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RECIPROCAL MAXIMUM LIKELIHOOD DEGREES OF

DIAGONAL LINEAR CONCENTRATION MODELS

CHRISTOPHER EUR - TARA FIFE

JOSÉ ALEJANDRO SAMPER - TIM SEYNNAEVE

We show that the reciprocal maximal likelihood degree (rmld) of a

diagonal linear concentration model L ⊆ Cn of dimension r is equal to

(−2)rχM( 1
2
), where χM is the characteristic polynomial of the matroid M

associated to L. In particular, this establishes the polynomiality of the

rmld for general diagonal linear concentration models, positively answer-

ing a question of Sturmfels, Timme, and Zwiernik.

1. Introduction

Let Sn be the space of (real or complex) n× n symmetric matrices, and S
n
>0

the subset consisting of real positive definite symmetric matrices. For a fixed

S ∈ S
n
>0, the log-likelihood function ℓS : Sn

>0 → R is defined by

ℓS(K) := logdetK − trace(S ·K).

For a subvariety L ⊆ S
n, the maximum likelihood (ML) degree mld(L) is

the number of invertible complex critical points of ℓS on the smooth locus of

L, counted with multiplicity, for a general choice of S. Writing L−1 ⊆ S
n for

the subvariety obtained as the closure of {K−1 ∈ S
n | K ∈ L invertible}, one

defines the reciprocal maximum likelihood degree rmld(L) as the number of

invertible complex critical points of ℓS on the smooth loci of L−1, counted with

multiplicity.
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Computing (reciprocal) ML degrees arises in statistical applications, where

S
n
>0 is often considered as the set of concentration matrices of multivariate nor-

mal distributions [17]. We caution that the terminology here regarding recipro-

cal vs. non-reciprocal ML degree is the opposite of that in [1, 16], where S
n
>0

is considered as the set of covariance matrices (inverses of concentration matri-

ces). In particular, our rmld is the ML degree of a linear covariance model. Our

convention here agrees with [5, 8, 10, 17].

Let [n] = {1, . . . ,n}. A diagonal linear concentration model is a linear

subspace L ⊆ C
[n], where C

[n] is identified with the space of diagonal matrices

in S
n. Let M be the matroid on [n] whose independent subsets are I ⊆ [n] such

that the composition C
I →֒ C

[n]
։ L∨ is injective. Without loss of generality,

we always assume that L is not contained in a coordinate hyperplane, or equiv-

alently, that M is loopless, since in that case rmld(L) = 0 from the definition.

Our main result is the formula for the reciprocal ML degree of L in terms of M.

Theorem 1.1. Let L⊆C
[n] be a diagonal linear concentration model of dimen-

sion r, and M the associated matroid of rank r on [n]. Then we have

rmld(L) = (−2)rχM(1
2
),

where χM is the characteristic polynomial of M.

In [16, 17], the (non-reciprocal) ML degree of L was shown to be χM(0).
Computing the reciprocal ML degree presents fundamentally new challenges;

see Remark 5.1 for a comparison.

From computational experiments, the authors of [16] asked whether the re-

ciprocal ML degree of a general diagonal linear concentration model of dimen-

sion r in C
[n] is a polynomial in n of degree r−1. Evaluating our Theorem 1.1

at uniform matroids answers their question positively.

Corollary 1.2. Let L ⊆ C
[n] be a general linear concentration model of dimen-

sion r. Then we have

rmld(L) =
r

∑
i=1

(
n−i−1

r−i

)
2r−i.

For instance, when r = 3 we have 2n2 − 8n+ 7, and when r = 4 we have

4/3n3 −10n2 +68/3n−15, as predicted in [16] from numerical computations.

To prove Theorem 1.1, we use the following alternate description of the

reciprocal ML degree, obtained by a standard computation in multivariable cal-

culus. Let L⊥ denote the orthogonal complement of a subspace L ⊆ C
[n] under

the standard pairing

〈(x1, . . . ,xn),(y1, . . . ,yn)〉 :=
n

∑
i=1

xiyi.
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Proposition 1.3. [16, Proposition 4.3] The reciprocal ML degree of a linear

subspace L ⊆ C
[n] is equal to the number of solutions (x1, . . . ,xn) ∈ (C∗)[n],

counted with multiplicity, to the following system of equations, where s1, . . . ,sn ∈
C are generic parameters:

(x−1
1 , . . . ,x−1

n ) ∈ L and (s1x2
1 − x1, . . . ,snx2

n − xn) ∈ L⊥.

Thus, we prove Theorem 1.1 by establishing the following generalization.

Theorem 1.4. For an r-dimensional linear subspace L⊆C
[n], a generic choice

of parameters s1, . . . ,sn ∈ C, and any integer d ≥ 1, the number of solutions

(x1, . . . ,xn) ∈ (C∗)[n], counted with multiplicity, to the system of equations

(x−1
1 , . . . ,x−1

n ) ∈ L and (s1xd
1 − x1, . . . ,snxd

n − xn) ∈ L⊥ (†)

is equal to

(−d)rχM( 1
d
), or equivalently, drTM(1− 1

d
,0),

where χM is the characteristic polynomial and TM is the Tutte polynomial of the

matroid M associated to L.

Remark 1.5. For an r-dimensional subspace L ⊆ C
[n], let U(L) := L∩ (C∗)[n]

be the hyperplane arrangement complement, and M the associated matroid.

Then the Poincaré polynomial of U(L)

PU(L)(q) := ∑
i≥0

(
rank Hi(U(L);Z)

)
qi

coincides with polynomial (−q)rχM(− 1
q
) [11]. In particular, Theorem 1.1 states

that rmld(L) = (−1)rPU(L)(−2). This echoes the result of [7], which showed

that, for a different log-likelihood function (from discrete statistical models), the

ML degree of a smooth very affine variety U is its signed topological Euler char-

acteristic (−1)dimU PU(−1). However, ML degrees in our case are not topolog-

ical invariants of very affine varieties: Observe that L−1 ∩ (C∗)[n] ≃ L∩ (C∗)[n]

but in general rmld(L−1) = mld(L) = χM(0) 6= (−2)rχM(1
2
) = rmld(L). It

may still be interesting to find other families of subvarieties L ⊆ S
n such that

rmld(L) = (−1)dimLPU(L)(−2), where U(L) := {K ∈ L | K invertible}. For

example, general pencils of conics form one such family [3, 5].

Outline. In Section 2 we review properties of reciprocal linear spaces L−1, and

introduce score varieties, which together with L−1 encode the system of equa-

tions (†). After establishing two key technical lemmas in Section 3, in Section 4

we compute the number of solutions to the system of equations (†) in C
[n], in-

stead of in (C∗)[n], in two different ways: One is a Bézout-like computation,

and the other is a summation, with each summand corresponding to a set of so-

lutions with specified support (non-zero coordinates). An inclusion-exclusion

argument in Section 5 then yields the proof of Theorem 1.4.
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Notations

For an affine subvariety X ⊆ C
n, we write X ⊆ P

n for its projective closure. If

X ⊆ C
n is defined by a homogeneous ideal, then we write PX ⊆ P

n−1 for its

projectivization. For a point p ∈ X ⊆C
[n], we write TCpX ⊆C

[n] for the tangent

cone of X at p. For p=(p1, . . . , pn)∈C
[n], we write supp(p) := {i∈ [n] | pi 6= 0}

for its support, and for I ⊆ [n], write p|I for the projection of p onto C
I ⊆ C

[n].

2. Reciprocal linear spaces and score varieties

We set notations concerning matroids associated to linear subspaces, and re-

view necessary facts about reciprocal linear spaces. We assume familiarity with

matroid theory, and refer to [12, 19] as standard references.

Let us fix a linear subspace L ⊆ C
[n] of dimension r. Let A be an r × n

matrix whose row-span equals L. We will often use the fact that the minimal

sets among supports of elements in the row-span of A form the cocircuits of M.

For a subset I ⊆ [n], let L|I ⊆ C
I be the image of L under the coordinate

projection C
[n]

։ C
I , and let L/I be the intersection of L with the coordinate

subspace {0}I ×C
[n]\I , considered as a subspace of C[n]\I . The matroid of L|I is

the restriction M|I, whereas the matroid of L/I is the contraction M/I.

The reciprocal linear space L−1 of L is the Zariski closure in C
[n] of

{(x1, . . . ,xn) ∈ (C∗)[n] | (x−1
1 , . . . ,x−1

n ) ∈ L}. Note that L−1 ∩ (C∗)[n] is smooth,

being isomorphic to L∩ (C∗)[n]. For I ⊆ [n], we write L−1
|I for (L|I)

−1, and

likewise write L−1
/I

= (L/I)
−1. We collect together in the following theorem the

known properties of L−1 that we will need.

Theorem 2.1. Let L−1 be the reciprocal linear space of L⊆ C
[n].

(a) [18] The defining ideal of L−1 is homogeneous of degree |µ(M)|, where

µ(M) := χM(0) the Möbius invariant of the matroid M.

(b) [13, Proposition 7] The defining ideal of L−1 is Cohen-Macaulay, with

any basis of L⊥ forming a system of parameters, i.e. L−1 ∩L⊥ = {0}.

(c) [13, Proposition 5] The intersection L−1∩((C∗)F ×{0}[n]\F ) is nonempty

if and only if F ⊆ [n] is a flat of M, and in that case, one has

L−1 ∩ ((C∗)F ×{0}[n]\F ) = (L−1
|F ∩ (C∗)F)×{0}[n]\F .

(d) [14, Theorem 24] For a flat F ⊆ [n] and a point p∈L−1 with supp(p)=F,

the tangent cone of L−1 at p is the product

TCpL
−1 = TCp|FL

−1
|F ×L−1

/F
≃ L|F ×L−1

/F
.
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All four statements in Theorem 2.1 can be derived easily from the Gröbner

basis for the defining ideal of L−1 computed in [13, Theorem 4]. In [14],

the statement of Theorem 2.1.(d) originally reads TCpL
−1 = p2

|FL|F ×L−1
/F

,

where p2L denotes the linear subspace {(p2
1x1, . . . , p2

nxn) | (x1, . . . ,xn) ∈ L}. It

is straightforward to verify that TCp|FL
−1
|F = p2

|FL|F .

The reciprocal linear space L−1 encodes the left half of the system of equa-

tions in Equation (†). Let us now consider the variety encoding the condi-

tion (s1xd
1 − x1, . . . ,snxd

n − xn) ∈ L⊥. For an integer d ≥ 1 and a parameter

s = (s1, . . . ,sn) ∈ C
n, we define the score variety as

Y (L,s,d) := {(x1, . . . ,xn) ∈C
[n] | (s1xd

1 − x1, . . . ,snxd
n − xn) ∈ L⊥}.

We will simply write Y when we trust that no confusion will arise. We note here

that score varieties are smooth for a generic choice of s ∈ C
n.

Lemma 2.2. For d ≥ 1 and a generic choice of (s1, . . . ,sn) ∈ C
n, the score

variety Y is smooth.

Proof. If d = 1, then Y is linear, so suppose d ≥ 2. Let A be the r× n matrix

whose row span equals L, and let g1, . . . ,gr be the polynomials obtained by

multiplying the rows of A with (s1xd
1 − x1, . . . ,snxd

n − xn)
T . These minimally

generate the defining ideal IY ⊆ C[x1, . . . ,xn] of Y . The Jacobian matrix with

respect to these minimal generators is

Jac(x) = A ·diag(ds1xd−1
1 −1, . . . ,dsnxd−1

n −1), (1)

i.e. matrix A whose i-th column is scaled by dsix
d−1
i − 1 for each 1 ≤ i ≤ n.

Suppose now that Jac(x) is has rank < r for some x ∈ C
n, that is, the restriction

M|I of the matroid M to the set I = {i ∈ [n] | dsix
d−1
i −1 6= 0} has rank < r. This

happens if and only if I is contained in a hyperplane flat of M, or equivalently,

the subset J := [n]\ I contains a cocircuit of M. As the minimal supports of the

row-space of A constitute the cocircuits of M, let v = (v1, . . . ,vn) ∈ C
n be the

element in the row-space of A whose support C∗ = supp(v) ⊆ [n] is a cocircuit

of M contained in J. Then we have

v · (s1xd
1 − x1, . . . ,snxd

n − xn)
T = ∑

i∈C∗

vi(six
d
i − xi) = ( 1

d
−1) ∑

i∈C∗

vixi

where last equality follows from dsix
d−1
i − 1 = 0 for i ∈ J. This quantity need

be zero if x ∈ Y . We claim that for a general choice of (s1, . . . ,sn) this quantity

can never be zero: Consider the set

Z := {(ζ1, . . . ,ζn) ∈ C
n | ζi is a (d −1)-th root of 1

dsi
if i ∈C∗}.

For a general choice of (s1, . . . ,sn), no element of Z satisfies ∑i∈C∗ vixi = 0.
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3. Two genericity lemmas

We now present the two key technical lemmas for our future intersection mul-

tiplicity computations. Both make essential use of the fact that the parameter

s ∈C
n can be chosen generically, and that C has characteristic zero. To state the

first lemma, let us define a subscheme of C[n]

Y∞(L,s,d) := {(x1, . . . ,xn) ∈ C
[n] | (s1xd

1 , . . . ,snxd
n) ∈ L⊥}.

Lemma 3.1. For a generic choice of s ∈ C
n and any integer d ≥ 1, one has

L−1 ∩Y∞(L,s,d) = {0}.

Proof. Theorem 2.1.(c) and the definition of Y∞ implies that for F ⊆ [n],

L−1 ∩Y∞ ∩ ((C∗)F ×{0}[n]\F ) = (L−1
|F ∩Y∞(L|F ,s|F ,d)∩ (C∗)F)×{0}[n]\F

if F is a flat of M, and empty otherwise. Thus, it suffices to show that L−1 ∩
Y∞(L,s,d)∩ (C∗)[n] is empty for a generic choice of s ∈ C

n. Without loss of

generality, we may assume that the r×n matrix A is of the form [Ir | A′], where

Ir is the r×r identity matrix. For 1 ≤ i ≤ r, let a′i be the i-th row of A′. The ideal

of Y∞ is by definition minimally generated by

d= {six
d
i −a′i · (sr+1xd

r+1, . . . ,snxd
n)

T | 1 ≤ i ≤ r}.

Fixing a generic choice of sr+1, . . . ,sn, and letting s1, . . . ,sr vary freely, for each

i = 1, . . . ,r we may consider six
d
i − a′i · (sr+1xd

r+1, . . . ,snxd
n)

T as a pencil di of

hypersurfaces in C
[n]. Note that the base locus of the pencil di is contained in

the i-th coordinate hyperplane. We thus obtain a map L−1 ∩ (C∗)[n] → (P1)r of

smooth varieties. By generic smoothness [6, III.10.7], the fiber over a generic

point of (P1)r, which is the intersection L−1 ∩Y∞(L,s,d)∩ (C∗)[n] for the cor-

responding choice of s ∈C
n, is either empty or 0-dimensional. The intersection

L−1 ∩Y∞(L,s,d)∩ (C∗)[n] cannot be 0-dimensional since the ideals of L−1 and

Y∞ are both homogeneous, and hence must be empty.

Remark 3.2. When s = (1, . . . ,1) and d = 1, Lemma 3.1 is the second half of

Theorem 2.1.(b), which was established by an explicit Gröbner basis computa-

tion. For d ≥ 2 however, the lemma fails in general with s = (1, . . . ,1).

Lemma 3.3. For a generic choice of s ∈C
n and any integer d ≥ 1, the intersec-

tion L−1 ∩Y (L,s,d)∩ (C∗)[n] is either empty or smooth of dimension 0.

Proof. The proof is similar to that of Lemma 3.1. Without loss of generality,

we again assume that the r× n matrix A is of the form [Ir | A′], where Ir is the
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r× r identity matrix. For 1 ≤ i ≤ r, let a′i be the i-th row of A′. The ideal of Y is

minimally generated by

d= {(six
d
i − xi)−a′i · (sr+1xd

r+1 − xr+1, . . . ,snxd
n − xn)

T | 1 ≤ i ≤ r}.

Fixing a generic choice of sr+1, . . . ,sn, and letting s1, . . . ,sr vary freely, for each

i = 1, . . . ,r we may consider (six
d
i − xi)− a′i · (sr+1xd

r+1 − xr+1, . . . ,snxd
n − xn)

T

as a pencil di of hypersurfaces in C
[n]. Note that the union of the base loci

of d1, . . . ,dr is contained in the union of the coordinate hyperplanes. Thus,

we obtain a map L−1 ∩ (C∗)[n] → (P1)r of smooth varieties, and by generic

smoothness, the general fiber, which is the intersection L−1 ∩Y ∩ (C∗)[n] for a

generic choice of s ∈C
n, is either empty or smooth of dimension 0.

Let us now denote

D(L,d) := the degree of the (empty or 0-dimensional) subscheme

L−1 ∩Y(L,s,d)∩ (C∗)[n] ⊂ C
[n]

for a generic choice of s∈C
n, which is equal to the number of points in the inter-

section since it is smooth by Lemma 3.3. Theorem 1.4 is now equivalently stated

as D(L,d) = (−d)rχM( 1
d
), and Proposition 1.3 states that D(L,2) = rmld(L).

4. Total intersection multiplicity

We now compute the degree of the intersection L−1∩Y (L,s,d) as a subscheme

of C[n] in two different ways. First, we have a Bézout-like computation.

Proposition 4.1. For a generic choice of s∈C
n, the intersection L−1∩Y(L,s,d)

is a 0-dimensional scheme of degree dr|µ(M)|.

Proof. For i= 1, . . . ,r, let f i ∈C[x0,x1, . . . ,xn] be the homogeneous polynomial

obtained as i-th row of A times (s1xd
1 − x1xd−1

0 , . . . ,snxd
n − xnxd−1

0 )T . We first

claim that ( f 1, . . . , f r) forms a regular sequence on the projective closure L−1 ⊂
P

n. Since the projective variety L−1 is (arithmetically) Cohen-Macaulay by

Theorem 2.1.(b), it suffices to show that the intersection L−1 ∩V ( f 1, . . . , f r)
is 0-dimensional, as every system of parameters in a standard graded Cohen-

Macaulay ring is a regular sequence [2, Theorem 2.1.2].

At the hyperplane at infinity, the intersection V (x0)∩L−1 ∩V ( f 1, . . . , f r) is

isomorphic to PL−1 ∩PY∞, which is empty for a generic s ∈ C
n by Lemma 3.1.

On the complement of the hyperplane at infinity, the intersection is equal to

L−1 ∩Y , since the dehomogenizations of the polynomials f 1, . . . , f r give the
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defining equations of Y . From Theorem 2.1.(c) and the definition of Y (L,s,d),
it follows that

L−1 ∩Y ∩ ((C∗)F ×{0}[n]\F ) = (L−1
|F ∩Y (L|F ,s|F ,d)∩ (C∗)F)×{0}[n]\F

if F ⊆ [n] is a flat or empty otherwise, and thus Lemma 3.3 applied to each

flat F implies that L−1 ∩Y is 0-dimensional. Thus, the degree d polynomials

( f 1, . . . , f r) form a regular sequence on L−1, and hence the degree of L−1 ∩
V ( f 1, . . . , f r) is dr deg(L−1). As the ideal of L−1 homogeneous, the degrees

of PL−1 and L−1 are equal, with the value being |µ(M)| by Theorem 2.1.(a).

Lastly, since L−1 ∩V ( f 1, . . . , f r) is empty at the hyperplane at infinity, the de-

gree of the intersection is equal to the degree of L−1 ∩Y (L,s,d).

We now compute the degree of L−1 ∩Y (L,s,d) as the sum of contributions

from the various strata of L−1. First, we need the following notation. Note that

a 0-dimensional subscheme X ⊂ C
[n] is a union

⋃
α Xα of irreducible (possibly

non-reduced) components Xα , each of which is topologically a point (Xα)red in

C
[n]. For a subset I ⊆ [n], we write XF to be the subscheme of X defined as the

union of components of X whose support is F , i.e.

XF :=
⋃

{Xα | (Xα)red ∈ (C∗)F ×{0}[n]\F}.

Moreover, recall the notation that D(L,d) denotes the degree of the subscheme

L−1 ∩Y(L,s,d)∩ (C∗)[n] ⊂ C
[n] for a generic choice of s ∈ C

n.

Proposition 4.2. For a generic choice of s ∈C
n, and for a flat F ⊆ [n] of M, the

degree of (L−1 ∩Y(L,s,d))F ⊂ C
[n] is equal to D(L|F ,d) · |µ(M/F)|.

Proof. As topological spaces, the subscheme (L−1 ∩Y )F is equal to the inter-

section L−1∩Y ∩((C∗)F ×{0}[n]\F ), which is by Theorem 2.1.(c) isomorphic to

L−1
|F ∩Y (L|F ,s|F ,d)∩ (C∗)F , which as a scheme is a disjoint union of D(L|F ,d)

many smooth points by Lemma 3.3. It remains only to show that if p̃ is an

irreducible component in (L−1 ∩Y)F , then the degree of p̃ is |µ(M/F)|.
For this end, we recall [4, Proposition 1.29]: Suppose two subvarieties X and

X ′ of complementary dimensions in a smooth variety Z intersect dimensionally

properly. Then, the multiplicity of the intersection X ∩X ′ at a point q in the

intersection is equal to the product of the degrees of projectivized tangent cones

PTCqX and PTCqX ′, provided that PTCqX and PTCqX ′ are disjoint in PTqZ.

We apply this to L−1 and Y , which intersect dimensionally properly by

Proposition 4.1. Topologically p̃ is a point p ∈ (C∗)F ×{0}[n]\F . Combining

Theorem 2.1.(d) with Theorem 2.1.(a), one has that the degree of PTCpL
−1 is

equal to |µ(M/F)|. The degree of PTCpY is 1 since Y is smooth (Lemma 2.2).

Thus, we are done once we show that PTCpL
−1 and PTCpY are disjoint. This

is done in the following lemma.
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Lemma 4.3. Let p be a point in L−1 ∩Y ∩ ((C∗)F ×{0}[n]\F ) for a generic

choice of s ∈ C
n, and for a flat F ⊆ [n]. Then we have PTCpL

−1 ∩PTCpY = /0.

Proof. Let A be an r×n matrix whose row-span is L. As computed in the proof

of Lemma 2.2 in Equation (1), the tangent cone TCpY is equal to

ker
(
A ·diag(ds1 pd−1

1 −1, . . . ,dsn pd−1
n −1)

)
⊂ C

[n].

Since pi = 0 for i ∈ [n] \F , and since the cocircuits of the matroid M/F are

cocircuits of M contained in [n]\F , if x ∈ TCpY then x|[n]\F ∈L⊥
/F

⊂C
[n]\F . On

the other hand, by Theorem 2.1.(d) we have TCpL
−1 = TCp|FL

−1
|F ×L−1

/F
. Let us

now consider x ∈ TCpL
−1 ∩TCpY . We have x|[n]\F ∈ L⊥

/F
∩L−1

/F
= {0}, where

the equality follows from Theorem 2.1.(b), and thus x = x|F ×0. That x ∈ TCpY

now implies that x|F ∈ TCp|FY (L|F ,s|F ,d). Thus, we conclude x|F = 0, since

by Lemma 3.3 the intersection L−1
|F ∩Y (L|F ,s|F ,d) is smooth, and in particular

transversal at p|F , i.e. TCp|FL
−1
|F ∩TCp|FY (L|F ,s|F ,d) = {0}.

Combining Propositions 4.1 and 4.2 yields the following.

Corollary 4.4. For a generic choice of s ∈ C
n, we have

dr|µ(M)|= deg
(
L−1 ∩Y(L,s,d)

)
= ∑

F⊆[n]
a flat of M

D(L|F ,d)|µ(M/F)|.

5. Inclusion-exclusion

We now finish the proof of the main theorem by combining Corollary 4.4 with

an inclusion-exclusion argument. For the facts regarding the lattice of flats of a

matroid and the Möbius invariant used here, see [21].

Proof of Theorem 1.4. Write rk : 2[n] → Z for the rank function of the matroid

M associated to L. Let us recall that for a matroid M′ of rank r′, one has

(−1)r′µ(M′) = |µ(M′)|. Then, Corollary 4.4 states that

(−d)rk[n]µ(M) = ∑
F⊆[n]

a flat of M

(−1)rk[n]−rkFD(L|F ,d)µ(M/F),

or more generally, one has, for any flat F ⊆ [n] of M,

(−d)rkF µ(M|F) = ∑
F ′⊆F

a flat of M

(−1)rkF−rkF ′
D(L|F ′ ,d)µ(M|F/F ′).
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As µ(M|F/F ′) is the value of the Möbius function µ(F ′,F) on the lattice of

flats of M, applying the Möbius inversion formula [15, Proposition 3.7.1] (with

f (F) = drkF µ(M|F) and g(F) = (−1)rkFD(L|F ,d)) yields

(−1)rkFD(L|F ,d) = ∑
F ′⊆F

a flat of M

drkF ′
µ(M|F ′).

Now, letting F = [n] and noting rk[n] = r, we have

(−1)rD(L,d) = dr ∑
F ′⊆[n]

a flat of M

( 1
d
)r−rkF ′

µ(M|F ′) = drχM( 1
d
),

so that D(L,d) = (−d)rχM( 1
d
) = drTM(1− 1

d
,0) as desired.

Remark 5.1. For the non-reciprocal ML degree mld(L), a standard computa-

tion similar to the one that gives Proposition 1.3 (see [16, 17]) yields

mld(L) = deg
(
L−1 ∩Y (L,s,d = 0)∩ (C∗)[n]

)
=D(L,d = 0).

One can hence recover [17, Corollary 3], which states mld(L) = |µ(M)|, by

minor modifications of our arguments here. This case is in fact simpler, with

no need for the consideration of tangent cones as was done in Proposition 4.2,

because the intersection L−1∩Y (L,s,d) lies entirely in (C∗)[n] when d = 0. We

emphasize that L−1 ∩Y (L,s,d) never lies entirely in (C∗)[n] when d ≥ 1.

Remark 5.2. Combining Theorem 1.4 with the “recipe formula” for Tutte-

Grothendieck invariants of matroids (see for instance [20, Theorem 2.16]), one

has that D(L,d) for d ≥ 1 satisfies the following deletion-contraction relation

given an element e ∈ [n]:

D(L,d) =





0 if e is a loop,

(d −1) ·D(L/e,d) if e is a coloop,

D(L\e,d)+d ·D(L/e,d) if e neither loop nor coloop,

where the base cases are D(L = C
[1],d) = 1 and D(L = {0} ⊂ C

[1],d) = 0.

From this relation, it is easy to verify that the following are equivalent:

(i) D(L,2) = rmld(L) = 1,

(ii) M is a partition matroid (i.e. every component of M has rank 1),

(iii) mld(L) = |µ(M)|= 1, and

(iv) L−1 is linear.
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It may be interesting to find a proof of Theorem 1.4 that directly reflects the

deletion-contraction relation above geometrically.

Proof of Corollary 1.2. For an r-dimensional general subspace L⊆C
[n], the as-

sociated matroid is the uniform matroid Ur,n, for which the Tutte polynomial has

the following formula (see for instance [9])

TUr,n(x,y) =
r

∑
i=1

(
n−i−1

r−i

)
xi +

n−r

∑
j=1

(
n− j−1

r−1

)
y j.

Thus, for a general L, Theorem 1.4 implies that

D(L,d) = drTUr,n

(
1− 1

d
,0
)
= dr

r

∑
1=1

(
n−i−1

r−i

)(
1− 1

d

)i
.

Evaluating at d = 2 gives us

rmld(L) = 2r
r

∑
i=1

(
n−i−1

r−i

)(
1
2

)i
=

r

∑
i=1

(
n−i−1

r−i

)
2r−i,

as desired.

Remark 5.3. It is interesting to note that, for diagonal linear concentration mod-

els, our formula Theorem 1.1 implies that rmld(L) is always odd unless it is

zero. The same pattern seems to persist for reciprocal ML degrees of general

linear concentration models [16, Table 1].
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