de = - qb(kgm anuy " )dz = 0.

16



200

201

202

204

205
206

207

208
209

210

By (24) and letting L — 400, we obtain

n_ . 04"71 N
o[ oo e = (g [ wde doun)
an—1

(n—1)1"
In the following, we show that v = 0 will not happen. Indeed, for any fixed
v € WE(R™) with v # 0, we can introduce a family of functions v, for ¢ > 0 that

v(x) = t%v(t%x).
We easily verify that

IE (VO Enginy = HIE (VO Ennys N0l oy = 01} 5 m)-
Hence, we have
n—1 n a™ /(n 1))
v . A o [T gy Cnllvell] )00
$lom ()" T)dz > | (n) w2 (= 1() )
Rn [[ve]| 7 (n = D)!|ve ] n!||ve| [
an—l n—1
— n v t
CE R T
where
ap, 1 /(n—1)
t — _ n— ltn 1
) = S Ty Ty e
- tIF (V)70 gy
t||F(V1})||Ln(Rn) =+ HU”Ln(Rn)
(n-1)
o[l 550 IE(VO)[20 e
= L E 451 (14 0(t) — o E (1 4+ O(t)).
n?/(n—1) v}
n|| ‘Ln (R™) ™ (R™)

Note that g,(0) = 0. Once we show that g¢,(¢t) > 0 for small ¢ > 0 for some v, it
a™ 1
leads to S > = P Nk which is a contradiction. Thus we finish the proof of Theorem.

Indeed, when n > 3, it is clear that g, (t) > 0 for some v when ¢ is small enough.
When f n = 2, we know that

al[v]|zagay  NE(VO)|[72ge
9u(t) 5 b 1+ O(1)
HUHLz (R2) H”||L2(R2)
F (Vv vl|[4
_ [[F( )||L2 R2) (a2 ; I ||L4(R2) i _ (4 0)).
HU||L2(]R2) 2 ||v\|L2(R2)||F(Vv)||L2(R2)
We claim that By := sup HUH ;‘E(VRZ))H is attained by some func-

ueW, 2(Rn)\{o} ITllZz ez 12(=2)
tion g(F°(z)) € WH23(R"), and By > O% Thus we can take v = g(F°(z)), and

hence
||F(VU)||%2(R2) a2

gu(t) = 5 (—B2—1)(t+0(t)) >0,
H”||L2(R2) 2
for some small ¢t > 0.

17



211

212

213

Next we show the above claim. By using Pdlya-Szégo principle, we have

F2(Vu®)dr < /FQ(Vu)dx7
2 R2

R
/ |u*|?dx / |u|?dz,
R? R?
/ lu*|*dx / |u|*dzx.
R? R?

Set E = {u € WH2(R?) : u(x) is radially symmetric and decreasing with respect to F°(z)},
then we have

Hu||‘z4(R2) ||UH4L4(R2)
sup B 3 = sup 3 5 .
ueW1L.2(R?)\{0} ||U||L2(R2)||F(VU)‘|L2(R2) weE\{0} HU||L2(R2)||F(VU)||L2(R2)

For any uw € E\{0}, Due to

ju*|?dz = |u? |dz,
R2 R?
ju*|*dz = |u? |*dz,
R2 R?
/ FX(Vu*)dr = r2 |Vu# |2da,
R2 ™ JR2

where u? is the Schwarz symmetric rearrangement of u(z), we have

Hu||i4(R2) s ||U||i4(m2)
Sup D) I 3 =— sup 5 5 .
u€E\{0} ||u||L2(R2)H (VU)HL2(R2) K2 uwe H\{0} H“||L2(R2)HVUHL2(R2)

Here H = {u € WH2(R") : u is the Schwarz symmetric function}. Recall that
[I, W], there is some function g(x) € H and

sup ||u\|i4(R2) _ HQHA}}(W) 1
ueH\{0} Hu||2L2(R2)Hqu2L2(R2) Hg||2L2(R2)||V9H2L2(R2) 2
It implies By > ﬁ Therefore the claim is proved. (Il

From now on, we assume ¢, — +00 as k — +00. We define

n_ Ak
Tk_ii'

_n_

cp TePrel

By (23) we can find a sufficiently large L such that ur <1 on R™\Wp, and

/ F™(V(ug, — un(L)) )de < 1.
Wr

Hence, by Moser-Trudinger inequality involving the anisotropic Dirichlet Norm in
[ZZ], we have

/ eonlun—ur W TT g0 < o),
WrL

Clearly, for any p < «,, we can find a constant C(p), such that

n

pup " < an(uwe — ur(L))F]7T + C(p),
18



214

215

216

217
218
219

220
221
222
223

224

and then we get
/ P dz < C = C(L,p).
WL

Bg .n—1 Bk
)\ke_TCI:L = e 2¢

ot [/]R"\WL (;5 (Bku Ydx + /WL u]: 1¢ (gku,;%l)dx]

IN

P b i n
C uy mTdre™ 2 % +/ ez " 'dr.
R \Wp, Wi

Since uy converges strongly in LI(Wy,) for any ¢ > 1, we get

_n__
n—1

7]9”
M < Ce2% |

and hence

Now, we set

_ ug(rex)
vp(z) = o
wi(z) = ij (vi(x) — cx),

where vy, and wy, are defined on Q) = {z € R"|rpz € Wi }.

By a direct calculation we obtain that
1

n—1 P n—1 _n_ S
—div(F”_l(Vvk)Fg(Vvk)) Uy, Cffkl‘r) kE _ ’Ulzn B (uy Hrpa)—c ™) +O(ried).
k k

1 77.

Since 0 < vy < 1 and ~ eﬁk(“k H ) Ck ) S0 W,.(0) for any r > 0, which
k

1

_n_ n

implies v’cz; By~ () =¢{ ™" ig uniformly bounded in L% (W, (0)), by Theorem
k

1 in [T2], vy is uniformly bounded in C"*(Wz(0)). By Ascoli-Arzela’s theorem,
we can find a sequence k; — +o0 such that vy, — v in C}_(R™), where v € C'(R")
and satisfies

—div(F" (V) Fe(Vv)) = 0 in R".
Furthermore, we have 0 < v < 1 and v(0) = 1, and the Liouville theorem (see
[HKM]) leads to v = 1.
Also we have

1 ey o=y
—div(F" Y (Vwg) Fe(Vay)) = vy TP @)=l 0) L O(re) in Q. (26)

For any r > 0, since 0 < uy(rix) < ¢ we have —div(F" "} (Vwy,) Fe(Vwy)) = O(1)
in W,.(0) for large k. Then form wy(0) = 0 and Theorem 1 in [T2] and Ascoli-
Arzela’s theorem, there exist w € C'(R™) such that wy, converges to w in C}. (R™).
Therefore we have

u,:ﬁl (rez) — c,:zl = c,:%l (v,:fl () —1)
= —w@)(1+ O((vk(x) — 1)%)). (27)
By taking € — 0, we know that w satisfies
—div(F" Y (Vw) Fe(Vw)) = en-1%", (28)

19



225

226
227

228

229

230

231
232

in the distributional sense. We also have the facts w(0) =0 = max w(x).

Since w is radially symmetric and non-increasing with respect to F°(z), it is
easy to see that (28) has only one solution. We can check that

—1 1 .
w(r) = _n log(1 + ky,~'r7»-1), where r = F°(x). (29)

(677

Thus we get that

/ en—19"Ydy = 1.
Rn

and

71,7—7'1 _n__
. . u n—1 . n
lim  lim —k__ePru dy = lim en—19"%dr =1.  (30)
L—+o00 k—+oco Wr Ak L—~+oo Wi

For A > 1, let ui’ = min{uy, %}. We have the following result

Lemma 4.3. For any A > 1, there holds

limsup/ (F™(Vu) + lu|")da <

k— 400

e

Proof. Since [{z|ur > S H|G|" < fukz updr <1, we can find a sequence py — 0

such that

Ck
A
Cr
{z|ug > Z} C W,,.
Since wuy converges in LP (W) for any p > 1, we have

lim lug [Pdz < lim uhdr =0,
k—+o00 ‘k k—+o0 up> .

o

Up >

>
Ky

and

. Cl
lim (up — =) uldz =0,
k—+oo Jgn A

for any p > 0.
We chose (u, — %)™ as a test function of (20) to get

— /n(uk - czk)+div(F"_1(Vuk)Fg(Vuk))dx + /n(uk - %)+u271da?
up — & +u”ﬁil n_
- /n (Gl DAL i\‘: b (Bruy " )da. (31)

20
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234

235
236

237

238

239

For any L > 0, the estimation of (31) is

1
Ur — Ck +u"*1 n
/’ ( k ik) k qb/(ﬁku]:ﬂ)dx

_ Ck)tg T 3
> / weﬁkuk " dz + o (1)
WLT)C k
1
n w1 =y
— / (upo(rez) — ik)Jrrkwf(rkx) A (D) g 4 oy (1)
WL (0) A Ak
1 = AT T
- / (v — Z)Jrv;:'*leﬁk(“ k) =) oy 4 o (1)
Wr(0)
1 n
— /W ( )(1 — —)en-19Ydy, (32)
(0

Notice that
_ /n (up — Czk)erz’v(FnJ(VUk)Fg(Vuk))dx +/ (up — Czk)JruZ_ldz

— —/n(uk - %)mw(pn—l(v(uk —~ %)+)F£(v(uk _ %k)+))dx+0k(1)
- / F™(V (uy, — %’“)Jr)dx + o (1). (33)

Now we put (31)(32)(33) together, and take L — oo first and then & — oo, we
obtain

imi n _ Ck\+ >1_ l
lklglféf/nF (Ve = )" )de 21 = 2.
Since
[ )+ o
_ / (F”(Vuk)+|uk\”)dx+/ (% yndy
up <k up>k
- 17/ (F"(Vuk)+|uk|”)dx+/ (LY da
K ke
up >4 up> K A
= 1- [ F"(V(uy - &) ")z
R'n A
1
< 17(1—Z)+0k(1)
Thus the conclusion holds. O
Lemma 4.4. We have
lim (F”(Vuk) + \uk|”)dx =0

k—+o0 R"\W5
for any 6 > 0, and then u = 0.

Proof. Since {z|uy < c} C {x|ux < %} for any constant ¢, we have

/<@me+mmms/cWWﬁwmmﬂm
U SC

n
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241
242

243

244

245

246
247

248

249

250

Taking k — oo first and then take A — +o00, the result follows from Lemma 4.3
and (23).

O
Lemma 4.5. There holds
wiT T A
lim / ¢(Bruy " )dx < lim  lim (6*3’““““| ' —1)dz = limsup —f, (34)
k—+oo Rn L—~+o0o0 k—+o0o Wer k—4o00 C]:71
and consequently
. r T
1 — = .
G " 0 and sgp " < 400 (35)
Proof. We have
¢(5kU;: )
R?L
< [ eaiMas [ Gl
{ur<Z} {up>}
)\k m n 1
< S(Br(ufy) 7T )dw + AT ¢'(Bruy " )dz

R {Uk> Ck } )\k»

Applying (23), we can find L such that wuy S 1 on R™\W,. Then by Lemma 4.4
and the form of ¢, we have

lim d(pBr(up)»=7)dx < C(p) lim updr = 0 (36)
k—+o00 R”\WL k—+o00 Rn\WL
for any p > 0.

Since by Lemma 4.3, it follows from the anisotropic Moser-Trudinger inequality
in [ZZ] to get

k Wr,

for any p’ < A77. Since for any p < p’
plui) ™1 < p'((uil = un(L)T) ™ + C(p. 1),
we have

sup B(pBr(uf) ™1 )dx < +00. (37)
k Wr

for any p < A7, Then on Wy, we get

lim ¢(Br(up)™T)dz = | $(0)da =

k——+oo Wr Wi
Hence, by (21), we have

lim | ¢(Beu] ")de

k—+o00 Rn
n
. . _n_ )\k up !
< lim lim A»71-—— ¢/ (By u" 1)
L—+o00 k—+o0 Clgfl Wi, )\k
)\k
= hm An 1
k——+oo T
Cr
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252

254

255

256

257

258

259

260

In view of (27), we obtain

/ (eﬁkluklﬁ —1)dz = 7«2/ eﬁk‘uk(rky)‘ﬁdy_i'_ok(l)
Wery WL
A LO& w
= L( en—177" dy+0k(1)) +Ok(1)
01271 WrL
Ak
= ——(1+or(1) +ok(1)) + ox(1).
et
Therefore \
lim  lim (eP1u ™ _ 1) da = lim sup —o—. (38)
L—+400 k—+oo Wrr, k—+o0 0571

Then taking A — 1, we obtain (34).

n—1

If 2 is bounded or limsup %— = +oo, it would follow from (34) and Lemma
k—4o00
3.2 that
sup ¢(an|7f|ﬁ)dm —0,
[lv]|F<1,veWLn(R7) JR™

which is impossible. .

Now we claim that

i Ck 7T o

k——+oco R Ak
T

1
To this purpose, we denote ¢ = Eu; ™" ¢'(Beuy " ). Clearly

/ prdx :/ gokd1'+/ Qﬁkd$+/ prdx.
" {ur <} {ur>F\Wr, L} Wry L

We estimate the three integrates on the right hands respectively. By (35) (36) (37)
and Lemma (4.4), for any 1 < p < A7 and % + % =1, we have

Ck _1_ _n_

Og/{ . opde = — . up ' (Bruy ) dx
up <

Ck | =1 wA AT
< YkHuk | a@ele® 1" || @y = 0, (40)

and
unzl n
/ ondz < A E o (Brug )da
{Ukz%\WTkL} {R"\W,, L} A
u"il n
= A(l—/ k__efkts " da + oy (1))
WTkL >\k
= A(lf/ en—1Ydx + or (1)),
WrL
and

/ @kdx:/ em-1 Yy 4 o4 (1).
Wr L Wr

Letting k£ — 400 first and then letting L — +o00, we conclude (39).
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262

263

264

266
267

268

269

1
prye

Lemma 4.6. On any domain Q@ CC R™\{0}, we have that ¢, " uy, converges to G
in CHQ), where G € CLY(R™\{0}) satisfies the following equation.:

loc
—QnG + Gt =6 in R™. (41)

_1
"

Proof. Define Uy, = ¢/~ " uy, which satisfies the equations:

1

Cku]:’l _n_

—QuU, + U = " &' (Brup ). (42)
For our purpose, we need to prove that
/ |[VUL|dx < C(¢q,R), 1<g<n, (43)
Wr

where C(g, R) does not depend on k.
Set , = {0 < Uy, < t}, Uf = min{Uy, t}. Testing Eq.(42) with U}, we get from
Lemma 2.1 and (39) that

/ (F"(VUL) + UL dz < / (E"(VUL) + |U}")dz
Q WRk

IN

/ (F" Y (VUg) Fe(VU,) VUL + ULUP Y da
Wk,

Wk,

/ (=QuUy + U YULdx
Wk,

/ (—QuUy, + U HULdx

1

Ckuﬁ _n_
= [ U Gl T < 2
n k

where 7 is the unit external normal vector of OWkp, .
Let n be a radially symmetric cut off function with respect to F°(x) which
satisfies that n = 1 in We, n =0 in Wg, F(Vn) < €. Hence, when R large

R
enough, we have

[ P auds < [ rEndas [l (VUfde < C(R)ECoB).
Wr Wr Wr

Taking ¢ large enough such that C'(R)t > Cy(R), then we have
/ FY(V(UD))de < 20(R)L.
Wr
Set [W,| = [{z € Wg : Uy, > t}|. We have

inf / Fr(V)de < / FrY (UL de < 20(R)E. (44)
YEWS " (Wr),¢lw, =t JWg Wr
The above infimum can be attained (see [Y, ZZ]) by
tlog £~ /log & in Wgr\W
= (z) P P
Yr(w) { t in W,
24

/ UL (F™ (VUL Fe(VUL) - i) do + / (—QuUs + UM\ ULda
OWnr,
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By calculating ||F(Vw1)||’£n(WR), we have by (44), p < Re~ %! for some constant
C1 > 0. Hence

{z € Wg : Uy, > t}| = [W,| < k,R"e ",

For any 0 < § < nC7, we obtain

oo
/ U dx < EOWg|+ Z e(mH)‘;\{x EWgr: m< Uy <m+ 1}
Wr m=1
o0
< &Wg| + kR’ Z e~ (Ci=Om < ¢,
m=1
for some constant Cy. Testing Eq.(42) with log 11121111 L we have

[ AN
Wa (1 + Uk)(l + 2Uk)

1
n—1
cruy, , o ne1 1+ 20U,
< lo 2/ u dx—/ U lo dx < Cs.
g o Ak ¢(5kk ) Wi k g1+Uk 3

By the Young inequality, we have for any 1 < g < n,

, ) PO s
/WRF (VUdz < /WR T e +/WR((1+Uk)(1+2Uk)) d

IN

04(1+/ eUrdg) < Cs,
Wr

for some constants Cs and C5 depending only on ¢, n and Wg. Then the (43) holds.
Hence Uy, is bounded in L?(Q2) for any ¢ > 0. By Lemma 4.4 and Theorem 1.1,

we can get e " s also bounded in L(Q) for any ¢ > 0. Thanks to theorem
2 in [J] and theorem 1 in [T2], ||Uk||c1.0(q) < C, then by Ascoli-Arzela’s theorem,
Uy converges to G in C1(€Q). O

For the Green function G, we have the following results:

Lemma 4.7. G € CL%(R"\{0}) and near 0 we can write

loc

G:_ailogr+cg+or(1); (45)

where Cq is a constant and r = F°(x). Moreover, for any 6 > 0, we have

1 1

li F" n—1 n—1 "\
[ T ) + o T

_ / (FM(VG) +GMdz = GE)(1— [ G da), (46)
R™\Ws Ws

Proof. We will prove (45) in section 6. Here we will use (45) to prove (46). Firstly,
we have
/ u;%lﬂ(ﬁku;%l)dx <C updz — 0. (47)
R"\W(; ]R”\Wg
25
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288
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292
293

294

1
Recall that Uy, = ¢, "y, € Wy ™" (W, ), by Equation (42) we get

/ (F"(VU,) + U )da
R\ Ws

n

_ Cki/ u];Hl /(6ku]:71)dx_/aw T;Fﬂ_l(ka)deS
5

By (35) and (47) we then get

lim (F™(VUy) + Up)dx
k——+oo R"\W5
= — lim %F"_l(VUk)deS

k—+o00 W an

= —G(%) /aw ngnl(VG)dS_G(zi)(l/W G"ldz).

Proof of Theorem 1.2: From (36) we have

/ qf)(ﬂku?)dz <C.
R"’\WR

So, we only need to prove on Wg ,

/ Pl dg <C=C(R).
Wr

By Lemma 4.6, for any fixed R > 0, we have ¢; " ug(R) — G(R) as k — +00, i.e.
up(R) = O(——). Hence we have

o
Ck

IN A
3

Then, we get

n

/ eﬁk“FdeC.
Wr

Proof of Theorem 1.1: To prove Theorem 1.1, we use an idea of [SK]. By
means of symmetrization, it suffices to show the desired inequality (5) for functions
u(x) = u(F°(z)), which are non-negative, radially symmetric with respect to F°(z)
and decreasing.

Define .
w(t) = nkg u(e™ ), Fo(z) =e . (48)
Then w(t) is defined on (—oco, +00), and we have
—+oo
/ F"(Vu)dzr = / i (t)|"dt, (49)
n i teo n
dlaumT1) = Iin/ d(—w(t)=-1)e dt, (50)
R —00 Qp
1 [F
/ w@)tde = [ et (51)
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303
304
305

306
307

308

309

310

311

312

For the following proof, one can refer to [SK] for details.

5. EXISTENCE OF THE EXTREMAL FUNCTION

In this section, we will show that the existence of the extremal functions. For
this purpose, it is sufficient to show that the maximizing sequence u; does not blow
up. To this point, we argue by contradiction. We assume the maximizing sequence
uy, blows up, i.e. ¢ — +00 as k — oo, then we will establish the upper bound of S
which is the supremum of our Moser-Trudinger functional. On the other hand, we
can construct an explicit test function, which provides a lower bound of S, which
is a contradiction.

To get the upper bound of S, we will use the following Carleson-Chang type
inequality which is shown in [ZZ].

Lemma 5.1. Assume that ug is a normalized concentrating sequence in WOI’"(Wl)
with a blow up point at the origin, i.e. fwl F*"(Vug)dx = 1, u, — 0 weakly in

1,n . n —
Wy " (Wh), and klingo le\Wr F*"(Vug)dz =0 for any 0 <r <1, then
limsup/ (eonlurl ™™ _1)da < Kpe! T3 R (52)
k—4o00 JW;

Lemma 5.2. If S cannot be attained, then

S < Kneancc+1+é+~~+n%l7

where Cq is the constant in (45) .

Proof. Set 1y, = % which is in W(}’"(W(;). Then by Lemma 5.1, we

have

limsup/ AU dp < [Ws|(1+ 61+%+'”+ﬁ).
Ws

k—+oo
By Lemma 4.7 we have
1

/ (F™(VepTug) + (ef Tug)™)de — G(6)(1 — / G ldz).
R\ Ws Ws

Hence we get

/ F*"(Vug)dz = 1—/ (F"(Vuk)—&—u’g)dx—/ upde
Ws R™\Ws Ws
_ 1 G0tal 5
Cp
where lim lim ¢, () = 0.
0—0 k—4o0

By (36) and Lemma 4.5 we have

n—1
lim  lim PR de = (W,
L—+00 k—+o0 WAWe,,

27



s13 for any p < d. Furthermore, on W, we have by (53)

n

n T
()= < .
(1— G@)};f(fs))ﬁ
Ck
— 1 G6)+en(d 1
=y L E0Eal o L)
cr c]:_l
— 1 Uk- _n__ Iy
= +71G(5)(g)"’1 +0(¢, ")
n_ nlogd
< —
= (n—1Day,
314 Then we have
et
lim lim P dy
L—+o00 k—+o00 Wp\Wer
< O(F™) lim lim P dr 5 W, |06,

L—+o00 k—+oco Wp\Wer

n

. ~ . 8 anr—1 _ o
Since @ — 0 on Ws5\W,, we get kgrfoo fwg\wp(e ki, 1)dz = 0, then

n

0< lim lim (5~ 1)de < [W,|006™™).
L—~+o00 k—+oco Wé\wL"'k

Letting p — 0, we get

n
1

lim lim (e —1)dz = 0.
L—+o00 k—+oc0 Wz;\Wer

This implies

n

. a1 11
lim  lim (P —1)da < |Wsle! Tzt i,
L—+o00 k—+oco WLTk

It is easy to check that

ﬁk(’l’kl')

L1 and (g (1)) T U (6) — G(6).

28
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316

By using that ug(§) = O(

i) and [|[F(Vug)||nwy) = 1+0(—==), for a fixed

n—1

Ck

L and any =z € Wy, , we have

Ck

e Uk _n_ 1
u ! nT / F™"(Vug)dx) 1
P = Sl U, T )
- Uk;((s) n 1
B Bk(uk + )7;71 (/ Fn(vuk)dx) n—1
[E(Vur)l| 2o ows) Wi
~ 1 n n 1
= B+ () + Oy V(| P (Vo)™
Cp. Ws
e w(9) L GO +ald), o
= Buiy (14 in +O(62n/(n—1)))n_1(1 - W)n_l
k k
B i n  ug(0) 1 G() + ex(9) 1
= ATl T a, n—1 o/0-D + O(C%/(n—l) ))
k k
317 So, we get
lim  lim (eﬁ’“u’?f1 —1)dz
L—+o00 k—+o00 Wer
= lim lim eo‘”G(‘S)/ (eﬁ’“’wf1 —1)dz
L—+o0c0 k—+o00 WLT‘k
< (=) 108 8+Ca+05(1) g Lttt iy
318 Letting 6 — 0, then together with Lemma 4.5 implies Lemma 5.2. (]

319

320
321

322
323

Next we will construct a function ue € W (R™) with ||uc||r = 1 which satisfies

Sanfuc| T )da > rpeltEE

Rn

for € > 0 sufficiently small. To this purpose we set

1 ° n -
w4 CHOTm (=2t log(1 4 ki (L)) 4+ ), 2 € Wi (0), (54)
C "G, z € W5, (0),
where R = —loge, b, C are functions of € (which will be defined later). In order to
assure that u, € WHm(R"), we set
__1 n — 1 % _n_ __1
C+C n1(— log(1+ Ky "R»-1) +b) = C” "1 G(Re), (55)

n

Next we make sure that [;, F"(Vue) + ul’de = 1. By the coarea formula (8), we
have

FD(I) ngli Re s nzl 1
/ ( £ ) e - de = nnn/ (6)1 <" - s""Lds
Wre(0) (1 4 gy * (E22)y 725 )n 0 (14 ny " (2)T)n
1 n
n—1 paoT
_ 1 Kn R tnfl
- - / dt,
w1 Jo (46"
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324

325

326

327

328
329

which leads to

/ F"*(Vue)dx
Wre(0)

_ Kw,_lR” n—1
ol 1/ LA
On  Jo (1+ t)n

—1 pasT

Ky T R™ n—1
C?ﬁnfl/l\’ t+1-1) @t
0 (1+8)"

Qn

n—2 11—
—nn—1 02—1(_1)n ok
¢ « (Z n—k—1

k=0

_1_ n n
+log(1+ ki " R7T) + O(R™7°7))

n n—1 1 1
e —(14+=4...
C™ ~ (—( +to+ +n_1)
L n n
Flog(1+ ki T RAIT) + O(R™ 1)), (56)
where we have used the fact that
niZ Cra ("8 R
n—k—1 2 n—1
k=0
It is easy to check that
/ |ue|"dz = O((Re)"C™ log R). (57)
WRe

Moreover, we have

/n (F"(Vu) +u)dz =

/ (F™"(Vue) +ul)dx
w

1

0, CrT n—1

1 " T "dx
_ (/W FMVGQ)dz + | G'de)

i Cnle g, Wi,
1 1 oG
=] /M G(ROF"(VG) 5, dS
G(Re) 4
= g / G ldz), (58)
Ccn/(n—1) Whe
Putting (56),(57),(58) together, we have

1 1
A =D+ 5+ ) +anl

+(n —1)log(1 + ki T R#1) —log(Re)"™ + ¢.(C)},

where ¢.(C) = O((Re)"C™ log R+ (Re)"™ log™ (Re) + R~ 7-1). Since S (F™(Vue) +
ul)dz = 1, we have

n 1 1
anCnT=—-n-1)1+-+4+ -+ ——)+a,Cq + logk, —loge” + ¢ (C). (59)

2
By (55) we have

n—1

an,C7=1 — (n— 1) log(1 + ki " R71) + b = o, G(Re),

and hence

1
=1+ = e
(n )(+2+ +n71

)+ anCq —log(Re)" + ¢ (C) + anb = a,, G(Re),
30
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331

332

333

334

335

336

This implies that
n—1 1 1
o (1+§++m)+905(6) (60)

In view of (55) and (60), there holds on Wgr(0),

h=—

n n 1 Fo n
Cnluc(@) T > anCTT —nlog(l 4 rp T (o@D a4 Mo

1 1
> -—nloge+logk, +a,Co+ 1+ =+ +

2 n—1
2o Fo(x)| =
—nlog(l+ ks~ (¥)nfl) + . (C)

where we use the inequality |1 — ¢|7=1 > 1 — —n-t + O(t?) for [¢| < 1. Since by

using the fact that

T2 Ch Ly

Z n—k—1 T n-1

k=0

—_

we have

1
-~ _ n—1 F°(x) nz
/ e nloge—nlog(l+k,, (—=) 1)d13
Wke(0)

1 1
T 1 dx
€ Wre(0) (1 + ,{;{_1 (FOE(I))HZI )n

nﬁ’ilRﬁ tn72
= (-l —dt
(n—1) / o
1 )
k=1 RT ( s
t+1-1)
= -l i
-1 | 1-1)

n n

(n— 1)(% +O(R™#1)) =1+ O(R™"1)),

%

we obtain that
/ enluc@ 7T gy > gpetnCot(tst i) 4 o (0),
Wrke(0)
and further to get that
/ B(tn ()| 7T ) > e Catrdtotain) o (o).
WRE(O)
Moreover, on R™\Wg. we have the estimate

n an—! G(z)
o(ap|ue(z)|»1)dx > —=2 / ————|"dx,
‘/R"\WRe ( | ( ) ) (Tl — 1)' Rn\WRe |Ol/(n71) ‘

and thus we get

gb(an|u6(a:)\ﬁ)dx (61)
R”'L
n—1

anCo+(1+i++717) An n
> ke b e oy, 16+ 220,
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341

342
343

344

345

Next we show that that there exists a C' = C(e) which solves Equation (59). To
this point, we set
1 1
) = — nt”/(nfl), 11+
i) = —a (= 1)1+ 5+ )
+ a,Cq +logk, —loge™ + p(1).
Since for sufficient small € we have
2 2
F((= = log )" D/™) = log " + O(1) + pe((~— log )"~ /") < 0

n

and
1 ny\(n—1)/n 1 n 2 ny\(n—1)/n
f((—gloge ) )=—§loge +O(1)+%(<_0710g€ ) )>0
then f(t) has a zero point in
1
(5

We denote this zero point by C, then it satisfies o, C™/ (=1 = —loge™ + O(1).
Therefore, as € — 0, we have

2
log 6n)(n—l)/n7 (_7 log en)(n—l)/n).

n an

log R
g/ 0
and
(Re)"C™log R + (Re)"log™(Re) + R™7-1 — 0.

Therefore, we can conclude from (62) that for € > 0 sufficiently small

dan|ue(z)| 7T )dz > kpetnCottst ot
Rn

6. ASYMPTOTIC REPRESENTATION OF GG

In this section we will give the asymptotic representation of the anisotropic Green
function G by using similar arguments in [Y, WX1, KV].

n

The proof of Lemma 4.7: Since ¢,/ u;, > 0 in R™"\{0}, we have G > 0 in
R™\{0}. Theorem 1 in [S1] gives

— < <K in R" 2
%S T <K i R\ (62)
for some constant K > 0. Assume I'(r) = —c¢(n)logr, c(n) = (n/{n)fﬁ. Set
Gi(x) = C;((’:“S), which is defined in {z € R™\{0}, rxz € W;} for some small § > 0.

Here 7, — 0 as k — 400. Then Gy, satisfies the equation

n 6 B
=3 5 (P VG F(VG) + TG =0,
i=1 "

By theorem 1 in [T2], when r;, — 0, Gy, converges to G* in C}.
is bounded, where G* satisfies

-> %(F”_l(VG*)Fg(VG*)) =0.
i=1 v

(R™\{0}) and G*

From serrin’s result (see [S1]) and (62), 0 is a removable singularity and G* can be
extended to G € C'(R™). Consequently, form Liouville type theorem (see [HKM]),
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351
352

353
354
355
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357

358
359
360
361

G must be a constant. Let Tk = SUDy W, %7 and v = klim Yk, (v > 0). This
"k —+o00

means the constant function G = .

Set
G (@) = (y+ W)(T(a) = T(0) = elm) 1+ ) (7 (2) = ) + sup G.
Gy (@) = (y = m)(T(x) = T(@) + elm)y = M)(F*(x) = 6) + fuf G-
A straightforward calculation shows
QUG (@) = )+ 1) s (s + 1
~QuGy (@) = =) = )" s (g — U

It is clear that, for any fixed 0 < n <y, we have
—QuGy(2) =2 =QuG  in Ws\Wy,,

G lows = Glow;, GFlow,, = Gloaw,,

e 2
provided that § are sufficiently small and r, < §. By the comparison principle (see
[XG]), we have

G < (’Y + U)F(ﬁ) +Cs m W6\er (63)
for some constant Cy. Letting 7 — 0 first, then k£ — oo, one has

G <A'(x) + Cs in  W;\{0}.

A similar argument gives G > ~T'(x) + C in W5\ {0} for some constant Cj. Hence
G — ~T'(z) is bounded in L>(W).

Next we prove the continuity of G —~I'(z) at 0. To this point, we consider the
points where the bounded function G — 4I'(z) achieves its supremum in Ws. We
set A = sup(G —~I'(z)).

Ws

If A achieves at some point in Ws\{0}, then G—~T'(z) —ve(n)F°(x) also achieves
at some point in W;s\{0}. It follows from comparison principle (see [D1]) that
G — T (x) —ye(n)F°(z) is a constant. This implies the continuity of G —~T'(x) at
0.

Next we assume that A achieves at 0. We can set

wy(z) = G(ra) — T (r) in Ws\{0}.

It is clear that w, satisfies
—Qn(wp(x)) +r"G"(rz) = 0.
We also have
r"G" N rx) € L®(Wr), |w, —L(z)| < Cy

for Co = supyy;\j0y |G —9I'(z)| and R > 0. By Theorem 1 in [T2], when r — 0,
w, = w in CL (R™\{0}), where w € C'(R™\{0}) satisfies —Q,(w) = 0. For the
sequence &; = %j, F°(&;) = 1, which maybe assumed to converge to £° € W, we
have

wr, (&) =) = G(zr,) =L (20,) = A
Hence

w(z) < AT (x) + A and  w(&%) =AT(%) + A\
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By maximum principle (see [D1]), w(z) = 4T'(z) + A and hence w, — yI'(z) + A in
CL.(R™"\{0}). This implies

}i_r)r%)(G(rx) —IL(rz)) = A, }1_1% V. (G(rz) —T(rz)) = 0. (64)

The above equalities lead to the continuity of G —~I" and lir% Fe(x)V(G—AT) = 0.
r—

Finally, we assume that A achieves at some point on OWs, i.e. sup (G —~T) =
zEW;

sup (G —1T). We define w, as the above, then w, — w in C}_(R"\{0}) and
Fo(x)=6
|w — T < Co. We now look at the points where w —7I" achieves its supremum in
R™. Set A = sup(w — ~T).
R’n

If X is achieved at some point in R™\{0}, then w — AT equals to some constant
by strong maximum principle (see [D1]), which implies G(rz) — AL(rz) — X in
Ct . (R™\{0}) as r — 0. For any fixed € > 0, there exists ng such that n > ny and
x € OWi, we have

AD(rpz) + A — € < G(rpz) < AT(rpz) + A + €.
Applying maximum principle in W, \W,, we obtain
AD(z) + X —e < G(z) <AT(x) + X+,
which leads to (64) with A replaced by A
If A is achieved at 0, we can use the similar arguments as above to deduce

lim (w — L) = X and hence lim lim (G(rpz) — AT (rpz)) = A (65)

z—0 z—0r, —0

If X is achieved at co, the same idea can be applied when we defined AR) =

max (w—AT") = max(w —AT). Letting R tend to oo, we can obtain
§<Fo(x)<R OWr

IILII;O(M —AT) = A, zhHH;O r,l,}glo(G(T"x) — A0 (rpx)) = A (66)
As long as we have (65)and (66), we can have use maximum principle again to
conclude (64) as before.
Integrating by parts on both sides of over W;, we have

—/ div(F”’l(VG)Fg(VG))dz+/ G ldx = 1. (67)
Ws Ws
Since G(z) = yI'(x) + o(1) and VG(x) = vVIT'(x) + O(F%(I)) as x — 0., we insert

the above two equalities into (67), then let 6 — 0 to obtain y = 1.
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