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We provide a characterization of multiqubit entanglement monogamy and polygamy constraints
in terms of negativity. Using the square of convex-roof extended negativity (SCREN) and the
Hamming weight of the binary vector related with the distribution of subsystems proposed in [Phys.
Rev. A 97,012334], we provide a new class of monogamy inequalities of multiqubit entanglement
based on the αth power of SCREN for α ≥ 1, and polygamy inequalities for 0 ≤ α ≤ 1 in terms
of squared convex-roof extended negativity of assistance (SCRENoA). For the case α < 0, we give
the corresponding polygamy and monogamy relations for SCREN and SCRENoA, respectively. We
also show that these new inequalities give rise to tighter constraints than the existing ones.

I. INTRODUCTION

Quantum entanglement [1–6] is one of the most intrin-
sic feature of quantum mechanics, which distinguishes
the quantum from the classical world. A distinct prop-
erty of quantum entanglement is that a quantum system
entangled with one of the other systems limits its share-
ability with the remaining ones, known as the monogamy
of entanglement (MoE) [7, 8]. Being a useful resource,
MoE plays a significant role in many quantum informa-
tion and communication processing tasks such as the se-
curity proof in quantum cryptographic scheme [9].
For a given tripartite quantum state ρABC , MoE

can be characterized in a quantitative way known as
monogamy inequality,

E(ρABC) ≥ E(ρAB) + E(ρAC), (1)

where ρAB = trC(ρABC) and ρAC = trB(ρABC) are
the reduced density matrices. In Ref. [10], Coffman-
Kundu-Wootters (CKW) established the first monogamy
inequality based on the bipartite entanglement measure
defined by tangle. Later, Osborne et al. generalize the
three-qubit CKW inequality to arbitrary multiqubit sys-
tems [11]. Monogamy inequalities in higher-dimensional
quantum systems also have been deeply investigated by
use of various bipartite entanglement measures [12–15].
The assisted entanglement is a dual amount to bipar-

tite entanglement measures, which accordingly has a du-
ally monogamous property in multipartite quantum sys-
tems. This dually monogamous property gives rise to a
dual monogamy inequality known as polygamy inequality
[16, 17]. For a tripartite state ρABC , one has

τa(ρA|BC) ≤ τa(ρAB) + τa(ρAC), (2)

where τa(ρA|BC) is the tangle of assistance.
In Ref. [14, 18], the authors generalized the inequal-

ity (2) to the cases of multiqubit quantum systems and
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some class of higher-dimensional quantum systems. By
using the entanglement of assistance, a general polygamy
inequality of multipartite entanglement in arbitrary di-
mensional quantum systems has been also established
[19, 20].

Recently, based on the αth power of entanglement
measures, many generalized classes of monogamy in-
equalities were proposed [21–25]. In Ref. [26], Kim
investigated multiqubit entanglement constraints re-
lated to the negativity. By using the αth power of
squared convex-roof extended negativity (SCREN) and
the squared convex-roof extended negativity of assistance
(SCRENoA) for α ≥ 1 and 0 ≤ α ≤ 1, respectively, both
monogamy and polygamy inequalities were established.
These inequalities involve the notion of Hamming weight
of the binary vector related to the distribution of sub-
systems, and were shown to be tighter than the previous
ones.

In this paper, we show that both the monogamy in-
equalities with α ≥ 1 and polygamy inequalities with
0 ≤ α ≤ 1 given in Ref. [26] can be further improved to
be tighter. Even for the case of α < 0, we can also pro-
vide tight constraints in terms of SCREN and SCRENoA.
Thus a complete characterization for the full range of
the power α is given. These tighter constraints of mul-
tiqubit entanglement give rise to finer characterizations
of the entanglement distributions among the multiqubit
systems.

II. PRELIMINARIES

We first consider the monogamy inequalities and
polygamy inequalities related to the negativity. The tan-
gle of a bipartite pure states |ψ⟩AB is defined as [10]

τ(|ψ⟩A|B) = 2(1− trρ2A) (3)

where ρA = trB |ψ⟩AB⟨ψ|. The tangle of a bipartite
mixed state ρAB is defined as

τ(ρA|B) =

[
min

{pk,|ψk⟩}

∑
k

pk

√
τ(|ψk⟩A|B)

]2
, (4)
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and the tangle of assistance (ToA) of ρAB is defined as

τa(ρA|B) =

[
max

{pk,|ψk⟩}

∑
k

pk

√
τ(|ψk⟩A|B)

]2
, (5)

where the minimization in (4) and the maximum in (5)
are taken over all possible pure state decompositions of
ρAB =

∑
k

pk|ψk⟩AB⟨ψk|.

For any bipartite quantum state ρAB, the negativity is
defined as [26, 27], N (ρA|B) = ∥ρTB

AB∥1 − 1, where ρTB

AB is
the partial transposition of ρAB , and ∥ · ∥1 is the trace
norm. Then the notion of tangle and ToA for two-qubit
state ρAB in (4) and (5) can be rewritten as [26]

τ(ρA|B) =

[
min

{pk,|ψk⟩}

∑
k

pkN (|ψk⟩A|B)

]2
(6)

and

τa(ρA|B) =

[
max

{pk,|ψk⟩}

∑
k

pkN (|ψk⟩A|B)

]2
, (7)

respectively, due to the fact that N 2(|ψ⟩A|B) = 4λ1λ2 =
τ(|ψ⟩A|B) for any bipartite pure state |ψ⟩AB with

Schmidt-rank 2, |ψ⟩AB =
√
λ1|e0⟩A⊗|f0⟩B+

√
λ2|e1⟩A⊗

|f1⟩B .
For higher-dimensional quantum systems, a rather

natural generalization of two-qubit tangle is proposed,
known as SCREN,

Nsc(ρA|B) =

[
min

{pk,|ψk⟩}

∑
k

pkN (|ψk⟩A|B)

]2
. (8)

The dual quantity to SCREN can also be defined as

N a
sc(ρA|B) =

[
max

{pk,|ψk⟩}

∑
k

pkN (|ψk⟩A|B)

]2
, (9)

which is called the SCREN of assistance (SCRENoA).
Then the tangle-based multiqubit monogamy and
polygamy inequalities become as

Nsc(|ψ⟩A1|A2···An
) ≥

n∑
j=2

Nsc(ρA1|Aj
), (10)

and

N a
sc(|ψ⟩A1|A2···An

) ≤
n∑
j=2

N a
sc(ρA1|Aj

), (11)

where ρA1|Aj
is two-qubit reduced density matrices ρA1Aj

of subsystems A1Aj for j = 2, 3, . . . , n [26].
Recently, Kim provide a class of monogamy and

polygamy inequalities of multiqubit entanglement by use
of powered SCREN and the Hamming weight of the bi-
nary vector related with the distribution of subsystems

[26]. For any non-negative integer j and its binary ex-

pansion j =
n−1∑
i=0

ji2
i, where logj2 < n and ji ∈ {0, 1} for

i = 0, 1, . . . , n − 1, one can define a binary vector j⃗ as
j⃗ = {j0, j1, . . . , jn−1}. The number of 1’s in its coordi-

nates is denoted as ωH (⃗j), called the Hamming weight

of j⃗ [28]. Based on these notions, Kim proposed tight
constraints of multiqubit entanglement as follows [26]:

[Nsc(|ψ⟩A|B0B1···BN−1
)]α ≥

N−1∑
j=0

αωH (⃗j)[Nsc(ρA|Bj
)]α,

(12)
for α ≥ 1, and

[N a
sc(|ψ⟩A|B0B1···BN−1

)]α ≤
N−1∑
j=0

αωH (⃗j)[N a
sc(ρA|Bj

)]α,

(13)
for 0 ≤ α ≤ 1. Inequalities (12) and (13) are then further
written as:

[Nsc(|ψ⟩A|B0B1···BN−1
)]α ≥

N−1∑
j=0

αj [Nsc(ρA|Bj
)]α, (14)

for α ≥ 1, and

[N a
sc(|ψ⟩A|B0B1···BN−1

)]α ≤
N−1∑
j=0

αj [N a
sc(ρA|Bj

)]α, (15)

for 0 ≤ α ≤ 1.
However, these inequalities can be further improved to

be much tighter under certain conditions, thus providing
tighter constraints of multiqubit entanglement.

III. TIGHTER CONSTRAINTS FOR SCREN

In this section, we first provide a tighter monogamy
inequality related to the αth power of SCREN for α ≥ 1.
For α < 0, a polygamy inequality is also proposed. We
need the following lemma.

Lemma 1. [29] Suppose k is a real number satisfying
0 < k ≤ 1, then for any 0 ≤ x ≤ k, we have

(1 + x)α ≥ 1 +
(1 + k)α − 1

kα
xα, (16)

for α ≥ 1.

We have the following Theorem.

Theorem 1. For α ≥ 1 and any multiqubit pure state
|ψ⟩AB0···BN−1 , If the N-qubit subsystems B0, . . . , BN−1

satisfy the following condition

kNsc(ρA|Bj
) ≥ Nsc(ρA|Bj+1

) ≥ 0, (17)
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where j = 0, 1, . . . , N − 2 and 0 < k ≤ 1, then we have

[Nsc(|ψ⟩A|B0B1···BN−1
)]α

≥
N−1∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)

[Nsc(ρA|Bj
)]α.

(18)

Proof: Similar to the proof in [26], from Eq. (10), we
only need to prove

[
N−1∑
j=0

Nsc(ρA|Bj
)]α

≥
N−1∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)

[Nsc(ρA|Bj
)]α.

(19)

We first show that the inequality (19) holds for the case
of N = 2n. For n = 1 and a three-qubit pure state

|ψ⟩AB0B1 , from (16) and (17), one has

[Nsc(ρA|B0
) +Nsc(ρA|B1

)]α

= [Nsc(ρA|B0
)]α
(
1 +

Nsc(ρA|B1
)

Nsc(ρA|B0
)

)α
≥ [Nsc(ρA|B0

)]α

[
1 +

(1 + k)α − 1

kα

(
Nsc(ρA|B1

)

Nsc(ρA|B0
)

)α]
= [Nsc(ρA|B0

)]α +
(1 + k)α − 1

kα
[Nsc(ρA|B1

)]α,

(20)
Thus, (19) holds for n = 1. Assume that inequality
(19) holds for N = 2n−1 with n ≥ 1. We consider the
case of N = 2n. For arbitrary (N + 1)-qubit pure state
|ψ⟩AB0B1···BN−1 and its two-qubit reduced density matri-
ces ρABj

, j = 0, 1, . . . , N − 1, one has Nsc(ρA|Bj+2n−1
) ≤

k2
n−1Nsc(ρA|Bj

) from (17). Then we find

0 ≤

2n−1∑
j=2n−1

Nsc(ρA|Bj
)

2n−1−1∑
j=0

Nsc(ρA|Bj
)

≤ k2
n−1

≤ k,

which implies that(
1 +

∑2n−1

j=2n−1 Nsc(ρA|Bj
)∑2n−1−1

j=0 Nsc(ρA|Bj
)

)α

≥ 1 +
(1 + k)α − 1

kα

(∑2n−1
j=2n−1 Nsc(ρA|Bj

)∑2n−1−1
j=0 Nsc(ρA|Bj

)

)α
.

(21)

Thus,

(
N−1∑
j=0

N (ρA|Bj
)

)α
=

(
2n−1−1∑
j=0

Nsc(ρA|Bj
) +

2n−1∑
j=2n−1

Nsc(ρA|Bj
)

)α

=

(
2n−1−1∑
j=0

Nsc(ρA|Bj
)

)α(
1 +

∑2n−1

j=2n−1 Nsc(ρA|Bj
)∑2n−1−1

j=0 Nsc(ρA|Bj
)

)α

≥

(
2n−1−1∑
j=0

Nsc(ρA|Bj
)

)α[
1 +

(1 + k)α − 1

kα

(∑2n−1
j=2n−1 Nsc(ρA|Bj

)∑2n−1−1
j=0 Nsc(ρA|Bj

)

)α]

=

(
2n−1−1∑
j=0

Nsc(ρA|Bj
)

)α
+

(1 + k)α − 1

kα

(
2n−1∑
j=2n−1

Nsc(ρA|Bj
)

)α
.

(22)

Since we have assumed that(
2n−1−1∑
j=0

Nsc(ρA|Bj
)

)α
≥

2n−1−1∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)−1

[Nsc(ρA|Bj
)]α,

by relabeling the subsystems, we can always have(
2n−1∑
j=2n−1

Nsc(ρA|Bj
)

)α
≥

2n−1∑
j=2n−1

(
(1+k)α−1

kα

)ωH (⃗j)−1

[Nsc(ρA|Bj
)]α.
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Then we have(
2n−1∑
j=0

Nsc(ρA|Bj
)

)α
≥

2n−1∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)

[Nsc(ρA|Bj
)]α.

As there always exists an positive integer n such that
0 ≤ N ≤ 2n for some positive integer N , we consider a
(2n + 1)-qubit pure state,

|Γ⟩AB0B1···B2n−1
= |ψ⟩AB0B1···BN−1 ⊕ |ϕ⟩BN ···B2n−1

,
(23)

which is a product of |ψ⟩AB0B1···BN−1
and an arbitrary

(2n − N)-qubit pure state |ϕ⟩BN ···B2n−1
[26]. Then we

have

[Nsc(|Γ⟩AB0B1···B2n−1
)]α

≥
2n−1∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)

[Nsc(σA|Bj
)]α

(24)

with σA|Bj
being the two-qubit reduced density matrix

of |Γ⟩AB0B1···B2n−1
for each j = 0, 1, . . . , 2n − 1. Thus,

[Nsc(|ψ⟩A|B0B1···BN−1
)]α

= [Nsc(|Γ⟩A|B0B1···B2n−1
)]α

≥
2n−1∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)

[Nsc(σA|Bj
)]α

=
N−1∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)

[Nsc(ρA|Bj
)]α,

(25)

since |Γ⟩A|B0B1···B2n−1
is separable with respect to the

bipartition between AB0 · · ·BN−1 and BN · · ·B2n−1.

As
(

(1+k)α−1
kα

)ωH (⃗j)

≥ αωH (⃗j) when α ≥ 1,

we find that for any multiqubit pure state
|ψ⟩A|B0B1···BN−1

, [Nsc(|ψ⟩A|B0B1···BN−1
)]α ≥

N−1∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)

[Nsc(ρA|Bj
)]α ≥

N−1∑
j=0

αωH (⃗j)[Nsc(ρA|Bj
)]α with α ≥ 1. Thus, in-

equality (18) of Theorem 1 is tighter than inequality
(12) for any multiqubit pure state.
Here, we give an example to show that our new

monogamy inequality is indeed tighter than the previous
one given in [26].
Example1 Let us consider a tripartite quantum state

|ψ⟩ABC =
1√
6
(|012⟩−|021⟩+|120⟩−|102⟩+|201⟩−|210⟩).

(26)
Then we have Nsc(|ψ⟩A|BC) = 4 and Nsc(|ψ⟩A|B) =
Nsc(|ψ⟩A|C) = 1 [26]. Note that in this case k =

1, and [Nsc(|ψ⟩A|B)]
α + (1+k)α−1

kα [Nsc(|ψ⟩A|c)]
α = 1 +

(1+k)α−1
kα = 2α ≥ [Nsc(|ψ⟩A|B ]

α+α[Nsc(|ψ⟩A|c]
α = 1+α

for α ≥ 1.

Furthermore, by using Lemma 1, we can also improve
inequality (18) to be a tighter one under certain condi-
tion.

Theorem 2. Suppose k is a real number satisfying
0 < k ≤ 1. For α ≥ 1 and any multiqubit pure state
|ψ⟩AB0···BN−1

,

[Nsc(|ψ⟩A|B0B1···BN−1
)]α

≥
N−1∑
j=0

(
(1+k)α−1

kα

)j
[Nsc(ρA|Bj

)]α,
(27)

if kNsc(ρA|Bj
) ≥

N−1∑
j=i+1

Nsc(ρA|Bj
) for i = 0, 1, . . . , N−2.

Proof: The proof is similar to the one given in [26].
In the next, we discuss the polygamy of entanglement

related to the αth power of SCREN for α < 0. We have
the following Theorem.

Theorem 3. For any multiqubit pure state |ψ⟩AB0···BN−1

with Nsc(ρABi) ̸= 0, i = 0, 1, . . . , N − 1, we have

[Nsc(|ψ⟩A|B0B1···BN−1
)]α ≤ 1

N

N−1∑
j=0

[Nsc(ρA|Bj
)]α, (28)

for all α < 0.

Proof: We follow the proof given in [24]. For arbitrary
tripartite state, we have

[Nsc(|ψ⟩A|B0B1
)]α

≤ [Nsc(ρA|B0
) +Nsc(ρA|B1

)]α

= Nsc(ρA|B0
)α
(
1 +

Nsc(ρA|B1
)

Nsc(ρA|B0
)

)α
< [Nsc(ρA|B0

)]α,

(29)

where the first inequality is due to α < 0 and the second

inequality is due to
(
1 +

Nsc(ρA|B1
)

Nsc(ρA|B0
)

)α
< 1. Similarly, we

get

[Nsc(|ψ⟩A|B0B1
)]α < [Nsc(ρA|B1

)]α. (30)

From (29) and (30), we obtain

[Nsc(|ψ⟩A|B0B1
)]α <

1

2
{[Nsc(ρA|B0

)]α + [Nsc(ρA|B1
)]α}.
(31)

One can get

[Nsc(|ψ⟩A|B0B1···BN−1
)]α

< 1
2{[Nsc(ρA|B0

)]α + [Nsc(ρA|B1···BN−1
)]α}

< 1
2 [Nsc(ρA|B0

)]α + ( 12 )
2[Nsc(ρA|B1

)]α

+( 12 )
2[Nsc(ρA|B2···BN−1

)]α

< · · ·

< 1
2 [Nsc(ρA|B0

)]α + ( 12 )
2[Nsc(ρA|B1

)]α + · · ·

+( 12 )
N−2[Nsc(ρA|BN−2

)]α + ( 12 )
N−2[Nsc(ρA|BN−1

)]α.
(32)
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By cyclically permuting the sub-indices B0, B1, . . .,
BN−1 in (32), we can get a set of inequalities. Summing
up these inequalities, we have (28).

IV. TIGHTER CONSTRAINTS FOR SCRENOA

In this section, we provide a class of tighter polygamy
inequalities of multiqubit entanglement in terms of the
α-powered SCRENoA and the Hamming weight of the
binary vector related with the distribution of subsystems
for 0 ≤ α ≤ 1. For the case of α < 0, we also propose a
monogamy relation for SCRENoA.
We need the following Lemma.

Lemma 2. [29] Suppose k is a real number satisfying
0 < k ≤ 1, then for any 0 ≤ x ≤ k, we have

(1 + x)α ≤ 1 +
(1 + k)α − 1

kα
xα, (33)

for 0 ≤ α ≤ 1.

We have the following Theorem.

Theorem 4. Suppose k is a real number satisfying 0 <
k ≤ 1. For 0 ≤ α ≤ 1 and any multiqubit pure state
|ψ⟩AB0···BN−1

satisfying

kN a
sc(ρA|Bj

) ≥ N a
sc(ρA|Bj+1

) ≥ 0 (34)

with j = 0, 1, . . . , N − 2, we have

[N a
sc(|ψ⟩A|B0···BN−1

)]α

≤
N−1∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)

[N a
sc(ρA|Bj

)]α.
(35)

Proof: From inequality (11), we only need to show that(
N−1∑
j=0

N a
sc(ρA|Bj

)

)α
≤
N−1∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)

[N a
sc(ρA|Bj

)]α.

(36)

First, we prove inequality (36) for N = 2n. For n = 1
and a three-qubit pure state |ψ⟩AB0B1 with two-qubit
reduced density ρAB0 and ρAB1 , one has

[N a
sc(ρA|B0

) +N a
sc(ρA|B1

)]α

= [N a
sc(ρA|B0

)]α
(
1 +

Na
sc(ρA|B1

)

Na
sc(ρA|B0

)

)α
≤ [N a

sc(ρA|B0
)]α

[
1 +

(1 + k)α − 1

kα

(
N a
sc(ρA|B1

)

N a
sc(ρA|B0

)

)α]
= [N a

sc(ρA|B0
)]α +

(1 + k)α − 1

kα
[N a

sc(ρA|B1
)]α,

(37)
where the inequality is due to (33). Assume (36) is
true for N = 2n−1 with n ≥ 1. We consider the case
of N = 2n. From (34), we find N a

sc(ρA|Bj+2n−1
) ≤

k2
n−1N a

sc(ρA|Bj
) for j = 0, 1, . . . , 2n−1 − 1. Then

0 ≤

2n−1∑
j=2n−1

N a
sc(ρA|Bj

)

2n−1−1∑
j=0

N a
sc(ρA|Bj

)

≤ k2
n−1

≤ k.

Thus,

(
N−1∑
j=0

N a
sc(ρA|Bj

)

)α
=

(
2n−1−1∑
j=0

N a
sc(ρA|Bj

)

)α(
1 +

∑2n−1

j=2n−1 Na
sc(ρA|Bj

)∑2n−1−1
j=0 Na

sc(ρA|Bj
)

)α

≤

(
2n−1−1∑
j=0

N a
sc(ρA|Bj

)

)α[
1 +

(1 + k)α − 1

kα

(∑2n−1
j=2n−1 N a

sc(ρA|Bj
)∑2n−1−1

j=0 N a
sc(ρA|Bj

)

)α]

=

(
2n−1−1∑
j=0

N a
sc(ρA|Bj

)

)α
+

(1 + k)α − 1

kα

(
2n−1−1∑
j=0

N a
sc(ρA|Bj

)

)α
.

(38)

Since we have assumed that(
2n−1−1∑
j=0

N a
sc(ρA|Bj

)

)α
≤

2n−1−1∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)−1

[N a
sc(ρA|Bj

)]α,

we obtain(
2n−1∑
j=2n−1

N a
sc(ρA|Bj

)

)α
≤

2n−1∑
j=2n−1

(
(1+k)α−1

kα

)ωH (⃗j)−1

[N a
sc(ρA|Bj

)]α,
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Thus,

(
N−1∑
j=0

N a
sc(ρA|Bj

)

)α
≤

2n−1−1∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)

[N a
sc(ρA|Bj

)]α + (1+k)α−1
kα

2n−1∑
j=2n−1

(
(1+k)α−1

kα

)ωH (⃗j)−1

[N a
sc(ρA|Bj

)]α

=
2n−1∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)

[N a
sc(ρA|Bj

)]α.

(39)

For an arbitrary non-negative integer N and an (N +
1)-qubit pure state |ψ⟩AB0B1···BN−1

, let us consider the
(2n + 1)-qubit |Γ⟩AB0B1···BN−1 defined in (23). We have

N a
sc(|ψ⟩A|B0B1···BN−1

)

= N a
sc(|Γ⟩A|B0B1···B2n−1

)

≤
2n−1∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)

[N a
sc(σA|Bj

)]α

=
N∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)

[N a
sc(ρA|Bj

)]α.

(40)

It can be seen that (35) is tighter than (13) since
(1+k)α−1

kα ≤ α for 0 ≤ α ≤ 1.
Moreover, the polygamy inequality of Theorem 4 can

be further improved under some conditions.

Theorem 5. Suppose k is a real number satisfying 0 <
k ≤ 1. For 0 ≤ α ≤ 1 and any multiqubit pure state
|ψ⟩AB0···BN−1 , we have

[N a
sc(|ψ⟩A|B0···BN−1

)]α

≤
N−1∑
j=0

(
(1+k)α−1

kα

)j
[N a

sc(ρA|Bj
)]α,

(41)

if

kN a
sc(ρA|Bi

) ≥
N−1∑
j=i+1

N a
sc(ρA|Bj

), (42)

for i = 0, 1, . . . , N − 2.

Proof: The proof is similar to the one given in [26].
It should be noted that Theorems 3 and 5

provide the upper bound and the lower bound
for Nsc(|ψ⟩A|Bo···BN−1

), since Nsc(|ψ⟩A|Bo···BN−1
) =

N a
sc(|ψ⟩A|Bo···BN−1

).
The following lemma is useful for deriving monogamy

relation in terms of α-powered SCRENoA when α < 0.

Lemma 3. Suppose k is a real number satisfying 0 <
k ≤ 1. For 0 ≤ x ≤ k and α < 0, we have

(1 + x)α ≥ 1 +
(1 + k)α − 1

kα
xα. (43)

Proof: Let us consider the function f(t, α) = (1 +
t)α − tα with t ≥ 1

k and α < 0. Then ft(t, α) = α[(1 +

t)α−1 − αα−1] > 0, i.e., f(t, α) is an increasing function
with respect to t. Thus,

f(t, α) ≥ f
(1
k
, α
)
=
(
1+

1

k

)α
− 1

k
=

(1 + k)α − 1

kα
. (44)

Set x = 1
t in (44), we get (43).

Theorem 6. Suppose k is a real number satisfying
0 < k ≤ 1. For α < 0 and any multiqubit pure state
|ψ⟩AB0···BN−1 , we have

[N a
sc(|ψ⟩A|B0···BN−1

)]α

≥
N−1∑
j=0

(
(1+k)α−1

kα

)j
[N a

sc(ρA|Bj
)]α,

(45)

if

kN a
sc(ρA|Bi

) ≥ N a
sc(ρA|Bi+1···BN−1

) (46)

for i = 0, 1, . . . , N − 2.

Proof: From (11), for arbitrary tripartite pure state
|ψ⟩A|B0B1

, we get

[N a
sc(|ψ⟩A|B0B1

)]α

≥ [N a
sc(ρA|B0

) +N a
sc(ρA|B1

)]α

= [N a
sc(ρA|B0

)]α
(
1 +

Na
sc(ρA|B1

)

Na
sc(ρA|B0

)

)α
≥ [N a

sc(ρA|B0
)]α + (1+k)α−1

kα [N a
sc(ρA|B1

)]α.

(47)

For arbitrary pure state |ψ⟩A|B0···BN−1
, we obtain

[N a
sc(|ψ⟩A|B0···BN−1

)]α

≥ [N a
sc(ρA|B0

) +N a
sc(ρA|B1···BN−1

)]α

= [N a
sc(ρA|B0

)]α
(
1 +

Na
sc(ρA|B1···BN−1

)

Na
sc(ρA|B0

)

)α
≥ [N a

sc(ρA|B0
)]α +

(1 + k)α − 1

kα
[N a

sc(ρA|B1···BN−1
)]α

≥ · · ·

≥ [N a
sc(ρA|B0

)]α +
(1 + k)α − 1

kα
[N a

sc(ρA|B1
)]α + · · ·

+
(

(1+k)α−1
kα

)N−1

[N a
sc(ρA|BN−1

)]α,

(48)
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where the first inequality is due to α < 0, the second
inequality is due to (43), and the rest inequalities are
due to (47).
Just like polygamy inequalities in Theorem 4 and The-

orem 5, the following Theorems give rise to the tighter
monogamy relations in terms of α-powered SCRENoA
for α < 0, with the notion of weighted constraint also
involved.

Theorem 7. Suppose k is a real number satisfying
0 < k ≤ 1. For α < 0 and any multiqubit pure state
|ψ⟩AB0···BN−1 satisfying

kN a
sc(ρA|Bj

) ≥ N a
sc(ρA|Bj+1

) ≥ 0 (49)

with j = 0, 1, . . . , N − 2, we have

[N a
sc(|ψ⟩A|B0···BN−1

)]α

≥
N−1∑
j=0

(
(1+k)α−1

kα

)ωH (⃗j)

[N a
sc(ρA|Bj

)]α.
(50)

Theorem 8. Suppose k is a real number satisfying
0 < k ≤ 1. For α < 0 and any multiqubit pure state
|ψ⟩AB0···BN−1 , we have

[N a
sc(|ψ⟩A|B0···BN−1

)]α

≥
N−1∑
j=0

(
(1+k)α−1

kα

)j
[N a

sc(ρA|Bj
)]α,

(51)

if

kN a
sc(ρA|Bi

) ≥
N−1∑
j=i+1

N a
sc(ρA|Bj

), (52)

for i = 0, 1, . . . , N − 2.

V. CONCLUSION

Entanglement monogamy is a fundamental property
of multipartite entangled systems. We have proposed
tighter weighted monogamy inequalities related to the
αth power of SCREN for α ≥ 1. We also have inves-
tigated the polygamy relations in terms of α-powered
SCRENoA for the case of 0 ≤ α ≤ 1. Moreover, by
using the αth power of SCREN and SCRENoA for α < 0
respectively, the corresponding weighted polygamy and
monogamy inequalities have also been established. These
new tighter monogamy and polygamy relations give rise
to finer characterizations of the entanglement distribu-
tions, and capture better the intrinsic feature of multi-
party quantum entanglement.
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