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We present a different kind of monogamy and polygamy relations based on concurrence and

concurrence of assistance for multiqubit systems.

By relabeling the subsystems associated with

different weights, a smaller upper bound of the ath (0 < a < 2) power of concurrence for multiqubit
states is obtained. We also present tighter monogamy relations satisfied by the ath (0 < a < 2)
power of concurrence for N-qubit pure states under the partition AB and Ci...Cn_2, as well as

under the partition ABCy and Ca---Cn_a.

These inequalities give rise to the restrictions on

entanglement distribution and the trade off of entanglement among the subsystems. Similar results

are also derived for negativity.

PACS numbers:

INTRODUCTION

Quantum entanglement [1-6] is an essential feature
of quantum mechanics, which distinguishes the quan-
tum from the classical world. One of the fundamental
differences between classical and quantum correlations
lies on the sharability among the subsystems. Different
from the classical correlation, quantum correlation can-
not be freely shared. The monogamy relations give rise
to the restrictions on the distribution of entanglement
in the multipartite setting. It is not possible to prepare
three qubits in a way that any two qubits are maximally
entangled. The monogamy relation was first quantified
by Coffman, Kundu, and Wootters (CKW) [7] for three
qubits, Exjpc > Eap + Eac, where €4 pc denotes the
entanglement between systems A and BC. The CKW
inequality shows that the more entanglement shared be-
tween two qubits A and B, the less entanglement between
the qubits A and C. CKW inequality was generalized to
multiqubit systems [8-11] and also studied intensively in
more general settings [12, 13].

Using concurrence of assistance [14] as the measure of
distributed entanglement, the polygamy of entanglement
provides a lower bound for the distribution of bipartite
entanglement in a multipartite system [15]. Polygamy of
entanglement is characterized by the polygamy inequal-
ity, Eoajpc < Faap + Eaac for a tripartite quantum
state papc, where E, 5 pc is the assisted entanglement
[16] between A and BC. Polygamy of entanglement was
generalized to multiqubit systems [15] and arbitrary di-
mensional multipartite states [15, 17-19]. In Ref. [20],
the authors have given the monogamy and polygamy re-
lations with any qubits as the focus ones for multiqubit
states. Furthermore, the case of the ath (0 < o < 2)
power of concurrence for N-qubit pure states under any
partition was studied in [21].

In this paper, we study the general monogamy inequal-
ities with qubits AB as the focus qubits, satisfied by the
concurrence and the concurrence of assistance (COA). A
smaller (tighter) upper bound for the ath (0 < o < 2)

power of concurrence for multiqubit states is obtained.
Then we establish the tighter monogamy relations of the
ath (0 < a < 2) power of concurrence in N-qubit pure
states under the partition AB and C,...Cn_so, as well
as under the partition ABCt and Cs - -- Cy_5. Based on
the relations between negativity and concurrence, we also
obtain similar results for negativity. Detailed examples
are presented.

TIGHTER GENERALIZED MONOGAMY AND
POLYGAMY RELATIONS OF CONCURRENCE

Let Hx denote the finite dimensional vector space as-
sociated with qubit X. For a bipartite pure state |¢)ap
in vector space Hx ® Hp, the concurrence is given by
[23-25]

C(l)ap) = \/2[1 = Tr(p)], (1)

where p4 is the reduced density matrix by tracing over
the subsystem B, p4 = Trp(|t)) a5 (¢|). The concurrence
for a bipartite mixed state p4p is defined by the convex
roof

C(pap) = min

iC([1:)),
{Pi,|¢i>}zp (|¢>)

%

where the minimum is taken over all possible decomposi-
tions of pap = >, pilw:) (s, with p; >0, Y. p; =1 and
;) € Ha ® Hp.

For a tripartite state |¢) epc, the concurrence of assis-
tance (COA) is defined by [26]

Cu(|¥)apc) = Culpap) = {prf,ﬂ?ii};pic('w»’

for all possible ensemble realizations of pap =
Tre([W)apc(¥]) = 32, pilvi)(¥il. When pap is a pure
state, one has C(|Y) ap) = Ca(paB)-

For an N-qubit state |¢>A317"'7BN—1 € Hy® Hg, ®
-+ ® Hpy_,, the concurrence C(|1))|p,...By_,) of the



state |@[J>A|Bl“.BN_1, viewed as a bipartite partition A
and B1Bs--- By_1, satisfies the monogamy inequality
[27],

C*(pAIBy,Ba- By

> C*(pap,) + C*(pap,) + -+ C*(paBy_.), (2)

where C(pap,) is the
TrBl"'Bi—lBi+1"'BN—1(p)'
The dual inequality satisfied by COA for N-qubit

states has the form [28],

concurrence of PAB; =

N—

C2(|1/)>A\Ble~~BN ) Z (paB,) (3)

=1

Furthermore, the authors in [22]
a generalized monogamy

presented
relation for a > 2,

Ca(pA|Bl7B2“' 7BN—1) > C%pap,) + C%paB,) +
-+ C*(paBy_,)- The dual inequality is given in [21]
for 0 < a <2,

CU(IV)aiBi BBy 1) <
Ot (pas) + 508 (pam) + -

ay N—2
+(5) Coloasy). (4)
In this paper, we first give a tighter upper bound satisfied
by the ath power of COA for N-qubit states. Then we
prsent monogamy and polygamy relations for N-qubit
states in terms of the ath power of COA, which are
tighter than the existing ones.

The concurrence (1) is related to the linear entropy
T(p) of a state p, T(p) = 1 — Tr(p?) [29]. For a bipartite
state pap, T(p) has the property [30],

1T (pa) —

For convenience, we rewrite (3) as follows,

T(pp)l <T(pap) <T(pa) +T(pB). (5)

k
C*([9) A1, By By 1) SZ (pan,) (6)

= Zﬁm,ﬁl Cé(pas,) with My =
0, ZleMi =N-1,1< k < N —1. The summa-
tion on the right hand side of (6) has been separated into
k parts. There is always a choice of M;, such that the
above relations is true.
[Theorem 1]. For

[¥)aB, By--By_,, We have

where C2(par,)

any N-qubit pure state

Ca(‘¢>A|B1Bz‘~BN—1)
< Cg(pam,) +hCg(pars,) + -+
+R" O (pand,) (7)

for all 0 < @ < 2, where h = 2% — 1.

[Proof]. Without loss of generality, we can always
assume that C2(pans,) > 311 C2(pans), 1 < t <
k—1, 2 <k < N —1, by reordering My, My, --- , My
and/or relabeling the subsystems in need. Form the re-
sult in [28], we have

C*(|1¥) 1B, By--Bx_1)
C

(1
k 2
< < Z(pAM1)+ZC3(pAMi)>
=2
=C

Sk L, C2(pan) 7
C2(pars)

Y C2pans) \
CZ(pan,)

o (Pan) <1 +

< Cg(pan,) 1+h<

k 2
= Cg(pam,) +h (Z Cf(ﬂAMJ)
i=2
k
<Y RTIC (pam), (8)
i=1
where the first inequality is due to (6). By using the
fact that [31], for any real numbers = and ¢ such that
0<t<land0<a <1, (14+8)* <1+ (2°—1)", we
get the second inequality. [J
Theorem 1 gives a tighter polygamy relation of the
ath (0 < a < 2) power of concurrence for N-qubit pure
state 1)) a|B, B,,...,Bx_, Pased on the COA. For the case
of k= N — 1, we have the following result,

C*(|) 1B By BN )
< Cg(/)ABl) =+ hC:zX(pAB2) 4
+hN720(?(pABN—1)' (9)

(9) reduces to the
(9) is

Specially, for a = 2, inequality (7) or
result (6) in [28]. For 0 < a < 2, inequality (7) or
tighter than the result (4) in [21].

Ezample 1. Let us consider the three-qubit state |¢)
in the generalized Schmidt decomposition form [33, 34],

[9) = Xg|000) + A1 |100) 4 Ao |101) + A3|110) 4 A4|111),

where \; > 0, i = 0,-- 4andz7ol:1.We
have C(pajpc) = 2M0v/ A3 +)‘§ + A3, C(paB) = 2Xo)s,

C(PAC) = 2>\0>\37 Ca(pAB) =2X )\% + /\4217 Oa(pAC) =
2)\(J\/m Set )\0 = = )\2 = )\3 = )\4 = %
One gets C*(pajpc) = (252)*, Ca(pan) + 505 (pac) =
(1+%5) (B2), Ca(pap)+hC (pac) = 25 (22)*. One

can see that our result is better than that of (4) for
0 < a<?2, seeFig. 1.

In the following, by using the conclusion of Theorem 1
and Lemma 2, we present some monogamy-type inequal-
ities and lower bounds of concurrence in terms of concur-
rence and COA. These monogamy relations are satisfied
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FIG. 1: E is the entanglement as a function of . Solid (Red)
line is the ath power of concurrence; Dotted (Black) line is
the upper bound in (7); Dashed (Blue) line is the result of

(4).

by the concurrence of N-qubit states under the parti-
tion AB and C4 ---Cn_o, as well as under the partition
ABCq and Cy - - - Cy_2, which generalize the monogamy
inequalities for pure states in [9] and give tighter bounds
than [21].

[Lemma]. For arbitrary two real numbers x and y
such that © > y > 0, we have (x — y)* > 2® — y* and
(z+y)*<z*4y*for0<a<l.

[Proof]. (z—y)* > 2™ —y* is equivalent to (1— £)*+
(£)® > 1 for nonzero z. Denote t = £. Then 0 <t < 1.
Set f(t) = (1—t)*+t*. Wehave & = a[t*~1—(1-t)*~1].
For()gtgé, %Zo,sincelftztandafl<0.
Therefore, f(t) > f(0) = 1 in this case. For 3 <t <1,
% <0,sincet >1—tand o« —1 < 0. Hence, f(t) >
f(1) = 1 in this case. In summary, for 0 < o < 1,
f()min > f(0) = f(1) = 1. Similarly, one can get the
second inequality in Lemma. When a = 0 or z = 0, the
inequality is trivial. Hence we complete the proof of the
Lemma. O

[Theorem 2]. For any N-qubit state |} AR, ..Cn_»s
we have

C(paB|cy-Cn_s)

ki1—1
> max {h Z C%(pan;) + C¥(panm,,) — B,
=1

ka—1
h> " C*(pau,) + C*(pBusy,) — JA} , (10)
i=1
for 0 < a < 2, N > 4, where C%(pan;) is de-
fined in (6) and Ja = ¥ hiTLC%(pans,), Jp =
Sk WO (ppar,), h = 2% — 1, ky, ko are defined sim-
ilar to inequality (6).

[Proof]. Without loss of generality, there always exists
a proper ordering of the subsystems M;,, My, 41, -+ , Mg,

(i = 1,2) such that C2(panr,,) = S0, 11 C2(pan,) and
C2(ppat,) > Y2 C2ppan), 1 <ty < ki —1 (i =
1,2), 2 < ki, ks < N — 1.

For  N-qubit pure state paBc,.--Cn_a» if
C(paiBc,.-cn_s) = ClpBlac,...Cx_s), ONE has

Ca(PABwl.--cN_Q)
= (2T(paB))*?

> [2T(pa) — 2T (pB)| %
=1C%(
C(paiBCyOn_s)

ki1
>h Z C*(pam;) + C%(pamy,) — C*(pBjac,-cx )
i=1
k1—1
>h Y C%(pan,) + C*(par,) — Jb,

i=1

[Ns)

PAIBCCx_s) — CP(PBlACYCn )]

v

— CY(pBlac,-Cn_s)

where the first inequality is due to the left inequality in
(5). From Lemma, one gets the second inequality. Using
the inequality (14+¢)* > 1+ (2*-1)t*,t >1,0<z <1,
we get the third inequality. The last inequality is due to
Theorem 1.

If C(paBe,-cn_o) < C(pBlacy...cy_,), similar to the
above derivation, we can obtain another inequality in
Theorem 2. [J

Theorem 2 shows that the entanglement contained in
the pure states papc,...cy_, is related to the sum of
entanglement between bipartitions of the system. The
lower bound in inequalities (10) is easily calculable. As
an example, let us consider the four-qubit pure state
V) aBcD = %(mooo) +]1001)). We have C(pap) =
C(pac) =0, C(pap) = 1, and Cu(ppa) = Calppc) =
Cu(ppp) = 0. Therefore, C(|Y))apjcp) > 2% — 1,
0 < a < 2. Namely, the state |[¢)) apcp saturates the
inequality (10) for a = 2.

Similar to the proof of Theorem 2, from (2) we can
derive another upper bound of the ath power of concur-
rence as follows.

[Theorem 3]. For any N-qubit state |¥) agc,...On_»
we have

CO{(|¢>AB|01---CN72)

N-2 2
> max (Z C%*(pac,) + C2(pAB)> — JB,

i=1

N—2 2
(Z C*(pse,) + 02(,0,43)) —Ja ¢, (11)

i=1

for 0 < a < 2, N > 4, where C%(pan;,) is de-
fined in (6) and J4 = Zf;lhi_ng(pAMi), Jp =
Y2 WO (i), h=2% — 1.

Ezxample 2. Let us consider the 4-qubit generalized
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FIG. 2: Y stands for the differences between the left and right
of the generalized monogamy inequalities: solid (red) line for
(11); dashed (blue) line for (9) in [21].

W-class state,

(W) aBcic, = A1]1000) 4+ A2|0100)
+X3]0010) -+ A\4]0001), (12)

where Z?Zl A = 1. We have C(|W)apic,c,) =
2 (A2 +X2)(A2+A2), Clpap) = Culpap) = 2X\Xs,
C(pac,) = Calpac,) = 2M A3, C(pac,) = Ca(pAcz)\;

2M A, Taking Ay = 2, A = 3, A3 = 2
and Ny = i we get J4 = Jp = (%)a—|—

h(%ﬁ) + h2 (%)a' Set h = Ca(|W>AB|C1C2) -

((C*(paB) + C*(pac,) + C*(pac,))® — Ja) to be the
difference between the left and right side of (11). We have
= ()~ (8)" (o0 () 40
From the inequality (9) in [21], such difference is given by
o= (40) - () +(@)+5 (22) +37 )"
From Fig. 2 we can see that the difference between the
left and right of the generalized monogamy inequality
(11) is smaller than that of the result from [21].

Different from the usual monogamy inequalities un-
der the partition A and Bj...Bn_2 [39], Theorem 2 and
Theorem 3 give monogamy relations under the partition
AB and C1...Cy_2, which present finer weighted charac-
terizations of the entanglement distributions among the
subsystems, as illustrated in Example 2. Moreover, the
result in Ref. [20] is a special case of Theorem 3 for
a=2.

Theorem 2 and Theorem 3 give rise to monogamy-
type lower bound of C(|v)ap|c,...cx_,)- According to
the subadditivity of the linear entropy, we also have the
following conclusion:

[Theorem 4]. For any 2 ® 2 ® --- ® 2 pure state
[V ABCy--Cn_ss We have

C*(Ib)aBioy-on_n) < Ja+ B (13)

1.6
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FIG. 3: C as a function of a. Solid (Red) line is the value
of C*(|Y) ap|cp); Dotted (Black) line is the upper bound of
(13); Dashed (Blue) line is the upper bound of (11) in [21] .

for 0 < a <2, N > 4, where J4 and Jp are defined
similarly as in Theorem 2.

[Proof].  Without loss of generality, there always

exists a proper ordering of the subsystems such that
k

CZ(pars,,) = Yty 41Co(pany) and C2(ppa,,) >

Zfitﬁlcg(pBM,) for any 1 < t1,t9 < k — 1 and

2 < k1,ks < N — 1. For qubit state [¥)aBc,.-Cy_ss

one has

Q

“([) aBjcy--Cn_s)

(2T(pAB))%

(2T(pa) + 2T (pp))*

= (C*(paiBeyCna) + C2(PB1ACYCn )
+ C*(pBlac,--Cn_s)

IN

Wl

CQ(PA|Bcl~-~cN,2)
Ja+ JB,

INIA

where the first inequality is due to the right inequality in
(5). The second inequality is due to Lemma. Using the
Theorem 1, one gets the last inequality. [

Let us consider the following four-qubit pure state,
|y aBcD = %(\OOO@ +10010) 4]1011)). Then from the

result in [21], one gets C*(|1)) apjcp) < (%)a + %(%)a
While from our Theorem 4, we have C*(|¢)) apjcp) <
(QSﬁ)o‘ + h(2)* for any 0 < o < 2, where h = 2% — 1,
see Fig. 3.

Now we generalize our results to the concurrence
CABCy|Cy--Cy_,(|10)) under the partition ABC; and
Cy---Cpn—_2 (N > 6) for pure state [¢) aBc,...Oy_,- Sim-
ilar to Theorem 2, Theorem 3 and Theorem 4, we obtain
the following corollaries:

[Corollary 1]. For any N-qubit pure state



|¥) ABC,--Cn_o» WE have

Ca(|w>ABCIIC2“'CN—2)
Ki—1

> max {h’ Z Ca(pAMi) + Ca(pAfol) — JB,
i=1
Ki—1

h Z Ca(pBMi) + Ca(pBMK71) - JA} —Jey 7(14)

i=1

or

Ca(|w>AB01IC2'“CN72)

N-2 %
> max (Z CQ(pACi> + CZ(PAB)> — JB,

i=1

N-2 z
(Z C*(ppe,) + CQ(ﬂAB)) —Ja ¢ —Joy, (15)

i=1

where J4, Jp are defined as in Theorem 2, Jo, =
S BT (pes, ), h=2%F —1,2<m < N-3, N>
6.

[Proof]. For any N-qubit pure state |¢¥) apc,...cxn_o, if
Cl)apicycn-s) = C)cyjaBes-cx -, ), we have

C([Y) aBch|Co--COn—s)

= (2T(pasc,))®
> 2T (pas) — 2T (pc,)|?

= [C*(|¢) aBiCy O —s) — C2(|¥) ey 1 aBCo O )|
> C*([Y)aBjcyon_n) = C*(I¥)cy1aBCs - On_s)s

where the first inequality is due to T'(papc,) > T(pap)—
T(pc,). Using Lemma, we get the second inquality.
Combining Theorem 1 and Theorem 2, we obtain (14),
and combining Theorem 1 and Theorem 3, we obtain

(15). O
[Corollary 2] For any N-qubit pure
state  |Y)apcyon oy i C(¥)aBicyon.) <

C(lY)c,1aBCy--Cx_s)s We have

Ca(|¢>ABC'1|CQ---CN72)

N-2 2
> (CQ(PACI) +C%(ppey) + Y CQ(PC&E))
i=2

_JA - JB7 (16)
and

CU(|V) aBcy|cyOn_s) < Ja+ I+ oy, (17)

where J4, Jp are defined in Theorem 2, J¢, is defined
in Corollary 1.

In Corollary 2, the upper bound is due to the
right inequalities of (5) and (7). Analogously, by
using T(papc,) > |T(pac,) — T(ps)l, T(papc,) >

[T(pa) — T(ppc,)|, and T(papc,) < [T(pac,) +
T(pp)l, T(papc,) < [T(pa)+T(ppc,)|, one can get (16)
and (17).

The lower bounds in Corollary 1 and Corollary 2 are
not equivalent. We consider the following two examples
to show that Corollary 1 and Corollary 2 give rise to
different lower bounds. Let us consider the pure state
V) aBe,cacscs = %(|000000> + [101000)). We have
C(]®)) > 1 from (15) and C(|3p)) > 0 from (16). Namely,
bound (15) is better than (16) in this case. Nevertheless,
for the state [) apc,cocscy = %OOOOOOO) +1001100)),
one has C(|y)) > 0 from (15) and C(|¢)) > 1 from (16).
The bound (16) is better than (15) in this case.

TIGHTER GENERALIZED MONOGAMY AND
POLYGAMY RELATIONS OF NEGATIVITY

Another well-known quantifier of bipartite entangle-
ment is the negativity. Given a bipartite state pap in
H,4 ® Hp, the negativity is defined by [35],

a1
where pi‘]‘g is the partially transposed matrix of p 45 with
respect to the subsystem A, || X|| denotes the trace norm
of X, ie ||X]|| = TrvXXT. Negativity is a computable
measure of entanglement, and is a convex function of
pap- It vanishes if and only if p 4 g is separable for the 2®
2 and 2 ® 3 systems [36]. For the purposes of discussion,
we use the following definition of negativity: N(pap) =
1ol - 1.

For any bipartite pure state |¢) 4p in a d ® d quantum
system with Schmidt rank d, [¢Y)ap = Z?Zl Vi), one
has

N([Y)an) = QZVNM (18)

1<J

from the definition of concurrence (1), we have

C(lY)a) =2 /Z AiAj. (19)

Combining (18) with (19), one obtains

N(|¢)ap) > C(|¥)aB)- (20)

For any bipartite pure state |1)) 4 with Schmidt rank
2, one has N(|¢) ap) = C(|¢) ap) from (18) and (19). For
a mixed state pap, the convex-roof extended negativity
(CREN) is defined by

= min Z piN

Ne(pag) (|Yi) aB)



where the minimum is taken over all possible pure state
decompositions {p;, |¥i)ap} of pap. CREN gives a
perfect discrimination of positively partial transposed
bound entangled states and separable states in any bi-
partite quantum systems [37, 38]. For a mixed state
pAB, the convex-roof extended negativity of assistance
(CRENOA) is defined by [39]

= max Z piN

where the maximum is taken over all possible pure state
decompositions {p;, |¥:)ap} of pap.

CREN is equivalent to concurrence for any pure state
with Schmidt rank 2 [39]. Consequently for any two-
qubit mixed state p4p, one has

Ne(pap) = C(paB) (21)

No(pan) (|i)aB)

and

Na(pan) = Caolpan)- (22)
For N-qubit pure state [1)) 4|5, B, ,Bx_,, from (20),
(21), (22) and the monogamy of the concurrence, we have

Na(|w>A\Ble7"' 7BN—1)

2 N (pap,) + N (pap,) + -+ + N (papy_,)(23)
for a > 2. The dual inequality [39] in terms of CRENOA
is given by

N2(|w>A\B1Bz,'“ aBNfl)

< NZ(pap,) + N2(pap,) + -+ NZ(pay_,)

k
=Y Nilpam), (24)
i=1

= Z?J:iMi,lﬂ NZ(pap;) with My =
0, SF. \M; = N-1,1 <k < N—1. By similar
consideration to concurrence, we get the upper bound of
the ath power of negativity as follows.

[Theorem 5]. For any N-qubit pure
|"/}>ABlBg,--- ,Bn_1) WE have

Na(‘¢>A|BlBg,m ,BN71)
< NG (pam,) +hNG (pam,) + -+
+R* NG (pan,)s (25)

for 0 < o < 2, where h =2% — 1, N > 4.
[Theorem 6]. For any qubit state |¢) apc,...on_o, We
have

where Ng(pAMi)

state

N®(paB|cy--Cn_s)

ki1—1
> max {h S N (pan) + N (pann, ) — T,
=1

ko—1
h Y N&(psas) + NE(psan,) - JA} : (26)

i=1

for 0 < a <2, N >4, where JA:Z;C;
Tp = Y2 W NS (o), h =28 — 1.

[Proof].  Without loss of generality, there always
exists a proper ordering of the subsystems such that
Nz(PAMt) > Y N2(pany) and N2(ppar,,) >
O a1 Nolppa), 1 < tg < ki —1 (i = 1,2), 2 <
k1,ke < N — 1. For pure state |¢)) aBc,...Cx_s, We have

NY([Y)aBjcy-—cy_o) = C*(IY)aBloy-On—s)

1 hi_lNg(pAMi)ﬂ

i=1

ki1—1
> max {h > C%pans,) + C(pam,,) — JB,

ko—1
h> " C%psa,) + C*(pBay,) — JA}

i=1

k1—1
= max {h > N&(pam,) + Nepans,) — i,
=1

ko—1
h'> " N&(psu,) + NE(pBary,) — Jlx},

i=1

where the first inequality is due to (20), the second in-
equality is from Theorem 2, the equality is based on (21)
and (22). O

[Theorem 7]. For any qubit state |¢) apc,...on_o, We
have

Na(|w>AB|Cl---CN72)

N-2 2
> max (Z NZ(pac,) + Nf(ﬂAB)) ~Jg,

i=1

N-2 5
(Z NZ(psc,) + Nf(ﬁAB)) —Jh v,

i=1

for 0 < a <2, N >4, where J/ :Zf;1
Jp = T2 BN (), h =27 — 1.

For N-qubit pure state |¥)ap,B,, .. By ., based on
the result in [40, 41], one has N(|¢)apjc,..on_,) <

wc(|w>A3|Cl“'CN—2)’ where 7 is the Schmidt rank

of the pure state |) apc,...on_,- From Theorem 4, we
can obtain the upper bound of negativity under the par-
tition AB and Cy ---Cy_o.

[Theorem 8]. For any qubit state |¢) apc,...oxn_,, We
have

W INg(panr,),

N asicrmon) < (N5 ) Ut )

for 0 < a < 2, where J);, Jp are given in Theorem 6.

CONCLUSION

Entanglement monogamy and polygamy relations
are fundamental properties of multipartite entan-



gled states. We have presented tighter monogamy
relations of the ath power of concurrence for N-
qubit systems by showing the relations among

C(‘,ll[}>AB‘Cl“'CN—2)7 C(PAB), O(pACi)’ C(chq‘,)v Cﬂ(pACi,)7

and C,(ppc;), 1 < i < N—2, which give rise to the larger
lower bounds and smaller upper bounds on the entan-
glement sharing among the partitions. The monogamy
relations based on concurrence and COA have been
investigated. We have obtained the smaller upper bound
of the ath (0 < & < 2) power of concurrence based on
COA. We then have derived the tighter monogamy and
polygamy relations satisfied by the ath (0 < a < 2)
power of concurrence in N-qubit pure states under the
partition AB and Cp---Cxn_o, as well as under the
partition ABCy and C4---Cxn_s. These relations also
give rise to a kind of trade-off relationship restricted
by the lower and upper bounds of concurrences. Based
on the relations between negativity and concurrence,
we have also obtained the similar results for CREN
and CRENOA. These results may be generalized to
monogamy and polygamy relations under arbitrary
partitions Capc,...c;|Ci1-Onn> 2 <@ < N —2. Our
approach may be also used for the investigation of
entanglement distribution based on other measures of
quantum correlations.
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