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Abstract

It is a basic question of strategy science how we can cope with an uncertain and complex world, taking
into account limitations of information access or computing power. Using new insights from complexity
science and exploring analogies with current machine learning which in many respects is faced with the
same problem, we can not only postulate that one should simplify to cope with complexity and uncertainty,
but we can also analyze how one should best simplify. In particular, we argue that strategists need to apply
metaheuristics to infer and create structure that organizes interactions, both among detailed choices that
firms make, and among strategic agents such as competitors, suppliers and customers. Our framework
contributes to the literature on dynamic capabilities, as we develop a systematic and new understanding of
heuristics to cope with different types of change. Moreover, it contributes to our theoretical understanding
of search, opportunity capture and competition, as we qualify and extend the notion of a competitive
landscape.

1 Introduction

Boundedly rational actors dealing with complex problems need to construct simplified models (Simon, 1957)).
They form simplified models of their available actions and their potential consequences. To anticipate
potential consequences, they also form simplified models of their interaction partners, such as customers,
suppliers and competitors. Thus, boundedly rational strategy interaction involves modelling modellers.
Moreover, strategy and organization science models such modelling modellers to understand the aggregate
dynamics of search and competition. But doesn’t that get paradoxical? We started with simplification, but
it seems that such nested modelling becomes ever more complex. Is that inevitable? Our answer here is No,
the more complex the interactions that characterise a situation, the simpler the models should be to cope
with it. Only when the situation becomes better understood, the models should gradually become more
detailed. Thus, we shall propose that superior means to simplify when complex interaction environments
are modelled are important managerial capabilities and, ultimately, sources of competitive advantages.

The idea that strategy is at its heart a simplification is not new. It has been articulated at least 30 years
ago (Mintzberg, 1990)). In the past, simplification has primarily been regarded as negative (Miller, 1993).
However, according to (Leiblein et al., 2018)) strategic decisions are characterized by interactions among
detailed choices (as in the notion of activity systems; see (Porter & Siggelkow, 2008)), interactions among
strategic agents (as in game theory, see Brandenburger and Stuart, 1996) and interactions of choices made on
different time scales. Clearly, the different types of interactions that render a decision strategic interrelate,
and interrelated interdependencies create complexity. To cope with it, strategic decision-making necessarily
requires a process of simplification (Bettis, 2017). Therefore, we suggest to consider complexity reduction
as a characteristic feature of strategic decisions. Given the necessity to simplify, superior simplification skills
may provide individual or firm-level advantages. There exist other fields that are dealing with analogous
problems, like machine learning and data science, robotics and theoretical biology, and more generally,
complexity science, and it is therefore natural to seek some guidance from them. That is what we shall start
in this paper.



We shall analyze simplification as a process that can also be iterated (Schilling, 2019). Since different
types of situations may require different simplification strategies, one may first need a simple method to
decide which such strategy is adequate. Drawing on newer results in the sciences of complexity, we can
define, conceputalize and analyze different simplification tasks of strategists. In fact, such an interaction
between strategy science and the sciences of complexity is not new. The roots of organization and strategy
science are intimately tied to complexity science. The analogies between organization science on one hand
and artificial intelligence and computer science on the other hand can not only be seen in the work of Simon
who contributed to both fields, but also, for instance, in the role that heuristics continue to play in these
fields, compare for instance (Gigerenzer and Selten, 2001, Gigerenzer and Gaissmaier, 2011) and (Pearl,
1984, [Pearl, 1988/1997). As we shall discuss, we define heuristics as simple rules, or in other words, as
the outcomes of simplification processes. However, heuristics also need to be applied to select appropriate
heuristics to deal with a given situation. Such heuristics are metaheuristics, as the help to select appropriate
heuristic responses.

As heuristics are outcomes of simplifications, applying them will not always yield optimal outcomes.
However, individuals and organizations operate in environments that are too complex, and too unknown,
to be dealt with using global optimization schemes. While economics by and large still tries to find such
optimization schemes, organization and strategy science took a radical departure from this view of ratio-
nality and decision making. Bounded rationality, as proposed by Herbert Simon, is deeply connected with
complexity reduction. Individuals and organizations need to cope with environments that are vastely more
complex than internal representations held by managers or distributed in organizations could capture (Bet-
tis and Prahalad, 1995). Yet some individuals and organizations are successful to operate in, and shape
such environments. This raises fundamental questions that are only partially answered: What exactly is
complexity? How is it related to uncertainty, that is, a condition under which action possibilities and their
consequences are unknown, or even unknowable? How does strategic interaction create complexity, and
in turn, how does complexity influence strategic interaction, and in particular, competition? How can it
theoretically be reduced, and how do individual agents and organizations reduce it in practice?

In the last 20 years, progress has been made about answering these questions. Complexity has been
characterized as the degree to which detailed choices of a business organization interact and create depen-
dencies (Rivkin & Siggelkow, 2007). In this context, a bulk of studies investigated when and how mental
representations successfully help firms to find high performing strategies, here understood as sets of inter-
dependent choices (Gavetti and Levinthal, 2000, Martignoni, Menon & Siggelkow, 2016)).

Less is understood about the complexity arising from the interaction of boundedly rational agents in
a fundamentally uncertain world. It has become clear that economic evolution is not just driven by cre-
ative insights about novel resource combinations that are of potential value. The competitive landscape is
cognitively constructed, at least to some degree. It therefore changes not only due to external factors or
technological and other innovation, but also because of the insights, the conceptions and the misconceptions
of the agents. These agents have to cope with the fact that they are ignorant about most opportunities to
shape the future, and they can be surprised when unrealized possibilities are discovered by other agents. In
sum, neither all relevant agents, their action possibilities, nor the consequences of actions can be fully known.
That does not imply, however, that some agents cannot be better in anticipating interaction outcomes than
others. For instance, Kodak was successful in building digital imaging capabilities, but failed to anticipate
the resulting new logic of competition (Grant, 2016)). By contrast, IBM successfully anticipated the new
logic of competition in the post mainframe age of computing. The thesis of this article is that success and
failure in the anticipation of complex interaction can be theoretically explained and grounded in insights
from the sciences of complexity.

Our guiding concept will be strategic bounded rationality (henceforth abbreviated as SBR). SBR is
related to the concept of ecological rationality (Gigerenzer and Selten, 2001)), but extends beyond it. SBR
describes interaction situations in which all agents are limited in access to information, computation time,
and computational abilities, and moreover, the environment evolves: The set of interaction rules and choice
sets of agents is not fixed, but to a certain degree shaped by the agents’ actions. While efforts have been
made to model such situations (Gavetti, Helfat and Marengo, 2017), we provide a theoretical concept of



SBR that is grounded in the sciences of complexity. This grounding is productive, for two reasons. First,
it will enable us to work towards a theory of heuristics in strategic and evolving settings. While Gigerenzer
and colleagues started to discover theoretical principles that underlie the positive function of heuristics, in
particular, the bias-variance trade-off, we go further and explore a range of other principles of simplification
known from the sciences of complexity to explain the mechanisms behind the success of heuristics in strategic
settings. As strategic decisions are defined by their complexity (as noted above, (Leiblein et al., 2018)’s
definition of strategic decision implies complexity) insights from the sciences of complexity naturally apply
to strategic decision-making.

Second, our argument will provide an additional rationale of why (meta-)heuristics are dynamic capa-
bilities. Metaheuristics are dynamic capabilities as they allow to systematically and reliably detect problem
structures (Baer, Dirks, and Nickerson, 2013). Metaheuristics are useful to infer the type of change a strate-
gist is confronted with and to select appropriate cognitive and organizational tools to adapt to the change.
Thus, metaheuristics help to reconfigure organizational resources when firms face change and thus meet
the defining property of dynamic capabilities. Our theoretical discussion informs the discourse on dynamic
capabilities, as some of the principles that help to detect and deal with change, known from the sciences
of complexity, were simply not introduced into the strategy discourse until now. Teece’s (2007) concept
of sensing is of course related, but Teece does not address how the problem structure is inferred, and we
develop some systematic insights.

To approach this, we revisit and extend the notion of a competitive landscape. While the ultimate
underlying reality may neither be known to scientists nor to modelling strategists in firms, strategists can
use glimpses of feedback to infer the actual structure of reality, that is, to get a sense how the competitive
landscape in a novel setting may look. In other words, we argue that a key simplification skill is to infer the
structure of a possible competitive landscape on which agents adapt, and thereby construct such a landscape.
To illustrate this, in our view, the landscape on which Tesla’s cars are positioned today did not readily exist
before Elon Musk shaped it by creating a ”proof of concept” (the Tesla S model). The S model created
expectations that made major players (VW etc) move and those moves then ”span” a new competitive
landscape that is a result of demand patterns, technological expectations, etc. Musk correctly anticipated a
possible structure of the transition from the combustion engine to electric cars: That electric cars can first
be luxury goods that do everything better than combustion engine cars but can do things that combustion
engine cars can’t (eg., extraordinary acceleration). Thus, Musk inferred a possible demand pattern and a
possible logic of competition (technological race in the premium segment) correctly. We can derive insights
about how agents should make such inferences drawing on concepts such as ”correlation length” from the
sciences of complexity. Heuristics to infer the structure of a transition are metaheuristics, as they then
help to deploy appropriate heuristics responses. For instance, if the transition to electric cars is about a
technology race in the premium segment, a heuristic response is to first create a powerful prototype to create
positive expectations about the transition. By contrast, this response would have resulted in very negative
outcomes for the case of Kodak and the transition to digital images. The structure of the competitive
landscape in digital imaging is entirely different: Digital images are a by-product, the new bottlenecks are
with digital devices such as smartphones. If a metaheuristic had allowed Kodak to infer this correctly, a
suitable heuristic response would be to not focus on developing a high quality prototype of a digital imaging
process, but a prototype of a digital lifestyle device that creates a new customer experience.

The approach in this article is different from empirical studies on heuristics. We will discuss theoretical
explanations of well performing heuristics under SBR from a complexity science point of view. In Section [4.2
we shall see how statistical learning theory tells us how to manage the conflicting demands of model accuracy
on a given data set and its predictive power for future data. This will lead to a deeper understanding of
the bias-variance trade-off (Gigerenzer and Brighton, 2009, Ehrig and Schmidt, 2019) and extend beyond it.
We will add explanations from other fields of machine learning to provide some kind of a meta-perspective
about selecting simplification tools that are appropriate in a given context. When these tools are heuristics,
they are metaheuristics for selecting a heuristic that is adapted to the situation at hand.

We have already mentioned complexity several times. But what complexity is and how it can be handled
may depend on the setting. To clarify that, we shall recall two basic and well established distinctions. First,



Table 1: Types of interactions under SBR
1 2
well-structured + choice interaction well-structured + strategic interactions

ill-structured + choice interactions ill-structured + strategic interactions

The boxes are labeled as 1,2,3,4 so that we can subsequently refer to them simply by their label.

task environments can be well structured or ill-structured (Simon, 1973). In the former case, the structure of
the problem is clear, and what counts as a solution is not controversial, and one could in principle compute
the solution if one had sufficient resources. But in practice, the required resources may be so demanding
that an effective solution is computationally, organizationally or cognitively intractabldﬂ In the latter case,
the environment is not provided in the form of a well-defined symbolic description. Rather, the situation is
opaque. It is not clear who the key factors and players are, who knows what and what the options and the
possible pitfalls are.

Second, as argued above, complexity can arise from interactions of detailed choices that a strategist
makes, but it can also arise from strategic interaction. Thus, there are two basic distinctions: well-structured
versus ill-structured and choice interactions versus strategic interaction. The two basic distinctions combine.
Their combination yields four basic types of complexity, leading to the table .

We now describe the details of table (|1)). Box 1, that is, the strategic consequences of choice interactions
in well-defined task environments are relatively well understood. An approach for Box 2, that is, strategic
interaction in well-structured task environments, analyzes the complexity of games in the sense of game
theory (Shubik, 1997). In fact, even for well-structured tasks, there are issues of complexity, analogous to
those of computational complexity in computer science. The latter refers to problems like chess or the trav-
eling salesman problem with explicit rules that are exactly solvable in principle, but not in practice, because
that requires much more computational resources than realistically available. Therefore, an important line
of research in this field was devoted to finding search strategies that are simple and computationally inex-
pensive, but still are efficient in the sense that they find a reasonable (but not necessarily optimal) solution
quickly. Such search strategies are called heuristics (Pearl, 1984), and the fact that heuristics also play an
important role in strategy science in the context of Simon’s bounded rationality is not accidental. In fact,
Herbert Simon was not only a pioneer of modern organization science, but also influential in the early years
of computer science and artificial intelligence, see (Newell and Simon, 1972,|Newell and Simon, 1976|).
Importantly, whether a problem is well- or ill-structured depends on the perspective. The environments that
are modelled by strategy scientists are well-structured almost by definition. For instance, the landscape mod-
els (see Section present a model environment where all available options and their consequences are
explicit. One can then let myopic agents (March, 1991, Levinthal and March, 1993) search in them for local
or global optima. From the perspective of such an agent who cannot oversee the landscape, but at best
only his local vicinity, it may then appear ill-structured. We may ask whether modeling myopic agents in a
complex, but well-defined environment captures the challenges of actual strategists who need to construct
representations of their task environments that are simply not symbolically described and therefore, by
definition, ill-structured.

Landscape models have been criticized in (Felin et al., 2013), because in contrast to the finite setting
assumed in such models, in reality, there are infinitely many unexplored combinations and potential in-
novations. From such a perspective, reality is always ill-structured. But, and this is our crucial point,
human agents can cope with ill-structured environments, and differences in this coping ability can lead to
competitive advantages. In general terms, learning means detecting structure, that is, making the situation
better structured for the agent involved. And in modern computer science, a similar shift of perspective has
taken place. That is seen in the field of machine learning. There, one wants to find and exploit structure
in (typically very large) data sets that at the onset may lack any apparent structure. Again, the approach

!The analogy between algorithms, organizations and humans extends that of (Bettis, 2017) and is intended.



then needs something that one might want to call heuristics, that is, simple, but efficient tools for seeing and
exploiting some structure. Many such heuristics have been developed, and important theoretical foundations
have been provided. In the same manner that Simon exploited the analogy between human and computer
problem solving (Newell and Simon, 1972, Newell and Simon, 1976} Simon, 1969/96), we now want to ex-
plore the analogy between modern machine learning and human techniques for finding structure and thereby
rendering a situation less ill-structured. Because an ill-structured environment first needs to be rendered
well-structured before responses can be formulated, and that applies to both quadrants 3 and 4, the study
in this paper is different from studies that couple agents that jointly adapt on NK landscapes using markets
(eg. (Lenox et al., 2006, Knudsen, Levinthal, Winter, 2014))). In these studies, the set of possible actions,
and the interaction possibilities, although complex, are given in principle. We are interested in situations
in which structure needs to be inferred before action and interaction possibilities are readily available and
a competitive landscape can be explored.

Our theoretical discussion deeply resonates with fundamental questions in strategy. For instance,
(Mintzberg, 1990)) criticizes the design school of strategy, as presented in (Christensen et al., 1987) (although
Mintzberg identifies earlier sources than those authors), for assuming that agents handle well-structured en-
vironments. In essence, he criticizes the assumption that the CEO can gather all information relevant to
making a strategic decision and that he or she can compute the optimal course of action for the organization
given this information. We argue that this assumption is not just problematic because of the bounds to
the information processing abilities of CEOs. It is also problematic as environments may be ill-structured.
As in ill-structured environments, by their definition, information cannot be readily processed, the actual
cognitive task of strategists is fundamentally different. Strategists need to translate an uncertain and opaque
environment into a representation and thereby translate an ill-structured environment into a well-structured
simplification (Levinthal, 2011). We will discuss various insights from the sciences of complexity when and
why such translation is successful.

More generally, the positioning view of strategy implicitly or explicitly assumes a well-structured envi-
ronment. Our approach is different: In our view, it is a key aspect of dynamic capabilities to allow the
translation of ill-structured problems into well-structured problems, because structure is needed to redeploy
resources in a systematic way. Thus, dynamic capabilities may at their heart be tools to detect latent,
and/or create new structure (see also (Baer, Dirks, and Nickerson, 2013))). Such structure may include
interaction rules. For instance, the Digital Hub concept of Steve Jobs allowed a transition from a ”quadrant
3” problem to a ”quadrant 1 problem” (see table (|1))): myriads of possibilities to think about digital lifestyle
were rendered into a well structured set of possibilities by templates how portable devices and media content
interact with personal computers (eg., the iTunes/ iPod concept.)

But the example also shows that metaheuristics to infer structure directly relate to taming the complexity
arising from strategic interaction, too: Once structure is created, it can align actions of agents (including
competitors), by organizing the interaction rules. For instance, the music publishers initially insisted on copy
protection of .mp3 files when they agreed on iTunes (Renner, 2004)), and Steve Jobs agreed and implemented
this. However, the iTunes/iPod structure was so successful that copy protection of songs was abandoned
in 2009. The logic of competition changed: iTunes is an attractive marketing device, but major revenue
streams in the music industry today come from performances and streaming. So protecting songs from being
copied is no longer effective to secure profits. The change of the logic of competition, however, was a result
of the digital lifestyle transition that Apple co-created. Thus, the ability to detect structure in how digital
lifestyle can be organized provides also means to create new interaction rules in the music industry - value
chains transformed by a new idea how music can be embedded into everyday life devices. In the context of
this article, the key message of this example is that metaheuristics to render a decision problem in quadrant
3 into a decision problem in quadrant 1 in Table and often also means to render decision problems in
quadrant 4 into decision problems in quadrant 2. In yet other words, given ill-structured problems, coping
with choice complexity and coping with strategic complexity goes hand in hand.

Table (2) provides a summary of our arguments that are inspired from machine learning and their
implications.



Table 2: Principles from machine learning and their implications for search and creation

Principle Implication

Metaheuristic Find landscape type

to identify type of structure to select appropriate heuristic
Separate data from noise Compromise between

by penalizing complexity accuracy and simplicity of models
Adapt complexity of model Start with simple models

to number and quality of observations and gradually add more detail

Information bottleneck Optimal compression increases efficiency

All principles in table have the potential to provide theoretical reasons when and why some meta-
heuristics work successfully in the strategy context. Thus, these principles are candidates of theoretical
explanations of effective dynamic capabilities. They may explain why some metaheuristics detect a change
and allow to react appropriately, while other metaheuristics may fail. In the discussion section, we will
return to table and discuss in how far its entries can explain dynamic capabilities that are already
discussed in the literature.

In the next section, we will discuss the basic concepts of bounded rationality, competitive landscapes,
and complexity, to set the stage for our argument, followed by a discussion of simplification. We will then
present newer insights from the sciences of complexity on how ill-structured situations can be rendered into
well-structured situations, and apply these insights to strategy. This will be followed by a discussion of what
these ideas imply for settings with strategic interaction. Finally, we conclude.

2 Rationality and complexity
2.1 Models

Modeling is an important part of modern strategy science. In particular, models are developed to understand
learning and search processes of economic agents. Models are simplifications that aim at identifying and
reproducing key qualitative features of a more complex world. From the perspective of the modeler, the
model is a closed world in which all solutions and all available options are listed and can be evaluated and
compared and which he can then study. This world is usually given in terms of a symbolic representation,
like that of an NK-model (Levinthal, 1997), where the modeler sets N and K and the Boolean functions
and therefore knows the resulting landscape. For a modeler, such a model world is well-structured, since
explicitly symbolically represented. He can thus model or simulate how an agent acts in this model world,
for instance an N K-landscape, that is known to the modeler, but only partially known to the agent. In
particular, he can investigate how the agent’s limitations lead to non-optimal behavior and how the agent
can cope with that situation and also, how several agents might interact. In particular, he can study how
agents construct their own models in such a model world and search and act according to them. Thereby,
he can identify sources of error and give strategic advice. In the basic version, the model is independent of
the actions of the agents. In a further step, he may also model how the actions of the agent affect the model
parameters.

As we shall argue in Section following Herbert Simon, economic agents also develop models. The
two types of models, that of the modeler and that of the agent, differ in important ways. For such an



agent, the model is a simplification of the actual situation she is confrontingE] While a modeler’s purpose
might be to better understand and explain certain features of the real world, the strategist might be most
interested in the predictive power of her model. The mental model of an agent need not possess a symbolic
representations. It may simply be based on certain statistical regularities and observed correlations. For
the formation of the model, she may use certain implicit or explicit heuristics. While her model may have a
certain stability, ideally it should also have enough flexibility to cope with changing circumstances. And this
then becomes important in interactive situations where everybody involved develops models and behaves
according to their models. Therefore, it becomes important to understand the models of others, their scope
and their limitations. That is, an agent should develop a model of the models of others. In the context of
SBR, this again requires simplification, and so, an agent will construct a simplified model of the simplified
models of others. In practice, of course, this need not be explicit. Rather, agents use heuristics, for good
reasons as we have argued, and so, in an interactive situation, an agent then might develop heuristics to
guess the heuristics of others. And instead of simply trying to infer the models of others, an agent might
rather try more generally to assess their modeling capabilities and limitations, and perhaps try to compare
them with her own. That is, instead of “What is his model?”, the question might be “Is he a better modeler
than me, or is he likely to ignore or overlook relevant aspects?”.

Again, whatever is guessed, modeled or inferred, importantly, this will almost inevitably involve some
simplification. In particular, all the participants may have to cope with uncertainty, and it may then
become uncertain how others handle uncertainty. This then creates additional, higher-level uncertainty.

In the terminology alluded to in the introduction and explained in more detail in Section the above
modeler’s model is well-structured, because of its explicit symbolic representation. The only reason why the
agent may not be able to find an optimal solution are her cognitive and computational limitations, that is,
her bounded rationality, or more precisely, as we shall see below, one aspect of her bounded rationality. If
equipped with more powerful resources, she could in principle become unboundedly rational. Real agents,
however, cannot be unboundedly rational, not even in principle. The environment in which they operate
is not given in form of a symbolic description (Wulff, Mergenthaler-Canseco, Hertwig, 2018). Rather,
agents need to experience the environment, and to the extent that they try to create a symbolic description
or representation of the environment, this is a part of their rational attempt to cope with it. But as
argued already by Knight (Knight, 1921), an agent may simply operate with statistical regularities instead
of symbolic representations. As representations, be they symbolic or not, are necessarily selective and
incomplete, the rationality of agents can only be bounded - there are always contingencies that are overlooked
when optimization schemes are applied.

In this contribution, we wish to explore the consequences of this, in particular in interactive contexts, and
outline implications for strategy.

2.2 Simon’s concept of Bounded Rationality

As (Gavetti and Levinthal, 2000) put it, the notion of bounded rationality (Simon, 1955) has been a
cornerstone of organizational research (March and Simon, 1958/93,|Cyert and March, 1963)). In (Simon,
1969/96)), p.lGGEI bounded rationality is defined as “The meaning of rationality in situations where the
complexity of the environment is immensely greater than the computational power of the adaptive system.”

The adjective “bounded” refers to limitations in terms of abilities, values, and knowledge (Simon,
1947/97), p.46. It carries a slightly negative connotation of being not fully rational. In fact, as (Simon,
1947/97)), p.118, put it, “The central concern of administrative theory is with the boundary between the
rational and the nonrational aspects of human behavior”. (Simon, 1947/97), p.128, distinguishes between
well- and ill-structured problems; problems are well-structured when the goals and the schemes for finding
potential solutions are clear, and ill-structured otherwise. The concept of bounded rationality applies in
either case. Even if the problem is well-structured, an individual or an organization may not possess the

*We will discuss below whether awareness of agents that their views are based on only imperfect models is a managerial
capability that may lead to competitive advantages.
3Quotations and page numbers are always taken from the last edition listed in the bibliography.



ability to find an optimal solution (Bettis, 2017). In such situations, one may be content with satisficing,
that is, finding a good enough solution, and one may use heuristic search strategies to arrive at such a solu-
tion. We shall have more to say about that below. In general, (Simon, 1957), p.198, an actor will simplify
the problem, “The first consequence of the principle of bounded rationality is that the intended rationality
of an actor requires him to construct a simplified model of the real situation in order to deal with it. He
behaves rationally with respect to this model, [...] To predict his behavior we must understand the way in
which this simplified model is constructed. “ As a consequence, one might try to break up the problem into
two steps. First, the construction of the simplified model, second, its solution. For the second step, standard
methods of game theory might suffice, whereas for the first step, we would need other tools, in particular
mechanisms of complexity reduction. As we shall see below, however, this is too simple. In situations of
reciprocal bounded rationality in particular, the two steps are necessarily intertwined. Also, even if the
problem posed by the simplified model may be well-structured, this second step may be computationally
intractable and may therefore require the agents to find shortcuts, that is, to further simplify. This means
that the concept of bounded rationality applies to both well- and ill-structured problems. Both the problem
itself and the search for a solution can be simplified.

Whether a problem is, or better, appears well- or ill-structured depends on the perspective. The perspec-
tive of an agent may be different from that of the modeler. A problem that looks perfectly well-structured
to a modeler may appear opaque and unclear to an agent who has to solve it because she lacks some relevant
knowledge or understanding of the situation. One may also argue that any interactive real-world situation
is ill-structured, because social reality is created by the framings by the agents, and interaction is only
possible when some basic agreement about the norms and rules exists. Playing chess in a tournament may
be well-structured, as long as the rules are not questioned, but playing chess with an infant might require
some negotiations about those rules, and perhaps ways to cope with their violation. And while in soccer, it
may be relatively clear what counts as a goal, it is often less clear what should count as a foul. That is, the
agents need to agree on certain rules, and often also on mechanisms for their enforcement. These rules then
serve to evaluate the performance of an agent and to provide criteria for sanctioning behavior that does not
conform to them.

In the context of business strategy, agents need to agree on what value is before a performance landscape
is definable. Before positions can be searched for, the framing of the transactional space needs to sta-
bilise (Garud, Kumaraswamy, & Karne, 2010). And strategy needs a market for evaluating performance.
Again, a market depends on agreements about values and rules, and those might be negotiable to a certain
degree.

If we accept that real environments are typically ill-structured, at least from the perspective of the economic
agents, we need to develop theoretical arguments that apply to such environments.

2.3 Landscapes

The notion of complexity arising from interactions of detailed choices is well-established in the strategy
literature (Porter & Siggelkow, 2008, |Gavetti and Levinthal, 2000). The basic question of these studies
is how firms can establish advantageous positions in a landscape of possible strategies by superior search
strategies. Two of the basic premises of this line of research are that the ”landscape” of possible strategies
is given, and that strategists’ bounded rationality makes global, exhaustive search for the optimal strategy
impossible. Rather, strategists need boundedly rational search strategies. And in the context of such a given
landscape, agent behavior can be simulated, and the implications for understanding competitive advantages
can be explored (see Baumann, Schmidt and Stieglitz, 2019 for a review).

The notion of such a landscape, however, did not originate in strategy science, but rather in theoretical
biology. In fact, ever since their introduction by Sewall Wright in 1932 (Wright, 1931,|Wright, 1932), fitness
landscapes have been a fundamental metaphor in evolutionary biology (Gavrilets(2004)). Their importance
and suggestive power is perhaps only surpassed by Darwin’s phylogenetic trees. In neodarwinian evolutionary



theory (one of whose architects Wright was), the fitness of an organism or the mean fitness of a population
is determined bythe interaction of a number of discrete factors (the genes of evolutionary theory). Wright’s
visual metaphor replaces that typically quite large number of discrete factors by one or two continuous factors
for which the graph of the fitness function can be readily visualized. That graph is the fitness landscape, and
its local maxima are called peaks. The landscape could be flat without any peaks, smooth and single-peaked,
or irregular and rugged with many peaks. Wright, in fact, viewed a typical fitness landscape as rugged with
many local peaks of different heights that are separated by valleys of different depths.

According to this metaphor, biological organisms or populations try to find peaks by moving in the
landscape through local adaptations (genetic mutations). Typically following the uphill direction of increas-
ing fitness, they get stuck at local maxima, because even if a nearby peak is higher than that currently
occupied, getting there might require to move through a deep valley, corresponding to low fitness values,
and organisms of low fitness have little survival probability. This metaphor has been criticized for being too
static. In fact, the actions and interactions of many organisms will affect the structure of the landscape,
and therefore, one should consider landscapes undergoing dynamical changes.

Stuart Kauffman (Kauffman(1989)) then carried the metaphor further by identifying a class of landscapes
that are very rugged, and where therefore local search is bound to lead to results that may be far from
optimal. These are the NK landscapes. Here, at each time step, N factors, or in another interpretation,
N agents act simultaneously, and the outcome of the action of an agent depends not only on that action
itself, but also on those of K — 1 other agents, according to some random Boolean function (the possible
factor or agent values are assumed to be binary for simplicity). The iterated application of this rule can
lead to dynamics that appear rather chaotic and unpredictable. And after Daniel Levinthal (Levinthal,
1997) had introduced N K-landscapes into strategy science, they became a leading metaphor there as well,
for understanding the possibly rather chaotic and largely unpredictable consequences of many simultaneous
actions or policy choices. Again, the contribution of a policy choice to the overall performance of a firm (the
analogue of fitness) depends also on K — 1 other choices. (Levinthal, 1997)) used N K-landscapes to model
the dynamics of populations of organizations that are all trying to find fitness peaks, and also how changes
in the landscapes affect the resulting dynamics. (Gavetti and Levinthal, 2000)) then modelled search pro-
cesses of individual agents in N K-landscapes and systematically investigated the influence of the structure
of such a landscape on cognitive and experiential search processes. Again, the visual metaphor replaces a
high-dimensional discrete situation by the graph of a continuous function over the two-dimensional planeE]
For low values of K, the landscape is rather smooth, while for larger K, it becomes rather rugged, and there
is little correlation between the fitness values even at nearby locations. In fact, even for low values of K,
higher order correlations can build up through the iterated application of the dynamical rule (Ay et al.(to
appear)). (Gavetti, 2012) proposes that strategists can overcome their limited local views by changing their
cognitive representations, and he models that as jumps on the landscape of possible strategies that enable
the agent to escape from the basins of attraction of local peaks.

While keeping in mind its shortcomings, i.e., replacing a discrete high-dimensional structure by a continuous
low-dimensional picture, the landscape metaphor is useful for illustrating a couple of further points. These
are of a more general nature than those highlighted by the N K model.

In a general landscape, different regions might be quite dissimilar (see Figure (1)). Some parts may be
rugged, others smooth with one or at most a few dominant peaks, still others may be flat without any peak,
possess a large flat plateau with sharp edges (this would be a neutral region in the terminology of (Fontana
et al., 1993), see (Jain and Kogut, 2014)), or exhibit a hierarchical structure.

Clearly, all these types require different strategies. In a rugged landscape, random actions may by

4We should point, however, that in the strategy literature, .e.g. (Gavetti and Levinthal, 2000), the term “landscape” typically
refers to the discrete high-dimensional situation, that is, formally, a function defined on the vertices of an N-dimensional cube.
The visual metaphor replaces this by the graph of a continuous function over the two-dimensional plane for purposes of
illustration or in (Gavetti and Levinthal, 2000) also as a model of an agent’s model of the landscape. The visual metaphor
draws on the suggestive power of visual images in three-dimensional space. Being aware of its shortcomings, we nevertheless
find it helpful to illustrate some important concepts. Our thinking is geometric, that is, adapted to three-dimensional space,
and we find it difficult to visualize high-dimensional structures.



Figure 1: Different types of landscapes
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chance reach a good peak. In a single-peaked landscape, a simple hill climbing strategy works well. In
a flat landscape, whatever one does has little consequences, and on a flat plateau, one can likewise freely
experiment until one comes to an edge where one further change has dramatic consequences. In a hierarchical
landscape, one should first adopt a coarse strategy to land in a good region and then explore that region by
a more fine-grained strategy to find a local peak (see also (Csaszar and Levinthal, 2016)) in this regard). In
situations where several agents with different information search together, but along different dimensions of
the landscape, (Knudsen and Srikanth, 2014)) find that this can lead to mutual confusion or joint myopia.

There is an implication for strategy science here. Before employing a search heuristic in a landscape,

like climb the next hill, make random jumps, cautiously explore your vicinity, or stay where you are, one
first needs a metaheuristic, that is, a scheme for identifying the general structure of the landscape. Such a
metaheuristic then tells the agent what search heuristics might be appropriate.
In the general theory of landscapes, there is the concept of the correlation length which quantifies up to what
distance the structure of the landscape is correlated with that at the current position (see for instance (Stadler
and Stephens, 2003))). Moving a distance larger than the correlation length brings an agent into a region
that has little similarity with that where she came from, and the strategies that in her experience have
worked well for searching the landscape will no longer be useful. Of course, when the landscape is not
uniform, its correlation length may also be different in different regions. In any case, wherever an agent
is, she should try to gauge the correlation length, that is, estimate how far her current strategic logic will
remain applicable and when a radical change is required. And even if she is transported to a distant region
in the landscape, she might still succeed with her strategic logic if that region of the landscape is structurally
similar enough to the region where she comes from. The concept of correlation length may help us to better
understand dynamic capabilities (Teece et al., 1997, Eisenhardt and Martin, 2000, Winter, 2003). Clearly,
a strategist who can apply a metaheuristic to infer the correlation length in her task environment can also
infer whether past wisdom should be applied in current decisions or not. While the strategy field is aware of
the merits of forgetting since decades (Bettis and Prahalad, 1995), forgetting is a passive way of dealing with
change. Being aware of the correlation length implies an active way of dealing with change in environments.
Also, the landscape need not be isotropic, meaning that it may look different in different directions (see
figure (2)).

Changing one factor may have a benign and smooth effect, changing another one may have very little
effect, whereas changing a third one may lead to dramatic and highly fluctuating changes of the fitness.
While of course the NK metaphor teaches us that the consequences of varying individual factors may not
be independent of each other, in a general landscape one may still want to determine which factors can
cause the largest or the least predictable changes. In general, this will not be a single factor, but a collection
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Figure 2: Different directions of a landscapes
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of dominant ones. In many situations, these may be rather few, and varying the others may have little
consequences. Also, a multidimensional landscape with qualitatively different directions is not compatible
with the positioning view of strategy (Porter, 1980) that views a strategy as a position in a one-dimensional
price-quantity continuum.

There are two types of change that we need to distinguish here (Ehrig and Schmidt, 2019)). One is the
variability of a given landscape. In our landscape metaphor, the agent walks aroundand searches in a static
landscape, but the landscape may appear changing as its local structure is different at different points in
space. We have already discussed the correlation length as the scale on which correlations decay. And
recalling Figure 1, the agent might come from smooth to a rugged portion of the landscape, or conversely.
But there is also the possibility that the landscape itself actually changes. Then an agent may stay at his
position while the landscape around him becomes different. That is, we should assign the dynamics to the
landscape rather than to the agent. But again, the question is whether the new landscape is sufficiently
correlated with the old one so that the agent’s strategic logic is still adequate.

Thus, it might be more realistic to consider a situation where the agent stays, but the landscape changes
its structure. From a formal perspective, however, it does not matter who or what is staying or changing.
What is relevant is that the agent becomes exposed to a different landscape structure and needs to cope
with that. Transporting the agent to a different region of the same landscape simply allows us to illustrate
the qualitative effects of a change within the visual metaphor of a fixed landscape.

The preceding discussion can be rephrased as the difference between variations within a given landscape
and the change of the landscape itself. When an agent is confronted with an unusual constellation, she may
ask herself whether this simply represents extremal parameter values within her model class or whether
this indicates a systematic change of that model class itself. This may have important consequences for her
selection of an appropriate strategy.

Furthermore, there are the constructive aspects. Landscapes could be social or mental constructs, but
agents might also shape landscapes economically. These issues have, of course, been discussed at length in
the strategy literature (for instance, strategy as positioning vs. strategy as shaping), but this is not our
topic.

The landscape metaphor is meaningful in the context of our boxes 1 and 3. More precisely, it is relevant
for the distinction between those two boxes, that is, between well- and ill-structured problems. To the extent
that the local landscape is known to an agent, the problem may be considered as well-structured, but search
in unknown parts should appear as ill-structured. For the boxes 2 and 4, that is, strategic interactions, its
static nature makes it ill-suited, and it needs to be extended. As noted, a similar criticism had been raised
in evolutionary biology where a key issue is the dynamics resulting from interacting agents and species.

As already argued, we should make the landscape dynamic. Within that metaphor, the dynamics of
landscapes is typically caused intrinsically by active organisms or by the process of evolution in the biolog-
ical contexts, and by the activities of the strategic actors in the economic setting, rather than by external
shocks.
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(Felin et al., 2013) identified another shortcoming of the landscape metaphor, that it cannot address the
frame problem. This means that in reality, the possibilities for innovation are limitless and exceed whatever
is possible in some predefined landscape. According to their argument, innovation requires new concep-
tualizations beyond prestatable options. While invoking analogies with recent discussions in evolutionary
biology, they do not provide guidance how to achieve that, however. Our perspective is somewhat different
and, or so we claim, more constructive. We also want to move away from predesigned landscapes where
agent behavior can be readily simulated by imposing some simple behavorial rules. From the perspective of
the agent, the question rather is how to detect structure in complex settings that may appear as intrans-
parent, opaque, and lacking apparent structure. But such a move, from a well-structured setting where
complexity refers to computational limitations and therefore heuristics serve as search rules, to one where
nobody knows what the structure, if any, is, has also occured in computer science. The most active current
direction lies in machine learning, with tools like deep neural networks. A fundamental question is how to
find structure in data. In that context, heuristics also play a new and different role. They are no longer
search rules in well-defined environments, but methods for guessing appropriate structural priors with the
help of which structure in data can be revealed. As we shall argue, this is also a way to move forward for
strategy science.

2.4 Complexity — at last

The preceding has prepared the ground for a discussion of complexity in the context of this paper. We
shall not attempt a formal and quantifiable definition of complexity here. Such a definition may be useful
in computer science or machine learning, but when we draw analogies to problems in strategy science, the
possibility to quantify things will usually get lost. In any case, the following is fundamental (Jost, 2004]).
On one hand, an agent is situated in an overwhelmingly complex environment, and he may want to capture
and utilize as much as possible of that external complexity. On the other hand, his internal representation
of that complexity should be as simple as possible, in order to use his limited resources in the most efficient
manner.

In our context, we have to deal with rather different types of complexity.

1. In Box 1, the structure of the problem is clear, and what counts as a solution is not controversial,
and one could in principle compute the solution if one had sufficient resources. But in practice, the
required resources may be so demanding that an effective solution is computationally, organizationally
or cognitively intractable.

2. In Box 4, the situation is opaque, and it is not clear who the key factors and players are, who knows
what and what the options and the possible pitfalls are. But everybody else also is in the same
situation, even though there may be variations in available information, resources and ability.

Boxes 2 and 3 are between those extremes, but as our boxing scheme indicates, complexity spans at least
two different dimensions. In Box 2, as in Box 1, complexity stems from the difficulty or inability of solving a
well-defined problem. In Box 3, complexity arises from a lack of understanding the structure of the problem.
In Boxes 2 and 4, also the others agents are a source of complexity. We might therefore distinguish between
structural and strategic complexity. Nevertheless, we shall try to find some general principles.

To handle complexity requires simplification. And different types of complexity require different types of
simplification. Heuristics have been suggested as efficient simplification techniques both in strategy science
(see the discussion in Section [3.1]and in artificial intelligence (see for instance (Pearl, 1984)). Our distinction
between different types of complexity will also have consequences for the analysis of heuristics.

Importantly, simplification should not just be considered as a second-best option when the best option,
a full solution of the problem, is not possible. In organizational research, also positive consequences of
the fact that bounded rationality requires simplification have been explored. (Gigerenzer and Selten, 2001))
pointed out that solutions found by simplified strategies like heuristics that typically ignore much of the
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available information often turn out to be better than those constructed by more elaborate schemes. As
a possible reason, they suggest a bias-variance trade-off (Gigerenzer and Brighton, 2009). We propose the
bottleneck principle (Tishby et al., 1999) as a deeper reason why searching under constraints like those of
bounded rationality can lead to better solutions. In the strategy literature, bottleneck refers to a position
in the supply chain where an agent is in a position to capture value (Gans & Ryall, 2017)). In the machine
learning context, however, the bottleneck principle tries to find an optimal balance between compression and
prediction, that is, to achieve a maximally compressed mapping of the input variable that keeps as much
information as possible about the output variable. The latter then forces the compression to be as efficient as
possible, that is, to identify the most informative aspects and to suppress the rest. In strategy, this principle
may apply in particular to research and development. More generally, computational, organizational, or
cognitive limitations require an efficient utilization of resources. This may be the key to finding a good
solution. This is a positive aspect that has been somewhat neglected in the prior discussion.

More generally, we shall argue that in opaque and uncertain situations, dealing with ill-structured prob-
lems in the sense of (Simon, 1947/97), simplification is often the only approach that could reasonably be
called rational. In situations of strategic complexity, the key to success may no longer be the ability to
outsmart others, for instance by ascending to a higher level of reasoning, but rather the ability to find the
most efficient simplification. And in reciprocal situations that then implies that it is rational to assume tha
all actors involved simplify. How such simplifications are carried out, however, may vary between actors.
Therefore, more efficient simplifications can be a source of strategic advantage. Anticipating how others
might simplify can be another source of advantage. Anticipating the collective effects of simplifications by
all actors can be still another such source.

The important question then is how to best simplify. And we shall also encounter the metaquestion of
finding a simple way to choose between different simplification strategies.

In contrast to rational analysis in clearly defined scenarios as in game theory, simplification is fallible.
Therefore, it is a key strategic imperative to seek weaknesses in one’s simplification schemes. These weak-
nesses can be of different types. A scheme could be too simple, or it might not be simple enough. We hope
that our subsequent discussion of simplification strategies in other fields like machine learning by analogy
can also provide insight into this issue in the context of strategy.

Sometimes, one can not only simplify one’s model of the underlying structure, but also that structure
itself. While we shall be mainly concerned with the former, we shall also see some instances of the latter,
like platforms.

3 Simplification

3.1 Intractable problems and heuristics

As explained, Simon’s concept of bounded rationality essentially means that an agent may lack the cognitive
or computational resources to arrive at an optimal solution in practice, even if such a solution exists in theory.
In fact, Simon saw the analogy with problems in artificial intelligence where also many problems cannot be
optimally solved in practice, like playing chess, even if the rules are clear and explicit. In the practice of
computer science, this applies to many problems like the famous traveling salesman problem where an agent
or a computer program has to find the shortest roundtrip connecting a collection of cities. The information
provided, the table of distances between all pairs of cities, is in principle sufficient to solve this problem,
but in practice already for moderate numbers of cities, no computer is powerful enough to compute the
optimal solution. Such problems are computationally intractable, and Bettis (Bettis, 2017) suggested the
analogy of organizationally intractable problems in organization science. Again, a problem may be solvable
in principle, but an organization may lack the resources to determine an optimal solution. Similarly, in
psychological contexts, one may speak of cognitively intractable problems that humans with their limited
cognitive resources cannot solve. This issue has profound implications. Importantly, the limitations that
are captured by the concept of bounded rationality also have positive, constructive consequences. When
faced with computational, organizational or cognitive limitations, agents are forced to make use of their
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limited resources in the best possible way. They therefore need to carefully distinguish the most relevant
and salient aspects of the situation at hand and base their deliberations on those, while ignoring the rest.
That is, they are forced to reduce the complezity of the situations they find themselves in, see (Jost, 2004]).
For concreteness, let us consider again the traveling salesman problem. If one had unlimited computational
power, one could simply evaluate all possible routes through the cities. After one has evaluated all routes,
one knows which one is the shortest. Obviously, this is a rather stupid, slow and inefficient way to solve
the problem. But with unlimited resources, there would be no need to become efficient and quickly discard
those routes that clearly will be very long. With limited computational power, however, one should search
for strategies that make the search most efficient and that will quickly find short routes, even though the
very shortest one might not be among them. For instance, one could use a greedy algorithm that at each
step goes to the closest city not yet visited before. This may not find the best solution, but at least it should
end up with a route that is not too long.

In dynamical contexts, it is also an issue that computation takes time, but during the time the computa-
tion is carried out, the situation may already change. Economic theory is mainly concerned with equilibria,
and the resulting collapse of time makes it essentially blind to that aspect. But in reality, agents who extract
the relevant features of a setting and reach a good solution quickly may have a crucial advantage over agents
who attempt to plan for all contingencies and then search for the optimal solution.

The greedy algorithm just discussed for the traveling salesman problem is an example of a heuristic in
the sense of (Pearl, 1984). Such a heuristic could be used not only by a computer program, but also by a
human that has to solve a similar problem, like a real traveling salesman. (Bettis, 2017) suggested to view
heuristics as strategies of complexity reduction by boundedly rational agents, and we shall explore some of
the consequences of this and also try to take the next steps.

Heuristics try to identify and exploit the few most salient bits of information in a given situation, while
ignoring further details, to reach a fast and frugal decision (Hafenbradl et al., 2016). One of the reasons
why heuristics often work remarkably well seems to be that they can detect and exploit subtle weak cues
in the environment that are informative about some relevant issue. Many of these cues seem to be the
result of collective processes, like market forces or public opinion, that for various reasons achieve a better
information aggregation than individual forecasts.

It turns out that heuristics often lead to better decisions than more elaborate schemes that utilize more
information or process the available information in more depth. It has also been argued that particular
heuristics, special rules of thumb about, for instance, which business opportunities to explore, constitute
some of the main immaterial assets of successful firms (Eisenhardt and Martin, 2000). While the term
heuristic has somewhat different meanings and connotations in those research lines, the important aspect
for our concern is that they constitute means to reduce the complexity of situations that the agents cannot
fully grasp and to find ways to operate quickly and without having to devote too much effort to the process
of reaching a decision or finding a solution. This is needed in situations where the agents cannot grasp all
details or are overwhelmed by the amount of available information. In contexts of RBR, other agents will
use such heuristics as well. This has two implications. First, one could try to infer what kind of heuristics
other are utilizing and predict what their heuristics would yield, both to understand their way of thinking
and for extracting forecasts without having to look at the situation oneself. Secondly, the collective use
of heuristics may have collective effects, and that might be a source of both risk and opportunity. For an
example in investment banking, see (Ehrig, Jost, Katsikopoulos and Gigerenzer, 2019). Heuristics can also
miserably fail and produce inferior results, when not properly adapted to the context.

Whether a heuristic is successful, or at least stands a good chance of being successful, depends on the
context and the circumstances. Therefore, (Gigerenzer and Selten, 2001) propose a theory of ecological
rationality that delineates the conditions wherein particular heuristics (or other decision strategies) are
better suited than others. Here, metaheuristics help to search for a good heuristic adapted to a specific
context, in the same way that a heuristic searches for a good solution. Metaheuristics are heuristic rules to
learn, or to select among, decision heuristics (Ehrig and Schmidt, 2019). This issue will be taken up below
when we turn to the analogy with machine learning.

In machine learning, one is also often confronted with situations where the probabilities are not known,
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that is, situations of uncertainty instead of risk in Knight’s terminology, but instead of accepting that as
fate, one tries to infer the probabilities as well as one can by taking repeated samples. As will be explained
in Section theory (Vapnik, 2013)) then tells us that the estimates should prefer simpler over more
complex models, with technical precisions that are not relevant for our discussion. The balance between
accuracy and simplicity may be delicate, but the point is that there exist compelling theoretical reasons for
avoiding overly complex models, even if they provide a better fit to the data at hand. Thus, in that sense it is
rational to build simple models. By analogy, in reciprocal situations, it may also be rational to assume that
the others likewise prefer simpler models. More abstractly, in intransparent situations, one should adopt
schemes of complexity reduction, and reciprocally assume that others do that as well.It is important for
understanding strategy how much complexity can be reduced without arriving at models that are so simple
that they grossly misrepresent the data is a question that cannot be answered in general terms, but depends
on more precise circumstances. Therefore, there is still room for competitive advantages, in contrast to the
rationality paradigm of game theory that fixes an equilibrium.

4 Learning and the boundary between ill- and well-structured problems

4.1 Simplification as a process

In contrast to the positioning view, the resource-based view of strategy focuses on the physical, human or or-
ganizational assets that a firm can employ for value-creating strategies. Such resources are not only valuable
in static situations, in particular, when others do not possess and cannot copy them, but they also include
abilities to adapt to changing circumstances. These are called dynamic capabilities, defined in (Eisenhardt
and Martin, 2000|) as “the organizational and strategic routines by which firms achieve new resource config-
urations” in changing markets. While the details of dynamic capabilities may be idiosyncratic, (Eisenhardt
and Martin, 2000) also identify features that are common across firms. (Eisenhardt and Martin, 2000)) also
find that the behavorial rules representing dynamical capabilities are simpler in high-velocity than in mod-
erately changing markets. They appeal to insights from behavorial learning theory (Argote, 1999, Haleblian
and Finkelstein, 1999).

From our perspective, which is based on machine rather than behavorial learning theory, we can offer some
conceptual clarification. The distinction between variability and change, which is well established in other
fields (as an example, see (Rieke et al.(1997))) and which we have discussed in Section is important
here. In Section based on statistical learning theory, we shall develop the general thesis that in more
complex or opaque environments, models should be simpler than in environments that are better under-
stood.

In (Eisenhardt and Martin, 2000), dynamical capabilities appear as routines. In slowly changing contexts,
they are detailed and utilize existing knowledge, whereas in rapidly changing markets, they are simpler and
rely on newly created knowledge. As routines, they are results of simplification processes. Here, we are
interested in that simplification process itself, how it should be structured, what kind of cues and tricks
it can possibly use, and in particular, how the learning patterns should evolve along with an increase in
understanding.

Also, there is the question which dynamical capability is adequate under which circumstances. As we have
argued, agents need metaheuristics to select among the available capabilities.

The distinction between well- and ill-structured environments depends not only on the perspective,
as argued in Section but is also fluid. In fact, learning is a process whereby agents discover and
understand some of the structure of their environment, and as a result, the boundary between what is ill-
and what is well-structured is shifted. At least from the perspective of the agent. As a consequence, also
the dynamical capabilities may have to be adjusted as a result of learning that lets the environment appear
better structured.

The traditional view of heuristics in artificial intelligence, as for instance in (Pearl, 1984)), is to conceive
of heuristics as search strategies for problems that are well-structured, but which for the agent are computa-
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tionally intractable, like playing chess or solving the traveling salesman problem. The view of heuristics in
strategy science seems similar. This is different in modern machine learning. There, one is often confronted
with data sets that are ill-structured in the sense that nobody knows what structure they might contain.
One then needs to make an educated guess at the type of structure. And if one has guessed the type of
structure correctly and then applies the appropriate, often very powerful algorithms, one may uncover the
details of that structure in the data. When the guess is wrong and therefore an inappropriate algorithm is
applied, no detailed structure will be revealed. We shall discuss concrete examples below. The point we want
to make here is that in the field of computer science (as the science encompassing both artificial intelligence
and machine learning), the problems have changed, from search in well-structured, but computationally
intractable model problems to the analysis of data sets where structure needs to be found. We wish to
argue that an analogous shift will be insightful for strategy science, as it should bring it closer to real world
problems. And since machine learning has developed some powerful tools to deal with such problems, there
is hope that by analogy, strategy science can succeed as well.

4.2 Learning

Learning in and from ill-structured data sets is a basic problem addressed in the field of statistical and
machine learning theory. Researchers have come up with a number of principles. Since there is some
analogy between such learning tasks in data and in strategy science, we wish to explore to what extent those
principles can also be useful in strategy science. Here, we discuss three such abstract principles for learning
models from data.

1. Control the number of degrees of freedom of your model class
2. Identify appropriate structural assumptions

3. Penalize complexity

We will discuss them now. In order to illustrate those principles in more concrete terms, let us consider
the following problem. A strategist observes some market movements, like prices, sales, regional differences
etc. and in order to understand this better and make reasonable predictions, he wants to build a model
with some factors and dominant actors causing those movements.

4.2.1 Number of degrees of freedom, or bias vs. variance

Every model is taken from some class. In our example, the parameters of the model class could be the
number of factors and actors and their abilities. According to learning theory (see for instance (Vapnik,
2013))), the expected error of any prediction has two parts, the approximation error (bias) and the sample
error (variance). The approximation error comes from having too few parameters so that the model cannot
match the observations well. The sample error comes from allowing for too many parameters, resulting in
overfitting the observed data. The statistical learning theory of (Vapnik, 2013)) can estimate these two errors.
The essential result is that in order to keep the prediction error, that is, the sum of these two components,
small, the model class should adapt to the number of independent observations. The number of parameters
should grow with the number of observations, to decrease the approximation error, but more slowly than
that number, to keep the sample error under control.

Let us provide some more details for a central example. Our discussion will first be technical. We will
present an important result from statistical learning theory and then apply it to strategic settings.

We want to estimate an unknown relation between an input  and an output y. x might come from any
space X, but for simplicity, we assume that the output y is a real number. We draw samples (x;,y;), and
on the basis of those samples, we want to construct a function f(z) =y. The samples are drawn from an
unknown distribution p. The crucial object is the error or risk functional

R(f) = /X (@) = yPpla)dady, 1)
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Of course, the more samples we draw, the more information we have about p and the true relation between
the variables x and y, and the more accurate our model f could become. From the samples, we obtain the
empirical risk functional

1
Remp(f) i= -

> (Fai) — i) (2)
=1

Naively, we could thus choose an f that makes Remp(f) = 0, that is, satisfies f(x;) = y; foralli =1,...,m.
But this is not a good idea, as this leads to overfitting, as should become clear in a moment. After all, we
want to make R small, and not Remp. That is, the estimated f should generalize well to future samples.
The solution requires to constrain f to avoid overfitting. That is, one specifies some model class from which
one chooses f, and the model class should be large enough to account reasonably well for the observed
samples, but also not too large so as not contain too complicated functions f. This can be made precise.
The key result is that the number of degrees of freedom in the set of functions from which f is chosen must
asymptotically be smaller than the number m of observations. The number of degrees of freedom is measured
by the Vapnik-Chervonenkis (VC) dimension, a technical concept that, roughly speaking, quantifies how
many distinctions the model class allows for. The details are not essential for our qualitative discussion,
and we refer to (Vapnik, 2013]).

Of course, since we are in a probabilistic setting, the risk R in can be bounded only with a certain
probability, and the bound gets worse if one demands higher probability. We want to have the bound
satisfied with probability at least

1_77)

for some small 7, that is, we want to have the bound with high confidence. We put

4h 2m 4 n

where h is the VC-dimension of the class of functions from which we choose that f that minimizes the
empirical risk in . & depends on one hand on 7, and it becomes large when 7 is so small, but because of
the term %, this effect can be mitigated by choosing a large number m of samples. On the other hand, it
depends on the ratio % between the VC-dimension h, that is, essentially the complexity of the model class
from which our estimator f will be drawn, and the number m of samples.

The fundamental estimate of statistical learning theory (Vapnik, 2013) then says that with probability

at least 1 — 7, we have

R() < Rowlf)+ 55 (1 ryf1e mgg(”) (@)
< 2Remp(f) +2BE . (5)

Here, B is some general bound for the function class whose precise value is not important for our discussion.
The inequality is the simpler one, so let us discuss it first. The first term in controls the empirical
risk and depends only on the particular function f that minimizes the empirical risk within the prescribed
class whereas the second term includes the confidence, since £ in includes 7, and it depends on the entire
class and grows if the VC-dimension h grows and is large if 7' is small. Thus, the confidence is small if there
are few observations but a large choice of models. Thus, in order to make R(f) small, one has to balance
the two terms in this inequality. One has to make the class large enough so that the empirical risk becomes
small, but not so large that the confidence gets too small. Looking at the more precise inequality , one
would like the expected loss, that is, the predictive ability of the estimator f, not much larger than the
empirical loss. Therefore, £ needs to be small. In particular, looking at , this means that h should be
substantially smaller than m.

Thus, the best choice of the VC-dimension h depends on the sample size m. When we have more samples,
that is, possess more information, we can make h correspondingly larger, so as to decrease the empirical
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risk while still keeping £ small. That is, the model can then become more complex. Importantly, we should
see this as a process. We collect samples, and by that, we increase our information and can then construct
more accurate models with higher confidence.

For instance, when we want to approximate the graph of an unknown function from which we collect
samples by a polynomial, we should control the maximal degree k of the polynomial. When we have m
data points, then k should be significantly smaller than m (the VC-dimension is of the order of k in this
example). On the other hand, when we keep k too small, for instance k = 1, that is, when we want to
approximate the graph by a straight line, the empirical loss might be quite large. Thus, the degree of the
polynomial should grow with the number of samples m, but only moderately.

A special case (a discussion of a linear relation between = and y) of the general insight presented here is
discussed in (Ehrig and Schmidt, 2019), and applied to the problem of learning heuristics in firms. Moreover,
the here discussed principle explains the success of the take-the-best heuristics discovered by Gigerenzer and
colleagues (Gigerenzer and Brighton, 2009).

Let us consider another example that has been discussed in the finance literature (DeMiguel, Garlappi,
& Uppal, 2007). The famous Markowicz rule yields an optimal mixture of n items in a portfolio when the
relevant expected pay-offs and risks are known. That formula is rather complicated, and Markowicz himself
is famously known to utilize for his own investments the simple % heuristic, that is, split his investment
evenly between the n items. Now, the above discussion tells us that while the Markowicz rule may be too
complicated, the % rule might be too simple, and a better rule should be between those extremes, that is,
use a modest number of parameters that are matched to the available data.

We can now explore some general implications for simplification in the context of strategic decisions.

Thesis 1. The less you understand, or the more complex the situation appears, the simpler your model
should be.

and

Thesis 2. Only when you understand the situation better and know more facts, your model should gradually
become more detailed.

In fact, this principle is also supported by a major insight in developmental psychology. When children
learn a language (see for instance (Tomasello, 2003)), they also start with very simple models. During a
critical phase, they overgeneralize the rules they have identified. Only later, when exposed to more data,
they gradually refine the model. Thus, language learning by infants becomes a remarkably efficient process.
Returning to strategy, look at the simple example of a market where actors are just buying and selling, and
the relevant parameter then is the number of actors. In our example this means that when only few market
observations are available, the model should postulate only a small number of key actors or factors, and
only when the number of those observations grows, one should gradually allow for more. When we assume
that this principle remains valid in interactive situations, we can also apply it to the observation in (Ehrig,
Jost, Katsikopoulos and Gigerenzer, 2019)) that models used by bankers typically take only a small number
of dominant actors into account. This can then be justified not only in terms of cognitive limitations, as it
becomes mind boggling to mentally juggle with a large number of agents and their complicated interactions,
but also from general principles of learning theory.

4.2.2 Structural assumptions

But let us suppose now that our agent who wants to understand and predict the market behavior has many
observations at his disposal, or more abstractly, a large data set. Should he now try to build a model with
many actors and factors and complex interactions between them, in order to most accurately account for
all the details in the data?

Abundant experience in machine learning tells us that the answer is an emphatic No. And the reason for
that No are not computational limitations, but the insight that in order to find a good model, one should
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make stringent structural assumptions about the underlying data set. In our example, such an assumption
might simply be that are only few dominant actors and factors. The precise number need not be specified,
nor does one need to impose an explicit bound on that number. One simply works with a model class
that makes the a priori assumption that there are only few sources. In machine learning, this approach
is called compressed (or compressive) sensing (Foucard and Rauhut, 2013)). It was introduced in (Candes
et al., 2006,|Donoho, 2006|). The motivating example is the following (whose analogy with our example is
easily seen). Consider a complex auditory scene, for instance all the speech and the noise recorded in a
party room. With traditional methods like Fourier analysis, this is very difficult to analyze, but if one uses
a scheme that is based on the assumption that there are only a few auditory sources (speakers), then those
can be readily identified and the data make sense. The rest then is simply unexplained noise.

The method of compressed sensing works only under suitable circumstances, like those of our example.
In other situations, it is inappropriate and fails. But other schemes might work wonderfully then. The
question is which such scheme to apply. In machine learning, many schemes have been developed that work
well under appropriate conditions. But when confronted with an intransparent data set, the question then
is which scheme to choose. Analogously, in a strategic situation, it is not the question whether heuristics
or other simplifications should be used, but rather, how much one should simplify. Let us draw upon
some other examples from machine learning to illustrate this point (see (Jost, 2017) for a more general
analysis). Machine learning is a field at the intersection of computer science, high dimensional geometry
and statistics that is currently rapidly developing. Much of current machine learning is concerned with
detecting, extracting and utilizing structure in big data sets. Such big data sets are typically characterized
by a couple of Vs, including high volume, velocity (with which they come in), variety (that is, heterogeneity
of data types, representation, and semantic interpretation), variability (of their quality and reliability) etc.
These properties make a complete and exhaustive analysis impossible. Therefore, one needs mechanisms of
simplification.

Of course, there are some well known principles, interpolation (if you have two data points at different
times, assume that the data at intermediate times should be averages of those) and extrapolation (assume
that a trend continues). Machine learning refines these principles. Many successful machine learning algo-
rithms rely on general structural assumptions about the data set at hand (Jost, 2017). They work well,
and often surprisingly well, when those structural assumptions are satisfied, but fail when not. Examples
include

e Manifold learning (Belkin and Niyogi, 2003)) assumes that the data while coming from a high-dimensional
space are intrinsically concentrated on a low-dimensional smooth manifold, that is, without corners,
edges etc (see figure (3)).

Figure 3: A smooth one-dimensional curve stretching into different directions in 3-space

L

e

Thus, there are two intertwined structural assumptions. The first one says that there are only few
intrinsic degrees of freedom, although the data may appear high-dimensional. It is then the task to
identify those important degrees of freedom. One can then ignore variations in other directions. The
second assumption is that those degrees of freedom are regular and smooth. In our example, when
the dominant actors have been identified, one may want to infer their strategies. Even though the
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strategic space might be huge, each actor might only use a small number of parameters to determine
her strategy. These may vary according to circumstances, but one might assume that changes are
not abrupt and sudden, but rather gradual and smooth. That would be analogous to the situation of
manifold learning.

While we want to discuss here manifold learning simply for purposes of analogy, it could also be
used concretely for purposes of data analysis in business environments. Let us consider products
with many different manufacturing degrees of freedom, like cars or clothes. The important degrees of
freedom might vary between different market segments, for instance between luxury cars, sport sedans
or family vans. In some segments, engine power is important, whereas in other segments, customers
are interested in a large selection of colors, or gasoline consumption might be an issue. But neither of
those seems to have a high relevance in the luxury car segment, where customers value a different set
of qualities and options. In any segment, probably only a small number of features is relevant, but it
will vary between segments which those are. Thus, the consumer choice data may be concentrated on
an intrinsically low dimensional manifold, and a manifold learning scheme should be able to identify
that manifold in the high dimensional space of possible factor combinations.

More abstractly, the essential point is the following. When the manifold on which the data are
concentrated is low dimensional, that means that on each portion of it, only a small number of features
is relevant, and one may project on the corresponding dimensions. But which these dimensions are
may vary along the manifold. Therefore, methods that seek to identify the same dimensions on the
entire space, like PCA or ICA, may not capture that variability, and may fail to give an accurate
picture. Similarly, when agents project a landscape onto a lower dimensional model, as in (Gavetti
and Levinthal, 2000)), they may miss this important aspect. Everywhere in the landscape, only some
dimensions may be relevant, but which these are may vary across the landscape.

e We have already discussed compressed sensing (Candes et al., 2006,Donoho, 2006, Foucard and Rauhut,
2013)) which similarly assumes that there are only few sources that generate the data. This assumption
leads to algorithms with a performance that is superior to others that may fail to identify any source
because they are postulating too many. As discussed, in a strategic situation, one might analogously
assume that there are only a few actors that have a significant influence on the market. One should
try to identify and model those and relegate the rest to some kind of noise term.

e Hierarchical tensor decompositions (Hackbusch, 2012)) suppose that there is a hierarchical structure
underlying the data, and identifying that structure leads to much more compact representation. In
strategic situations, one might similarly assume that many local variations are coming from some
common dominant influence, and they should therefore be correlated. The task then is to identify
that dominant cause. For instance, within each country, region, or market segment, agents might
behave similarly. One should then first make a coarse grouping according to those factors, and then
perhaps proceed to a more fine-grained analysis of agents within such a group.

e Multiscale methods (Pavliotis and Stuart, 2008|) assume an interplay between a coarse global and a
fine local structure. In economic situations, we of course have the interplay between prices as global
market variables and individual behavior. The idea of the multiscale methods is that one can switch
back and forth between the different scales for computational efficiency. For instance, for long stretches
of time, it might suffice to observe the dynamics of market prices, and only every now and then a more
detailed investigation of changing customer preferences is needed.

e More generally, one may suppose symmetries, invariances and other regularities. This is also what
makes the gestalt principles of cognitive psychology work (Breidbach and Jost, 2006)).

In order to select such assumptions and the computational schemes based on them, usually some prior
knowledge of the domain the data are coming from is needed. It is then an important research question (Jost,
2017) to find a more systematic and formal way to identify such general structures in a data set.
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4.2.3 Penalizing complexity

In many practical problems of data analysis, the essential issue is the distinction between noise and struc-
ture. When the model is too simple, it does not reflect the data well, and when the model is too complex,
it pays too much attention to the noise. Both negatively affect the ability to generalize. A theory that
makes more general predictions is a better theory. Of course, given the samples, one does not know what
is noise and what is the underlying structure. So, what should one do? In abstract terms, if one does
not have good prior insight that restricts the model class, one may try to minimize a combination of the
data fit and the model complexity. Thus, one would minimize a combination of a term that measures the
data fit and another term that evaluates the complexity of the model. This, in fact, is a widely applied
general principle, although in practice the complexity measures is often chosen in a somewhat ad hoc manner.

Let us take an example from image denoising. There the problem is to recover the original image
from a version that is corrupted by noise. That version is all that one has. Which of its pixels should be
kept, and which should to be changed because they might represent noise? Variational methods, see for
instance (Jin et al., 2015)), minimize a combination of two terms. One is a fidelity term that quantifies the
difference between the image that one has and the image that the scheme produces as an approximation
of the unknown original. The other is a regularity term that penalizes contrasts between adjacent pixels.
The underlying assumption is that the original should contain many rather homogeneous parts with little
fluctuations and that therefore most contrasts should originate from the noise. That is, one assumes that
the original is smoother and more regular than the noise corrupted version. If the fidelity term is given
too much weight, the noise is not much eliminated. If the regularity term is given too much weight, then
all pixels are similar, and the essential structure is lost. The original image was most likely not completely
homogeneous and regular, but had some edges and boundaries between different segments, but inside each
segment, we should not expect wild fluctuations between adjacent pixels. Thus, one needs to find the right
balance. That usually requires experience with such data sets. The regularity term may be considered as
a complexity term, because images with too many local fluctuations are difficult to compress and therefore
require more computer memory space than more regular ones.

What can we learn from that example? Overly complex models may not represent the underlying
structure well. Here, (in contrast to other places in this paper), complex simply means having little regularity
and exhibiting many local fluctuations. Therefore, one should penalize complex models. But how much they
should be penalized, that is, how simple or complex the underlying structure is, cannot be decided by general
arguments, but requires experience. The question is to identify the right level of complexity of the model
to best reflect the underlying structure.

4.2.4 Correlations

Although strategy science should be concerned with causations rather than correlations, as emphasized for
instance in (Bettis, 2017)), detecting correlations can be an important source of information. Also, the power
of some heuristics or of intuition may depend on the utilization of certain weak correlations. For instance,
when selecting that stock for investment that has seen more recent media coverage one may be utilizing some
weak correlations between media attention and future performance. The reason for a correlation between
the future prospects of a company and its mention in some news medium may be difficult to trace in each
individual case, but is quite plausible that it should exist at least on average. Also, the direction of causality,
if any, may remain opaque in such cases, but that might not matter for a good prognosis. That is, it does
not matter whether media attention positively influences future performance, by whatever mechanisms, or
whether the journalists are clever enough to identify potential high performers.

The strength of deep neural networks and other such machine learning algorithms also rests, at least
partly, on the implicit detection of certain weak correlations. If this is so, then the reasoning of the preceding
sections about the analogy between heuristics in strategy and structural assumptions in machine learning is
strengthened further.
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5 Strategic Bounded Rationality

In strategic situations, boundedly rational agents encounter, either directly or indirectly, other agents that
are also boundedly rational. These other agents could be customers, suppliers or competitors with which one
interacts directly. Or the bounded rationality of other agents could be indirectly encountered, for instance
through collective effects in markets. And since, as we have argued, in situations of uncertainty, in ill-
structured environments or even in well-structured environments that are too complex, bounded rationality
requires agents to simplify, this also has the consequence that in strategic contexts, agents need to deal with
other simplifying agents.

The concept of rationality, as used for instance in rational choice theory, has a normative component.
The concept of bounded rationality seems to abandon that normative component, as it has the consequence
that real agents cannot achieve optimal solutions even in well-structured environments when the task is
too complex in view of the limitations on their cognitive abilities and computational resources. In ill-
structured environments, however, as we have argued, there is no such thing as an optimal solution that
could be computed in principle if one had sufficient resources. Therefore, if the concept is to retain a
normative component, we need to proceed differently. The best that one can do is to use the theoretically
available tools to deal with ill-structured environments. As we have argued, these include heuristics, or
more abstractly, appropriate schemes of complexity reduction. In short, agents need to simplify. We have
described theoretical insights from statistical learning theory and related fields, and we have also cited
some relevant literature from psychology about the appropriate use of heuristics (Gigerenzer and Selten,
2001} |Gigerenzer and Brighton, 2009) in opaque situations. Instead of the impossible norm of finding an
optimal solution, agents should find simplification schemes that reflect such theoretical insights. Thus, on
the basis of their abilities, their available knowledge and information, they should develop models that
capture the essential aspects and suppress the others. Since we have conceptualized this as a process the
models need to be updated and enriched when information gets richer and knowledge becomes more secure.

This is fundamentally different from the standard approach of game theory and neoclassical economics.
Agents that are learning, searching and or making decisions in a context of incomplete and evolving knowl-
edge and limited computational, organizational or cognitive resources should use the best available, appli-
cable and implementable inference rules. Importantly, under those conditions, these rules suggest not to
incorporate all available details, but rather to start from simpler models. Leaving out details makes these
rules fallible, but the point is that in contexts of uncertainty, this is unavoidable. Therefore, one should
take into account the own fallibility as well as that of others. One consequence of this is that agents will
typically run into contradictions and surprise.

We suggest to use insights from machine learning that in complex situations, the best strategy is to
develop simple models. What does that mean in strategic contexts? As yet, strategic situations don’t seem
to be covered by machine learning, at least not systematically. Our answer to the question is based on the
simple observation that in strategic interactions, all agents involved are boundedly rational and therefore
need to reduce complexity and simplify. Strategic bounded rationality needs to build on that. Thus, an
agent should not only assume that others build simple models as well, but also needs to decide how to model
that in turn. Again, this requires simplification. One solution is to simply relegate other actors to a collective
force, like the market. In many contexts, this is appropriate because the market collects information and
represents that information by simple variables, the market prices. In contrast, in interactive situations with
a few actors, like in oligopolies, one needs some simplified models to model the modelling of others. For
instance, one could develop heuristics to gauge the modelling abilities of competitors. While we start here
to develop some consequences of this, there is much room for future research.

When real agents that are boundedly rational interact with other agents that are likewise boundedly
rational, they find themselves in a situation of reciprocal bounded rationality (RBR for short). Recipro-
cal bounded rationality means the mutual understanding of potential interaction partners that everyone
involved in an interaction under uncertainty is limited in access to information, computation time, and
computational abilities. This implies a mutual understanding that one’s partners or competitors also need
to use mechanisms of complexity reduction, like heuristics. RBR is a special case of SBR. RBR is more
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special, as it implies that agents are aware that all involved agents are aware of their limitations. Note that
here limitations are not necessarily negative. Given complexity, no involved agent can deduce an unlimited
rational response to others’ actions, expect for situations that are well-defined and for which fixed point
solutions are available (such as in standard game theory). Given their limitations, the involved agents are
modellers (they do not ”see” the ultimate reality but only construct a model of it, relative to which their
responses are rational; Levinthal, 2011). Advantages then can come about by being a better modeller, so
dealing more wisely with one’s own limitations.

In Section we have introduced a distinction between the model of a modeller and that of an agent.
Both models are simplifications, but in importantly different ways. We need to take the perspective of
the agents. In interactive situations, all involved agents develop models and behave according to them.
Therefore, each agent should develop a model of the models of others, or better, of the modelling processes
of others, and this will include their capabilities and limitations. As we have pointed out, this requires
simplification, leading to the construction of a simplified model of the simplified models of others. And as
argued in Section this need not be symbolic and explicit, but could be based on heuristics. Thus, an
agent then might develop heuristics to guess the heuristics of others. Since this will inevitably involve some
simplification, it will create uncertainty. In particular, it becomes uncertain how others handle uncertainty.
This then creates additional, higher-level uncertainty. This cannot be fully resolved.

On one hand, simplifications reduce subjective uncertainty, insofar as a mental model may possess more
explicit structure or regularities than the actual world. On the other hand, simplifications create new
uncertainty because nobody knows for sure how the others simplify.

What are the consequences of all this?

1. Obviously, boundedly rational agents can make mistakes. One can then try to exploit the mistakes, but
at the same time needs to be aware of the possibility of being outsmarted or exploited by others (Menon,
2018)). Therefore, agents need to find schemes to gauge their opponents. However, in contrast to
(Menon, 2018), our argument implies that more sophistication in modelling others does not necessarily
yield competitive advantages. For instance, it is not always beneficial to reason in more iterations about
the reasoning of others (Ehrig, Manjali, Singh, Sunder, 2019).

2. Human agents are often quite good in extracting weak cues from the environment. In contexts of
RBR, other agents will use such heuristics as well. This has two implications. First, one could try to
infer what kind of heuristics other are utilizing and predict what their heuristics would yield, both to
understand their way of thinking and for extracting forecasts without having to look at the situation
oneself. Secondly, the collective use of heuristics may have collective effects, and that might be a source
of both risk and opportunity. For an example in investment banking, see (Ehrig, Jost, Katsikopoulos
and Gigerenzer, 2019).

3. The preceding concerns learning, but for search, something similar applies. Instead of laboriously
searching for a solution oneself and developing an appropriate search strategy, one can try to copy the
solutions found by others or imitate their search strategies. Yet there are limitations to this (Ryall,
2009), in particular as it may not be perfectly observable how competitors arrived at their strategies
or the details of their execution. In any case, joint search by boundedly rational agents may not
lead to the optimal outcome (Knudsen and Srikanth, 2014]). This has important consequences when
outcomes depend on the collective search of several, and perhaps many, potentially competing agents.
Factor market prices are a fundamental example. Prices are determined by expectations (Barney,
1986)). In the context of RBR, agents need not only be aware of their own limitations, but also need to
grapple with the imperfections of other agents. Sometimes, prices rather reflect others’ ideas about the
future than a fundamental reality (Hong, Scheinkman & Xiong, 2006). Search processes of competing
boundedly rational agents have been addressed in prior work (Lenox et al., 2006, Knudsen, Levinthal,
Winter, 2014)), but the existing studies do not address how agents anticipate each other’s expectations
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and actions. (Ehrig, Jost, Katsikopoulos and Gigerenzer, 2019) empirically documented how strategists
in the banking sector cope with this problem.

In short, besides constructing simplified, perhaps game-like representations, investment bankers gauge their
opponents. That is, insteading of modelling an opponent, they rather ask “Is he better than me? Does he
have information sources or cognitive abilities that I do not possess?” They utilize weak cues, and they
consider market agreement as a source of both risks and opportunities. Furthermore, on longer time scales,
central bankers construct narratives that involve putative causal agents like “the market” or “the financial
sector”.

As explained in Section there is theoretical insight (Vapnik, 2013|) why simpler, that is, less com-
plex models often have better generalization power. And this not only leads to a rather general heuristic,
“choose the simplest possible model that fits the data reasonably well”, but even explains why this is a
useful principle that works better than choosing more complex models that fit the data better.
Importantly, that then is a strategy with a rigorous theoretical foundation. Therefore, in reciprocal sit-
uations, one should also assume that others apply that strategy. This is a very important point worth
emphasizing. Avoiding complex explanations and choosing simple ones instead is what one should ratio-
nally do when dealing with intransparent or noisy data sets. And therefore, everybody should rationally
do that even in competitive situations. Of course, since this is a somewhat loose principle, it does not
completely determine the precise model that is best in a given context, and therefore, there still is room for
competitive advantages from selecting a better model.

Applied to strategic interaction, our arguments about simplification also imply that the transition from
ill-structured problems to well-structured problems in choice interactions can go hand in hand with the same
transition for strategic interactions. Metaheuristics can help to render a situation in quadrant 4 in Table
into a situation in quadrant 2. And, even more importantly, some metaheuristics seem to render a set
of problems in quadrants 3 and 4 into a set of problems in quadrants 1 and 2. One such metaheuristic
seems to be the construction of a strategic representation (Ehrig, Jost, Warglien, 2019). For instance, a very
successful strategic representation is the digital hub structure (Jobs, 2011). It changed the possibilities in
which media capture and playing devices interact with computers and thereby enabled their embedding into
the everyday life of customers. Moreover, the digital hub structure also implied a new logic of competitive
interaction. The creator of the platform, Apple, gained bargaining power over suppliers of components of
the assembled devices (touchscreens etc) and suppliers of content (music etc). In other words, simplifications
organize choice interactions and strategic interactions simultaneously.

6 Conclusions

Strategy is more than just establishing positions (Porter, 1980), or accumulating resources that provide
sustainable advantages in a given market. Processes of adaptation or shaping, in particular the discovery
or creation of novel opportunities, may be more important for a firm’s survival than securing positions in a
well-structured, given market (Teece et al., 1997)). (Eisenhardt and Martin, 2000|) started to argue that to
understand processes of shaping and adaptation theoretically, we need to draw on newer insights from the
sciences of complexity. The contribution of this article is the development of such theoretical foundations.
We discussed that simplification involves metaheuristics to detect structure. Such metaheuristics may be
considered dynamic capabilities, as they enable the transition from ill-structured problems to well-structured
problems for which the appropriate deployment of resources of a firm is known. In the following, we will
discuss the implications of our framework for future research in the area of strategic management.

Strategy as the Process of Simplification Often, the strategy of a firm itself can be understood as an
ongoing pattern of simplification (Mintzberg, 1978| Miller, 1993)). Interdependencies across choices, agents,
and different time scales involved in a decision create the need for specific strategic skills (Leiblein et al.,
2018). Our argument rests on the thesis that these interdependencies create complexity, and skills to reduce
the complexity can be the essence of strategic skills or even lie at the heart of a firm’s strategy. In other
words, the need for complexity reduction renders decisions ”strategic”.
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This ” coreness” of complexity reduction has broader implications for our understanding of strategy. For
instance, in how far can a strategy be understood as a position? While a strategy may result in an ex post
perceived position, ex ante a strategy can often not be conceptualized as taking a position, because the
number of possible strategies is vaster than could be captured by a finite-dimensional landscape (Felin et
al., 2013)). Before positions can be taken, both in a price-quality continuum (Porter, 1980) or in a space
of interdependent choice alternatives (Porter & Siggelkow, 2008), strategists need to simplify. Success in
establishing ex post perceived positions in a then perceivable landscape of possible strategists essentially
hinges upon skill in the simplification process. Simplifications are schemes that by reducing, channelling and
structuring the possibilities, create predictable relations in task environments that are yet unpredictable.
Take the example of 'platforms’. A platform such as Apple’s digital hub creates a predictable and replicable
structure to combine objects (like the camcorder and the PC), when the possible combinations are plentiful
and unknown.

As we argued above, simplifications organize choice interactions and strategic interactions simultaneously.
Organizing interactions here means to provide a structure in which choices and market participants can
interact in a given set of rules. The rules are not arbitrary, but a means to cut through the complexity of
interactions across decisions, time and agents. For instance, the digital hub concept (Jobs, 2011) specified
how software, hardware, and lifestyle interact. Indirectly, it also specified who has control over which parts
of the associated value chains. To create concepts such as the digital hub requires metaheuristics (Ehrig,
Jost, Warglien, 2019)), and of course, not every concept is successful. As (Ehrig, Jost, Warglien, 2019)) argue,
success again can be a result of handling complexity, in this case in a vastly big mental search space, and
for this, abstract mathematical tools may help.

Obviously, there is the danger of oversimplification. For instance, (Miller, 1993)) gives examples of firms
that simplified too much and were then stuck with a wrong simplification that eventually caused failure. A
more concrete example in the strategy field of a common, but often harmful simplification is the use of linear
regression models in contexts with higher order interactions and various feedback loops (Bettis and Blettner,
2019). There is, however, also the opposite danger of overcomplexification. It is therefore important (not
only) for a strategist to find the right balance. Of course, we do not ignore that simplification can be
harmful. Rather, we contribute by identifying theoretical principles that inform us which simplifications are
useful and why, and which simplifications are harmful.

While the insight that simplification is at the heart of many successful strategies is not new, we take a
further step. We do not see a strategy as the fixed outcome of a singular simplification, but as the ongoing
process of simplification in environments that continuously or perhaps also discontinuously change. Miller’s
point was that firms that fixed a simple strategy failed when the environment changed. Our point is that
environments change and this change implies ever new, growing complexity. Taming this complexity is an
ongoing process. For that reason, processes of simplification are related to dynamic capabilities, which we
will discuss next.

Simplification as a Dynamic Capability Much of strategy research is concerned with the change of en-
vironments (Eisenhardt and Martin, 2000), and capabilities to cope with such change in a superior way.
But what is change, from a complexity science point of view? We discussed in detail that in ill-structured
environments, by definition, change is more than a change of interactions of detailed choices in a given
landscape.

In ill-structured environments, the first task of a strategist should be to infer what has changed. In
particular, not just the means of production, but also the logic of value for the customer and the logic of
competition can change. As our discussion of machine learning suggested, important dynamic capabilities
of strategists are metaheuristics, to detect the type of change that has occurred and then apply a heuristic
that is appropriate for that type of change (Ehrig and Schmidt, 2019). In particular, an important aspect
of such capability is to discern whether massive new complexity needs to be tamed on the side of novel
products, or on the side of a new logic of competition.

If complexity needs to be reduced to find novel products, strategists may shape the new environment
by establishing proofs of concepts (like the Tesla S model). Proofs of concepts create certainty that a new
product based on a new value proposition is actually feasible.
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Table 3: Principles from machine learning and their explanations of dynamic capabilities

Principles in Complexity Science Principles of Dynamic Capabilities

Metaheuristic Infer the new logic

to identify type of structure of competition

Separate data from noise Simple Rules for Strategy

by penalizing complexity Sweet-spot of right amount of structure
Adapt complexity of model Infer environmental characteristics to

to number and quality of observations determine how heuristics should be learned

Information bottleneck Resource scarcity can be helpful for adaptation

If the logic of competition changes, strategists need to anticipate new bottlenecks, and also, anticipate
which existing bottlenecks in markets no longer exist. Take again the example of Kodak . Kodak was very
good at building dynamic capabilities to change from analogue to the digital production of images. However,
Kodak failed to anticipate that one cannot make money with digital images but that they became rather a
by-product of new types of products such as smartphones. Thus, image delivery was no longer a key source
of profits.

In sum, our transfer of results from the sciences of complexity suggests that we need more research on how
strategists make qualitative inferences about the structure of novel task environments. This question has
normative and descriptive dimensions. Like (Leiblein et al., 2018) we are argue that psychological research
in the strategic management domain needs to be extended to understand cognitive capabilities for dealing
with interdependencies among choices, different time scales of decisions, and agents. The argument in this
paper clearly indicates that we need descriptive psychological studies to understand how people simplify.

Psychological research on heuristics so far almost exclusively explains the effectiveness of heuristics by
the bias-variance trade-off (eg. (Gigerenzer and Brighton, 2009)). We offer additional theoretical principles
that may explain the success or failure of metaheuristics, and, relatedly, dynamic capabilities. Consider
table . In the first row, we draw the analogy from metaheuristics in machine learning to inferring the
new logic of competition in a transforming business environment. We can learn that to infer structure,
the decision-maker needs to rely on glimpses of feedback, as discussed above ("weak cues”), and moreover,
be aware how much has changed (discussed above under ”correlation length”). Moreover, the principle
of separating data from noise, mentioned in the second row, offers a general explanation of why there
is a sweet spot of structure of a model to learn about an environment. Above, we formally derived this
result. The result is general and extends beyond the specific setting studied in (Davis, Eisenhardt, Bingham,
2009)). Relatedly, environmental characteristics need to be inferred, also to decide how quickly one should
generalize and learn simple rules (third row; (Ehrig and Schmidt, 2019)). Finally, sometimes it is better
to have fewer resources, as the information bottleneck principle (last row) suggests. By analogy, (Schilling,
2019) argued that Mariott, Hilton etc would have never come up with the idea of the ice hotel, a highly
profitable opportunity, but it was found due to a lack of resources and failure (the original business ideas
was an ice sculpture exhibition; it rained; ice sculptures were melting, but guests liked the igloos in which
the artists were living).

To conclude, this article presented the argument that simplification is a key capability to cope with
uncertainty, complexity and change. At its core, this capability rests on a successful translation of ill-
structured into well-structured problems, and this translation organizes both choice interactions and strategic
interactions. It is a dynamic capability, as this re-organization enables firms to redeploy their resources.

Of course, we could only sketch the implications of the newer results from the sciences of complexity
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for strategy science. To do this in detail would extend far beyond a single paper. However, our arguments
suggest concrete steps forward: For instance, while we understand how the bias-variance trade-off explains
concrete heuristics used by firms (DeMiguel, Garlappi, & Uppal, 2007,[Ehrig and Schmidt, 2019), it is an im-
portant open question if the other principles we discussed (like compressed sensing) can explain documented
heuristics used by firms. Moreover, can the metaheuristics that we discussed be developed into universal
management tools that can be taught, for instance, in consulting? Or must metaheuristics be tailored to
the specific details of firms, that is, are most implemented metaheuristics idiosyncratic? While we identified
possible generic theoretical mechanisms underlying metaheuristics and associated dynamic capabilities, it
is an open question whether the details of the implementation of metaheuristics may be specific to firms.
Thus, some concretely implemented metaheuristics may provide specific firms with adaptation advantages
that cannot easily be copied. Whether this is the case is an open question left for future work.
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