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Based on the nonincreasing property of quantum coherence via skew information under incoherent
completely positive and trace-preserving maps, we propose a non-Markovianity measure for open
quantum processes. As applications, by applying the proposed measure to some typical noisy
channels, we find that it is equivalent to the three previous measures of non-Markovianity for
phase damping and amplitude damping channels, i.e., the measures based on the quantum trace
distance, dynamical divisibility, and quantum mutual information. For the random unitary channel,
it is equivalent to the non-Markovianity measure based on l1 norm of coherence for a class of output
states and it is incompletely equivalent to the measure based on dynamical divisibility. We also use
the modified Tsallis relative α entropy of coherence to detect the non-Markovianity of dynamics of
quantum open systems, the results show that the modified Tsallis relative α entropy of coherence
are more comfortable than the original Tsallis relative α entropy of coherence for small α.

I. INTRODUCTION

In recent years, the Markovian and non-Markovian process for open quantum dynamics has attracted much at-

tention. In the classical realm, the Markovian and non-Markovian dynamics are well defined and widely studied [1].

However, its quantum versions are controversial in some sense [2–5]. Various non-Markovian criteria have been pro-

posed, and some measures are introduced based on different consideration [6–16], such as the divisibility, mutual

information, information distance measures, Fisher information flow, etc. All those non-Markovianity measures do

not coincide exactly in general [17–20]. Finding a universal definition for non-Markovian dynamic is an important

subject in quantum information theory.

Recently, a rigorous framework of quantifying coherence has been proposed, and several measures of quantum co-

herence are proposed [21–28], such as the l1-norm of coherence, relative entropy of coherence, fidelity of coherence,

etc. As is well known, the Kraus operators of the phase damping channels, the amplitude channels and the random

unitary channels are qubit incoherent operators, and coherence measures are monotonicity under all the incoherent

completely positive and trace-preserving maps. Hence, the coherence measures are employed to investigate the dec-

tection of non-Markovianity. Chanda et al. used the l1-norm of coherence to define the measure of non-Markovianity,

and shew that it is equivalent to the measures based on trace distance, quantum mutual information and quantum
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divisibility for the one and two qubit phase damping channel and amplitude damping channel [29]. He et al. used

the relative entropy of coherence to quantify the non-Markovianity and shew that the measure is also consistent

with the measures based on quantum divisibility and trace distance for the qubit phase damping channel. But for

the amplitude damping channel the mathematical form is still given. To deal with this problem, they proposed an

alternative non-Markovianity measure based on relative entropy of coherence in an extended space [30, 31]. Mirafzali

et al. used numerical methods to detect the non-Markovianity of generalized amplitude damping model by using the

Tsallis relative α entropy of coherence, and shew that it is consistent with the measures based on trace distance and

mutual information, and is better than the non-Markovianity measure based on entanglement [32].

In this paper, we use the quantum coherence via skew information to detect the non-Markovianity of quantum

dynamical maps. We propose alternative non-Markovianity measures based on this coherence measure, and find that

it is equivalent to the typical non-Markovianity measures based on dynamical divisibility, quantum trace distance, and

quantum mutual information for the phase damping channel and the amplitude damping channel. For the random

unitary channel, the proposed measure for a class of qubit states is equivalent to the measures based on the l1-norm

of coherence, and thus it is not completely equivalent to the measure based on dynamical divisibility. As the skew

information based coherence measure is a special case of the modified Tsallis relative α entropy of coherence [33], we

also consider some special case for the modified Tsallis relative α entropy of coherence to decetect the non-Markovianity

of quantum dynamical maps.

The paper is organized as follows. In Sect. 2, we review basic points for quantum coherence via skew information,

Tsallis relative α entropy of coherence and modified Tsallis relative α entropy of coherence, and introduce the measure

of non-Markovian processes based on quantum coherence via skew information. In Sect. 3, we apply our non-

Markovianity measure to some typical noisy channels. In Sect. 4. we consider some special cases for the modified

Tsallis relative α entropy of coherence to detect the non-Markovianity both numerically and analytically. We give the

summary of results in Sect. 5.

II. QUANTUM NON-MARKOVIANITY MEASURE BASED ON QUANTUM COHERENCE VIA
SKEW INFORMATION

Firstly, we recall the basic points of quantum coherence measures. Given a finite-dimensional Hilbert space H with

dimension d = dim(H), we denote I the set of incoherent states which are diagonal in a given basis {|j⟩}di=1 of H. The

incoherent quantum operations are described by the Kraus operators {Kn} satisfying
∑

nK
†
nKn = I withKnIK†

n ⊂ I.

A good coherence quantifier C(ρ) of a quantum state ρ needs to satisfy the following conditions [21] (i) (Non-negative)

C(ρ) ≥ 0 for all quantum states ρ, and C(ρ) = 0 if and only if ρ ∈ I; (ii a) (Monotonicity) for any states ρ and

incoherent completely positive and trace preserving (ICPTP) maps Φ: C(ρ) ≥ C(Φ(ρ)), where Φ(ρ) =
∑

nKnρK
†
n;

(ii b) (Strong monotonicity) for any states ρ and incoherent operators {Kn}, C(ρ) ≥
∑

n pnC(ρn), where ρn =
KnρK

†
n

pn

and pn = Tr(KnρK
†
n); (iii) (Convexity) for any ensemble {qn, ρn},

∑
n qnC(ρn) ≥ C(

∑
n qnρn). A quantity C(ρ)

fulfilling the conditions (i)-(iii) is called a coherence measure [28].
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The coherence measure CS(ρ) via skew information is defined by [24]

CS(ρ) :=
d∑

j=1

I(ρ, |j⟩⟨j|) = 1−
∑
j

⟨j|√ρ|j⟩2, (1)

where I(ρ, |j⟩⟨j|) = −1
2Tr{[

√
ρ, |j⟩⟨j|]}2 corresponds to the skew information subject to the projector |j⟩⟨j|. Other

two coherence quantifiers are given by the Tsallis relative α entropy of coherence [25] and the modified Tsallis relative

α entropy of coherence [33]. The Tsallis relative α entropy of state ρ with respect to state δ is defined by [34]

Tα(ρ∥δ) :=
1

α− 1
Tr(ραδ1−α − 1) (2)

for α ∈ (0, 2]. Note that when α → 1, Tα(ρ∥δ) reduces to the relative entropy S(ρ∥δ) = Tr(ρ log ρ) − Tr(ρ log δ).

The coherence measure based on the Tsallis relative α entropy of Tα(ρ∥δ), in the fixed reference basis {|j⟩}, is given

by [25]

Cα(ρ) = min
σ∈I

Tα(ρ∥σ) =
1

α− 1
{(
∑
j

⟨j|ρα|j⟩ 1
α )α − 1}, (3)

where Cα(ρ) satisfies all the criteria for a good coherence measure except for the strong monotonicity [25]. Zhao et.al.

proposed an alternative coherence quantifier based on the modified Tsallis relative α entropy of coherencea [33],

C̃α(ρ) = min
σ∈I

1

α− 1
[f

1
α
α (ρ, δ)− 1] =

1

α− 1
(
∑
j

⟨j|ρα|j⟩ 1
α − 1), (4)

where α ∈ (0, 2], fα(ρ, δ) = (α− 1)Tα(ρ∥δ) + 1, and {|j⟩} is the reference basis. For α = 1
2 , C̃ 1

2
(ρ) reduces to CS(ρ).

A quantum dynamical map {Φt,0} is Markovian in the sense that it is completely positive divisible (CP-divisible),

i.e., Φt,0 = Φt,τΦτ,0, for time 0 ≤ τ ≤ t and all completely positive {Φ}. Otherwise the quantum dynamical map is

non-Markovian. The phase damping, amplitude and random unitary channels are all ICPTP maps. As a measure of

quantum coherence, CS(ρ) satisfies the monotonicity under ICPTP maps, i.e. CS(Φ
ICPTP(ρ)) ≤ CS(ρ). If a quantum

system with the initial state ρ(0) undergoes an incoherent dynamic evolution ΦICPTP
t , the quantum state ρ(t) at time

t is given by

ρ(t) := ΦICPTP
t ρ(0). (5)

It is easy to find that

CS(ρ(t)) = CS(Φ
ICPTP
t ρ(0))

= CS(Φ
ICPTP
t,τ ΦICPTP

τ ρ(0))

= CS(Φ
ICPTP
t,τ ρ(τ)) ≤ CS(ρ(τ)), (6)

due to the monotonicity of CS(ρ) under ICPTP maps. Without loss of generality, ρ(0) can not be chosen to be

incoherent states, which implies that CS(ρ(t)) = CS(ρ(τ)) = 0 for any time t. From Eq. (6) we have that CS(ρ(t)) is

a monotonically decreasing function of t, implying that d
dtCS(ρ(t)) ≤ 0 for any Markovian dynamics.
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From the above analysis, we can define a measure of Non-Markovianity as follow:

NCS (Φ
ICPTP
t ) := supρ(0)∈C

∫
(d/dt)CS(ρ(t))>0

d

dt
CS(ρ(t))dt, (7)

where C is the set of all coherent states. The measure NCS
can witness the non-Markovian feature only for incoherent

dynamics. But it does not need auxiliary systems to easy the to computation for some special coherence measures [29–

32].

III. APPLICATIONS TO OPEN QUBIT SYSTEMS

A. Phase damping channel

Consider a qubit system undergoing phase damping noises. The evolution is described by the differential equation

d

dt
ρ(t) = γ(t)(σzρ(t)σz − ρ(t)), (8)

with σz is the standard pauli operator. The Kraus operators of Eq. (8) can be written as K0(t) =
√
1− h(t)

2 I and

K1(t) =
√

h(t)
2 σz, where h(t) = 1− f(t) with f(t) = exp[−2

∫ t

0
γ(τ)dτ ]. It is easy to verify that K0(t) and K1(t) are

incoherent operators in computational basis. Denote the initial state of the open quantum system as

ρ(0) =
1

2

(
1 + a b
b∗ 1− a

)
, (9)

where ∗ stands for the conjugation. Then the dynamics can be expressed as

ρ(t) = Φtρ(0) =
1

2

(
1 + a bf(t)
b∗f(t) 1− a

)
. (10)

In order to obtain the expression of CS(ρ(t)), we calculate the eigenvalues and eigenvectors of ρ(t). After a direct

calculation, the eigenvalues of ρ(t) are

λ1 =
1 + s(t)

2
, λ2 =

1− s(t)

2
, (11)

where
√
|b|2f2(t) + a2 = s(t), with the normalized eigenvectors

|λ1⟩ =

[
bt√

2s2(t)− 2as(t)
,

s(t)− a√
2s2(t)− 2as(t)

]T

,

|λ2⟩ =

[
−bt√

2s2(t) + 2as(t)
,

√
s(t) + a√
2s(t)

]T

, (12)

where T stands for transpose.

Substituting λ1, λ2 and their normalized eigenvectors into Eq. (1), we get

CS(ρ(t)) = 1−
(√1 + s(t)

2

s(t) + a

2s(t)
+

√
1− s(t)

2

s(t)− a

2s(t)

)2

+
(√1 + s(t)

2

s(t)− a

2s(t)
+

√
1− s(t)

2

s(t) + a

2s(t)

)2

. (13)



5

After some algebraic calculation, the derivative of CS(ρ(t)) with respect to t is given by

d

dt
CS(ρ(t)) = −

γ(t)|b|2f2(t)[s4(t)− (
√
1− s2(t)− 1)2a2]

s4(t)
√
1− s2(t)

. (14)

Set g(t) = s4(t) − (
√
1− s2(t) − 1)2a2. Since the initial state ρ(0) is coherent, the parameter a2 < 1. Thus

g(t) = s4(t)
(
√

1−s2(t)+1)2−a2

(
√

1−s2(t)+1)2
> 0. Then d

dtCS(ρ(t)) > 0 is equivalent to γ(t) < 0. Namely, the condition γ(t) < 0 is a

witness for non-Markovian process. The non-Markovianity measure NCS (Φ
ICPTP
t ) can be expressed as:

NCS
(ΦICPTP

t ) = supρ(0)∈C

∫
γ(t)<0

−γ(t)|b|2f2(t)g(t)
s4(t)

√
1− s2(t)

dt. (15)

From the above discussion, the non-Markovianity measure based on quantum coherence via skew information

matches with the Non-Markovianity measures based on the dynamical divisibility, quantum trace distance, and

quantum mutual information for phase damping channel [2, 3, 13, 14].

B. Amplitude damping channel

Consider a qubit state undergoing amplitude damping noise. The dynamics is described by the master equation,

d

dt
ρ(t) = − i

2
s(t)[σ+σ−, ρ(t)] + γ(t)[σ−ρ(t)σ+ − 1

2
{σ+σ−, ρ(t)}], (16)

where s(t) = −2Im ḣ(t)
h(t) , γ(t) = −2Re ḣ(t)

h(t) = − 2
|h(t)|

d
dt |h(t)|, and the function h(t) satisfies the following integrodiffer-

ential equation,

ḣ(t) = −
∫ t

0

f(t− t1)h(t1)dt1, (17)

with the initial condition h(0) = 1, f(t− t1) =
∫
J(ω)exp[i(ω0 − ω)(t− t1)]dω is related to the spectral density J(ω).

The Krause operators of this dynamics are given by K0(t) =

(
1 0
0 h(t)

)
and K1(t) =

(
0

√
1− |h(t)|2

0 0

)
. It is easily

verified that Ki=0,1(t) are incoherent operators. The initial state is given by

ρ(0) =

(
1− a b
b∗ a

)
, (18)

and the dynamics for ρ(0) is described by

ρ(t) = Φtρ(0) =

(
1− |h(t)|2a bh(t)
b∗h∗(t) |h(t)|2a

)
. (19)

In order to obtain the expression of CS(ρ(t)), we calculate the eigenvalues and eigenvectors of ρ(t). Denote√
(2a|h(t)|2 − 1)2 + 4|b|2|h(t)|2 = s̃(t). The eigenvalues of ρ(t) are

λ1 =
1 + s̃(t)

2
, λ2 =

1− s̃(t)

2
. (20)

Their normalized eigenvectors are

|λ1⟩ =

[
2bh(t)√

2s̃(t)(s̃(t) + 2a|h(t)|2 − 1)
,

√
s̃(t) + 2a|h(t)|2 − 1√

2s̃(t)

]T

, (21)
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|λ2⟩ =

[
−2bh(t)√

2s̃(t)(s̃(t)− 2a|h(t)|2 + 1)
,

√
s̃(t)− 2a|h(t)|2 + 1√

2s̃(t)

]T

. (22)

Substituting λ1, λ2 and their normalized eigenvectors into Eq.(1), we have

CS(ρ(t)) = 1−
(√1 + s̃(t)

2

s̃(t)− 2a|h(t)|2 + 1

2s̃(t)
+

√
1− s̃(t)

2

s̃(t) + 2a|h(t)|2 − 1

2s̃(t)

)2

+
(√1 + s̃(t)

2

s̃(t) + 2a|h(t)|2 − 1

2s̃(t)
+

√
1− s̃(t)

2

s̃(t)− 2a|h(t)|2 + 1)

2s̃(t)

)2

. (23)

After some algebraic calculation, the derivative of CS(ρ(t)) is given by

d
dtCS(ρ(t)) =

−4|b|2|h(t)|2 d
dt |h(t)|[|h(t)|(a−|b|2)(4a2|h(t)|4−8a|h(t)|2+3)−4|b|4|h(t)|3+(4a2|h(t)|4−1)

√
a−a2|h(t)|2−|b|2|]√

a−a2|h(t)|2−|b|2(4a2|h(t)|4−4a|h(t)|2+4|b|2|h(t)|2+1)2
.

Set g̃(t) =
[|h(t)|(a−|b|2)(4a2|h(t)|4−8a|h(t)|2+3)−4|b|4|h(t)|3+(4a2|h(t)|4−1)

√
a−a2|h(t)|2−|b|2|]√

a−a2|h(t)|2−|b|2(4a2|h(t)|4−4a|h(t)|2+4|b|2|h(t)|2+1)2
. One can prove that g̃(t) < 0,

see Appendix A. Then the non-Markovianity measure NCS (Φ
ICPTP
t ) is given by

NCS
(ΦICPTP

t ) = −
∫

d
dt |h(t)|>0

4|b|2|h(t)|2g̃(t) d
dt

|h(t)|dt. (24)

The condition NCS (Φ
ICPTP
t ) > 0 is equivalent to d

dt |h(t)| > 0, which also matches with the Non-Markovianity

measures based on the dynamical divisibility, quantum trace distance, and quantum mutual information for amplitude

damping channel [2, 3, 13, 14].

C. Random unitary channel

Now consider a qubit state undergoing random unitary noise. The dynamics is described by the master equation,

d

dt
ρ(t) =

3∑
i=1

γi(t)(σiρ(t)σi − ρ(t)), (25)

where γi(t) are suitable real functions, and σi are the standard three Pauli matrices. Denote the initial state of the

open quantum system as

ρ(0) =
1

2

(
1 + r3 r1 − ir2
r1 + ir2 1− r3

)
. (26)

The evolution of the state is give by

ρ(t) =
1

2
I+

1

2
e−2(Γ1(t)+Γ2(t))

(
r3 ω(t)

ω∗(t) −r3

)
, (27)

where ω(t) = e−2Γ3(t)(e2Γ1(t)r1 − ie2Γ2(t)r2). It is generally difficult to give the mathematical form of the non-

Markovianity of random unitary channel for arbitrary initial states by using the quantum coherence via skew infor-

mation.

Proposition 1. For an initial qubit state ρ(0) undergoing some qubit channels, if the output state ρ(t) has the form

ρ(t) =

(
1
2 bf(t)

b∗f∗(t) 1
2

)
, then d

dtCS(ρ(t)) > 0 is equivalent to d
dtCl1(ρ(t)) > 0, where Cl1(ρ) = 2|b||f(t)| is l1 norm of

coherence [21].
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According to the definition of quantum coherence via skew information, we have that CS(ρ(t)) =
1
2−

√
1−|b|2|f(t)|2

4 =

1
2 −

√
4−C2

l1
(ρ(t))

8 and d
dtCS(ρ(t)) =

Cl1
(ρ(t))

8
√

4−C2
l1
(ρ(t))

d
dtCl1(ρ(t)), thus

d
dtCS(ρ(t)) > 0 is equivalent to d

dtCl1(ρ(t)) > 0.

Since the criterion of detecting non-Markovianity using l1 norm of coherence is γ1(t)+ γ3(t) < 0 and γ2(t)+ γ3(t) < 0

Ref. [30], if the output state is the form of ρ(t) given in Proposition 1, then the criteria of detecting non-Markovianity

by quantum coherence via skew information is also γ1(t) + γ3(t) < 0 and γ2(t) + γ3(t) < 0. It is not completely

equivalent to the measure based on dynamical divisibility, in which the criteria of detecting non-Markovianity is

γ1(t) + γ2(t) < 0, γ1(t) + γ3(t) < 0 and γ2(t) + γ3(t) < 0 [35].

IV. QUANTUM NON-MARKOVIANITY MEASURE BASED ON MODIFIED TSALLIS RELATIVE α
ENTROPY OF COHERENCE

In this section, we study the detection of non-Markovianity based on modified Tsallis relative α entropy of coherence

C̃α(ρ) =
1

α−1 (
∑

j⟨j|ρα|j⟩
1
α − 1) [33]. Generally it is difficult to obtain analytical results for arbitrary α. We consider

the case for α = 2. Here we use the same dynamics maps and initial state as the ones considered in the previous

section.

[Phase damping channel] Consider the quantum dynamical maps Eq.(8) and the initial state Eq.(9). For α = 2,

according to the Eq.(4), we have

C̃2(ρ(t)) =

√
1 + 2a+ s2(t)

2
+

√
1− 2a+ s2(t)

2
− 1, (28)

where s(t) =
√
|b|2f2(t) + a2. After some algebraic calculation, we get

d

dt
C̃2(ρ(t)) = −

γ(t)|b|2f2(t)[
√
s2(t) + 2a+ 1 +

√
s2(t)− 2a+ 1]√

s2(t) + 2a+ 1
√
s2(t)− 2a+ 1

. (29)

The non-Markovianity measure NC̃2
(ΦICPTP

t ) is given by

NC̃2
(ΦICPTP

t ) = −
∫
γ(t)<0

γ(t)
|b|2f2(t)[

√
s2(t) + 2a+ 1 +

√
s2(t)− 2a+ 1]√

s2(t) + 2a+ 1
√
s2(t)− 2a+ 1

dt. (30)

It is easy to verify that NC̃2
(ΦICPTP

t ) > 0 is equivalent to γ(t) < 0.

[Amplitude damping channel] Consider the quantum dynamical maps Eq.(17) and the initial state Eq.(19). From

Eq.(4), we have

C̃2(ρ(t)) =
√
(1− |h(t)|2a)2 + |b|2|h(t)|2 +

√
|b|2|h(t)|2 + |h(t)|4a2 − 1, (31)

and

d
dt C̃2(ρ(t)) =

|h(t)| d
dt |h(t)|[(2a

2|h(t)|2+|b|2)(
√

1−2a|h(t)|2+a2|h(t)|4+|b|2|h(t)|2+(1−2a)
√

a2|h(t)|4+|b|2|h(t)|2)]√
a2|h(t)|4+|b|2|h(t)|2

√
1−2a|h(t)|2+a2|h(t)|4+|b|2|h(t)|2

.

Let G(t) =
(2a2|h(t)|2+|b|2)(

√
1−2a|h(t)|2+a2|h(t)|4+|b|2|h(t)|2+(1−2a)

√
a2|h(t)|4+|b|2|h(t)|2)√

a2|h(t)|4+|b|2|h(t)|2
√

1−2a|h(t)|2+a2|h(t)|4+|b|2|h(t)|2
, the proof ofG(t) > 0 is provided

in appendix, then d
dt C̃2(ρ(t)) > 0 is equivalent to d

dt |h(t)| > 0, and

NC̃2
(ΦICPTP

t ) =

∫
d
dt |h(t)|>0

|h(t)|G(t) d
dt

|h(t)|dt. (32)
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FIG. 1: Cα(ρ(t)) and C̃α(ρ(t)) in terms of t for different α (α = 0.2, 0.8, 1.2, 1.8) with W = 14.
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FIG. 2: Cα(ρ(t)) and C̃α(ρ(t)) in terms of t for small α (α = 0.001) and big α (α = 2) with W = 14.

Clearly, the non-Markovianity measure NC̃2
(ΦICPTP

t ) also agrees with the Non-Markovianity measures based on the

dynamical divisibility, quantum trace distance, and quantum mutual information for phase damping and amplitude

damping channel [2, 3, 13, 14].

For other values of α, we consider a qubit maximally coherent state which undergoes the following dynamics with

system Hamiltonian H = HS + HB + HI , where the systems’ Hamiltonian HS = ω0σz/2, HB =
∑

k ωkb
†
kbk, and

interaction Hamiltonian HI =
∑

k σz

(
gkb

†
k + g∗kbk

)
. Here ω0 denotes the transition frequency of the atom with

ground state |0⟩ and excited state |1⟩. The initial state is given as |ψ0⟩ = (|0⟩+ |1⟩)/
√
2. Given the spectral density

J(ω) = λW 2/
{
π
[
(ω − ω0)

2
+ λ2

]}
, where W is the transition strength and λ is the spectral width of the coupling,

we can obtain the master equation ρ̇IS(t) = γ(t)
[
σzρ

I
S(t)σz − ρIS(t)

]
, where the time-dependent decay rate γ(t) is

given by [36]

γ(t) =


4W 2 sinh( dt

2 )
d cosh( dt

2 )+λ sinh( dt
2 )
, W ≤ λ/2

4W 2 sin( dt
2 )

d cos( dt
2 )+λ sin( dt

2 )
, W > λ/2

(33)

with d =
√
|λ2 − 4W 2|.

In Fig. 1, we plot Cα(ρ(t)) and C̃α(ρ(t)) in terms of t for different α (α = 0.2, 0.8, 1.2, 1.8) withW = 14. As shown in

Fig. 1, there are many time intervals in which the monotonic decrease of Cα(ρ(t)) and C̃α(ρ(t)), have been changed to
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FIG. 3: Cα(ρ(t)) and C̃α(ρ(t)) in terms of t for different α (α = 0.001, 0.2, 1.2, 2) with small W (W = 0.5).
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FIG. 4: Cα(ρ(t)) and C̃α(ρ(t)) in terms of t for different W (W = 5, 10, 15, 20) with α = 0.2.
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FIG. 5: C2(ρ(t)), C̃2(ρ(t)), CS(ρ(t)), Cl1(ρ(t)) and CR(ρ(t)) in terms of t for W = 3.
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temporary increment. Therefore, Cα(ρ(t)) and C̃α(ρ(t)) can detect the non-Markovianity of this model. In Fig. 1(a),

we show that for small α, the ability to detect non-Markovianity by using Cα(ρ(t)) is weaken. Fig. 1(b) shows that

the ability to detect non-Markovianity by using C̃α(ρ(t)) keeps almost the same when the value of α changes.

In order to explain clearly about the impact of the change of α, we plot Cα(ρ(t)) and C̃α(ρ(t)) in terms of t for small

α (α = 0.001) with W = 14. In Ref. [32], the authors give the result that Cα(ρ(t)) is not comfortable for detection of

non-Markovianity for generalized amplitude damping channel when α is small. In Fig. 2(a), we also show that when

the value of α is small, Cα(ρ(t)) is not comfortable for detection of non-Markovianity for phase damping channel. As

a contrast, we also plot C̃α(ρ(t)) for small α. One can see that using C̃α(ρ(t)) to detect non-Markovianity is more

comfortable than Cα(ρ(t)). We also plot Cα(ρ(t)) and C̃α(ρ(t)) in terms of t for large α (α = 2). Figure 2(b) shows

that the large α is suitable for both Cα(ρ(t)) and C̃α(ρ(t)) to detect the non-Markovianity.

In Fig. 3, we plot Cα(ρ(t)) and C̃α(ρ(t)) in terms of t for different α (α = 0.001, 0.2, 1.2, 2) with W = 0.5. It is

shown that both Cα(ρ(t)) and C̃α(ρ(t)) do not detect the non-Markovianity in the weak coupling and Markovian

regime W ≤ 0.5.

In Fig. 4, we plot Cα(ρ(t)) and C̃α(ρ(t)) in terms of t for different W (W = 5, 10, 15, 20) with α = 0.2. It

is shown that, for both Cα(ρ(t)) and C̃α(ρ(t)) , with strong coupling and stronger non-Markovian regime W , the

non-Markovianity is more obviously measured.

In Fig. 5, we plot several coherence measures for W = 3. It is shown that, Cα(ρ(t)), C̃α(ρ(t)), CS(ρ(t)) and relative

entropy of coherence are not comfortable for detection of non-Markovianity except for the l1 norm of coherence.

V. SUMMARY

In this paper, we have given an alternative non-Markovianity measure of incoherent quantum dynamical maps,

based on quantum coherence via skew information. For phase damping and amplitude damping channels, we have

shown that the non-Markovianity measure is equivalent to the three previous measures of non-Markovianity, i.e.,

the measures based on the quantum trace distance, dynamical divisibility, and quantum mutual information. For

the random unitary channel, we also show that it is equivalent to the non-Markovianity measure based on l1 norm

of coherence for a class of output states and it is not completely equivalent to the measure based on dynamical

divisibility. As the quantum coherence via skew information is a special case of the modified Tsallis relative α entropy

of coherence, we then use the modified Tsallis relative α entropy of coherence to detect the non-Markovianity of

dynamics of quantum open systems, the results have shown that the modified Tsallis relative α entropy of coherence

can also detect non-Markovianity for phase damping and amplitude damping channels. We have numerically shown

that the modified Tsallis relative α entropy of coherenceare are more comfortable than the original Tsallis relative

α entropy of coherence for small α in detecting of non-Markovianity for amplitude damping and phase damping

channels.
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VI. APPENDIX

A. The proof of g̃(t) < 0

That
[|h(t)|(a−|b|2)(4a2|h(t)|4−8a|h(t)|2+3)−4|b|4|h(t)|3+(4a2|h(t)|4−1)

√
a−a2|h(t)|2−|b|2]√

a−a2|h(t)|2−|b|2(4a2|h(t)|4−4a|h(t)|2+4|b|2|h(t)|2+1)2
= g̃(t) < 0 implies that the numera-

tor [|h(t)|(a− |b|2)(4a2|h(t)|4 − 8a|h(t)|2 + 3)− 4|b|4|h(t)|3 + (4a2|h(t)|4 − 1)
√
a− a2|h(t)|2 − |b|2] < 0, which is true

since

[|h(t)|(a− |b|2)(4a2|h(t)|4 − 8a|h(t)|2 + 3)− 4|b|4|h(t)|3 + (4a2|h(t)|4 − 1)
√
a− a2|h(t)|2 − |b|2]

= |h(t)|(a− |b|2)[4(a|h(t)|2 − 1)2 − 1]− 4|b|4|h(t)|3 + (2a|h(t)|2 + 1)(2a|h(t)|2 − 1)
√
a− a2|h(t)|2 − |b|2

= (2a|h(t)|2 + 1)(2a|h(t)|2 − 1)[|h(t)|(a− |b|2) +
√
a− a2|h(t)|2 − |b|2]− 4|h(t)|[(a− |b|2)(2a|h(t)|2 − 1) + |b|4|h(t)|2]

= (2a|h(t)|2 + 1)(2a|h(t)|2 − 1)[|h(t)|(a− |b|2) +
√
a− a2|h(t)|2 − |b|2]− 4|h(t)|[|h(t)|2(a− |b|2)2 − (a− a2|h(t)|2 − |b|2)]

= [|h(t)|(a− |b|2) +
√
(a− a2|h(t)|2 − |b|2)][4a2|h(t)|4 − 1− 4a|h(t)|2 + 4|b|2|h(t)|2 + 4|h(t)|

√
a− a2|h(t)|2 − |b|2]

= [|h(t)|(a− |b|2) +
√
(a− a2|h(t)|2 − |b|2)]{−[4|h(t)|2(a− a2|h(t)|2 − |b|2)− 4|h(t)|

√
a− a2|h(t)|2 − |b|2 + 1]}

= [|h(t)|(a− |b|2) +
√
(a− a2|h(t)|2 − |b|2)]{−[4|h(t)|2(

√
a− a2|h(t)|2 − |b|2 − 1)2]} < 0. (34)

B. The proof of G(t) > 0

If
[(2a2|h(t)|2+|b|2)(

√
a2|h(t)|4+|b|2|h(t)|2+

√
1−2a|h(t)|2+a2|h(t)|4+|b|2|h(t)|2−2a

√
a2|h(t)|4+|b|2|h(t)|2)]√

a2|h(t)|4+|b|2|h(t)|2
√

1−2a|h(t)|2+a2|h(t)|4+|b|2|h(t)|2
= G(t) > 0,

then the numerator [(2a2|h(t)|2 + |b|2)(
√
a2|h(t)|4 + |b|2|h(t)|2 +

√
1− 2a|h(t)|2 + a2|h(t)|4 + |b|2|h(t)|2 −

2a
√
a2|h(t)|4 + |b|2|h(t)|2)] > 0.

Since (2a2|h(t)|2+|b|2)(
√
a2|h(t)|4 + |b|2|h(t)|2+

√
1− 2a|h(t)|2 + a2|h(t)|4 + |b|2|h(t)|2−2a

√
a2|h(t)|4 + |b|2|h(t)|2)

=
(2a2|h(t)|2+|b|2)2(

√
a2|h(t)|4+|b|2|h(t)|2+

√
1−2a|h(t)|2+a2|h(t)|4+|b|2|h(t)|2)2−4a2(a2|h(t)|4+|b|2|h(t)|2)

(2a2|h(t)|2+|b|2)(
√

a2|h(t)|4+|b|2|h(t)|2+
√

1−2a|h(t)|2+a2|h(t)|4+|b|2|h(t)|2)+2a
√

a2|h(t)|4+|b|2|h(t)|2
, we only need to analyze

the numerator. We have

(2a2|h(t)|2 + |b|2)2(
√
a2|h(t)|4 + |b|2|h(t)|2 +

√
1− 2a|h(t)|2 + a2|h(t)|4 + |b|2|h(t)|2)2

−4a2(a2|h(t)|4 + |b|2|h(t)|2)

= (4a4|h(t)|4 + |b|4 + a2|b|2|h(t)|2)(2a2|h(t)|4 + 2|b|2|h(t)|2 − 2a|h(t)|2

+2
√
a2|h(t)|4 + |b|2|h(t)|2

√
1− 2a|h(t)|2 + a2|h(t)|4 + |b|2|h(t)|2) + |b|4.

Because (4a4|h(t)|4 + |b|4 + a2|b|2|h(t)|2) > 0 and |b|4 > 0, we only need to consider

2a2|h(t)|4 + 2|b|2|h(t)|2 − 2a|h(t)|2 + 2
√
a2|h(t)|4 + |b|2|h(t)|2

√
1− 2a|h(t)|2 + a2|h(t)|4 + |b|2|h(t)|2

= 2a|h(t)|2(a|h(t)|2 − 1) + 2|b|2|h(t)|2 + 2
√
a2|h(t)|4 + |b|2|h(t)|2

√
(1− a|h(t)|2)2 + |b|2|h(t)|2

≥ 2a|h(t)|2(a|h(t)|2 − 1) + 2|b|2|h(t)|2 + 2
√
a2|h(t)|4 + |b|2|h(t)|2(1− a|h(t)|2)

= (2
√
a2|h(t)|4 + |b|2|h(t)|2 − 2a|h(t)|2)(1− a|h(t)|2) + 2|b|2|h(t)|2,

where the inequality is true if and only if |b|2|h(t)|2 = 0, and the initial state is an incoherent one. Thus we have
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2a2|h(t)|4+2|b|2|h(t)|2−2a|h(t)|2+2
√
a2|h(t)|4 + |b|2|h(t)|2

√
1− 2a|h(t)|2 + a2|h(t)|4 + |b|2|h(t)|2 > 0, which implies

that G(t) > 0.
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