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We present a different kind of monogamy and polygamy relations based on concurrence and
concurrence of assistance for multiqubit systems. By relabeling the subsystems associated with
different weights, a smaller upper bound of the αth (0 ≤ α ≤ 2) power of concurrence for multiqubit
states is obtained. We also present tighter monogamy relations satisfied by the αth (0 ≤ α ≤ 2)
power of concurrence for N -qubit pure states under the partition AB and C1...CN−2, as well as
under the partition ABC1 and C2 · · ·CN−2. These inequalities give rise to the restrictions on
entanglement distribution and the trade off of entanglement among the subsystems. Similar results
are also derived for negativity.

PACS numbers:

INTRODUCTION

Quantum entanglement [1–6] is an essential feature
of quantum mechanics, which distinguishes the quan-
tum from the classical world. One of the fundamental
differences between classical and quantum correlations
lies on the sharability among the subsystems. Different
from the classical correlation, quantum correlation can-
not be freely shared. The monogamy relations give rise
to the restrictions on the distribution of entanglement
in the multipartite setting. It is not possible to prepare
three qubits in a way that any two qubits are maximally
entangled. The monogamy relation was first quantified
by Coffman, Kundu, and Wootters (CKW) [7] for three
qubits, EA|BC ≥ EAB + EAC , where EA|BC denotes the
entanglement between systems A and BC. The CKW
inequality shows that the more entanglement shared be-
tween two qubits A and B, the less entanglement between
the qubits A and C. CKW inequality was generalized to
multiqubit systems [8–11] and also studied intensively in
more general settings [12, 13].

Using concurrence of assistance [14] as the measure of
distributed entanglement, the polygamy of entanglement
provides a lower bound for the distribution of bipartite
entanglement in a multipartite system [15]. Polygamy of
entanglement is characterized by the polygamy inequal-
ity, EaA|BC ≤ EaAB + EaAC for a tripartite quantum
state ρABC , where EaA|BC is the assisted entanglement
[16] between A and BC. Polygamy of entanglement was
generalized to multiqubit systems [15] and arbitrary di-
mensional multipartite states [15, 17–19]. In Ref. [20],
the authors have given the monogamy and polygamy re-
lations with any qubits as the focus ones for multiqubit
states. Furthermore, the case of the αth (0 ≤ α ≤ 2)
power of concurrence for N -qubit pure states under any
partition was studied in [21].

In this paper, we study the general monogamy inequal-
ities with qubits AB as the focus qubits, satisfied by the
concurrence and the concurrence of assistance (COA). A
smaller (tighter) upper bound for the αth (0 ≤ α ≤ 2)

power of concurrence for multiqubit states is obtained.
Then we establish the tighter monogamy relations of the
αth (0 ≤ α ≤ 2) power of concurrence in N -qubit pure
states under the partition AB and C1...CN−2, as well
as under the partition ABC1 and C2 · · ·CN−2. Based on
the relations between negativity and concurrence, we also
obtain similar results for negativity. Detailed examples
are presented.

TIGHTER GENERALIZED MONOGAMY AND
POLYGAMY RELATIONS OF CONCURRENCE

Let HX denote the finite dimensional vector space as-
sociated with qubit X. For a bipartite pure state |ψ⟩AB
in vector space HA ⊗ HB , the concurrence is given by
[23–25]

C(|ψ⟩AB) =
√
2 [1− Tr(ρ2A)], (1)

where ρA is the reduced density matrix by tracing over
the subsystem B, ρA = TrB(|ψ⟩AB⟨ψ|). The concurrence
for a bipartite mixed state ρAB is defined by the convex
roof

C(ρAB) = min
{pi,|ψi⟩}

∑
i

piC(|ψi⟩),

where the minimum is taken over all possible decomposi-
tions of ρAB =

∑
i pi|ψi⟩⟨ψi|, with pi ≥ 0,

∑
i pi = 1 and

|ψi⟩ ∈ HA ⊗HB .
For a tripartite state |ψ⟩ABC , the concurrence of assis-

tance (COA) is defined by [26]

Ca(|ψ⟩ABC) = Ca(ρAB) = max
{pi,|ψi⟩}

∑
i

piC(|ψi⟩),

for all possible ensemble realizations of ρAB =
TrC(|ψ⟩ABC⟨ψ|) =

∑
i pi|ψi⟩⟨ψi|. When ρAB is a pure

state, one has C(|ψ⟩AB) = Ca(ρAB).
For an N -qubit state |ψ⟩AB1,··· ,BN−1

∈ HA ⊗ HB1 ⊗
· · · ⊗ HBN−1 , the concurrence C(|ψ⟩A|B1···BN−1

) of the
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state |ψ⟩A|B1···BN−1
, viewed as a bipartite partition A

and B1B2 · · ·BN−1, satisfies the monogamy inequality
[27],

C2(ρA|B1,B2··· ,BN−1
)

≥ C2(ρAB1) + C2(ρAB2) + · · ·+ C2(ρABN−1), (2)

where C(ρABi) is the concurrence of ρABi =
TrB1···Bi−1Bi+1···BN−1

(ρ).
The dual inequality satisfied by COA for N -qubit

states has the form [28],

C2(|ψ⟩A|B1B2···BN−1
) ≤

N−1∑
i=1

C2
a(ρABi

). (3)

Furthermore, the authors in [22] presented
a generalized monogamy relation for α ≥ 2,
Cα(ρA|B1,B2··· ,BN−1

) ≥ Cα(ρAB1) + Cα(ρAB2) +
· · · + Cα(ρABN−1

). The dual inequality is given in [21]
for 0 ≤ α ≤ 2,

Cα(|ψ⟩A|B1B2···BN−1
) ≤

Cαa (ρAB1) +
α

2
Cαa (ρAB2) + · · ·

+
(α
2

)N−2

Cαa (ρABN−1). (4)

In this paper, we first give a tighter upper bound satisfied
by the αth power of COA for N -qubit states. Then we
prsent monogamy and polygamy relations for N -qubit
states in terms of the αth power of COA, which are
tighter than the existing ones.
The concurrence (1) is related to the linear entropy

T (ρ) of a state ρ, T (ρ) = 1−Tr(ρ2) [29]. For a bipartite
state ρAB , T (ρ) has the property [30],

|T (ρA)− T (ρB)| ≤ T (ρAB) ≤ T (ρA) + T (ρB). (5)

For convenience, we rewrite (3) as follows,

C2(|ψ⟩A|B1B2···BN−1
) ≤

k∑
i=1

C2
a(ρAMi), (6)

where C2
a(ρAMi) =

∑Mi

j=Mi−1+1 C
2
a(ρABj ) with M0 =

0,
∑k
i=1Mi = N − 1, 1 ≤ k ≤ N − 1. The summa-

tion on the right hand side of (6) has been separated into
k parts. There is always a choice of Mi, such that the
above relations is true.
[Theorem 1]. For any N -qubit pure state

|ψ⟩AB1B2···BN−1
, we have

Cα(|ψ⟩A|B1B2···BN−1
)

≤ Cαa (ρAM1) + hCαa (ρAM2) + · · ·

+hk−1Cαa (ρAMk
), (7)

for all 0 ≤ α ≤ 2, where h = 2
α
2 − 1.

[Proof]. Without loss of generality, we can always

assume that C2
a(ρAMt) ≥

∑k
l=t+1 C

2
a(ρAMl

), 1 ≤ t ≤
k − 1, 2 ≤ k ≤ N − 1, by reordering M1,M2, · · · ,Mk

and/or relabeling the subsystems in need. Form the re-
sult in [28], we have

Cα(|ψ⟩A|B1B2···BN−1
)

≤

(
C2
a(ρAM1) +

k∑
i=2

C2
a(ρAMi)

)α
2

= Cαa (ρAM1
)

(
1 +

∑k
i=2 C

2
a(ρAMi)

C2
a(ρAM1)

)α
2

≤ Cαa (ρAM1)

1 + h

(∑k
i=2 C

2
a(ρAMi)

C2
a(ρAM1)

)α
2


= Cαa (ρAM1) + h

(
k∑
i=2

C2
a(ρAMi)

)α
2

≤ · · · ≤
k∑
i=1

hi−1Cαa (ρAMi
), (8)

where the first inequality is due to (6). By using the
fact that [31], for any real numbers x and t such that
0 ≤ t ≤ 1 and 0 ≤ x ≤ 1, (1 + t)x ≤ 1 + (2x − 1)tx, we
get the second inequality. �

Theorem 1 gives a tighter polygamy relation of the
αth (0 ≤ α ≤ 2) power of concurrence for N -qubit pure
state |ψ⟩A|B1B2,··· ,BN−1

based on the COA. For the case
of k = N − 1, we have the following result,

Cα(|ψ⟩A|B1B2···BN−1
)

≤ Cαa (ρAB1) + hCαa (ρAB2) + · · ·

+hN−2Cαa (ρABN−1
). (9)

Specially, for α = 2, inequality (7) or (9) reduces to the
result (6) in [28]. For 0 < α < 2, inequality (7) or (9) is
tighter than the result (4) in [21].

Example 1. Let us consider the three-qubit state |ψ⟩
in the generalized Schmidt decomposition form [33, 34],

|ψ⟩ = λ0|000⟩+λ1eiφ|100⟩+λ2|101⟩+λ3|110⟩+λ4|111⟩,

where λi ≥ 0, i = 0, · · · , 4 and
∑4
i=0 λ

2
i = 1. We

have C(ρA|BC) = 2λ0
√
λ22 + λ23 + λ24, C(ρAB) = 2λ0λ2,

C(ρAC) = 2λ0λ3, Ca(ρAB) = 2λ0
√
λ22 + λ24, Ca(ρAC) =

2λ0
√
λ23 + λ24. Set λ0 = λ1 = λ2 = λ3 = λ4 =

√
5
5 .

One gets Cα(ρA|BC) = (2
√
3

5 )α, Cαa (ρAB)+
α
2C

α
a (ρAC) =(

1 + α
2

)
( 2

√
2

5 )α, Cαa (ρAB)+hC
α
a (ρAC) = 2

α
2 ( 2

√
2

5 )α. One
can see that our result is better than that of (4) for
0 < α < 2, see Fig. 1.

In the following, by using the conclusion of Theorem 1
and Lemma 2, we present some monogamy-type inequal-
ities and lower bounds of concurrence in terms of concur-
rence and COA. These monogamy relations are satisfied
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FIG. 1: E is the entanglement as a function of α. Solid (Red)
line is the αth power of concurrence; Dotted (Black) line is
the upper bound in (7); Dashed (Blue) line is the result of
(4).

by the concurrence of N -qubit states under the parti-
tion AB and C1 · · ·CN−2, as well as under the partition
ABC1 and C2 · · ·CN−2, which generalize the monogamy
inequalities for pure states in [9] and give tighter bounds
than [21].
[Lemma]. For arbitrary two real numbers x and y

such that x ≥ y ≥ 0, we have (x − y)α ≥ xα − yα and
(x+ y)α ≤ xα + yα for 0 ≤ α ≤ 1.
[Proof]. (x− y)α ≥ xα− yα is equivalent to (1− y

x )
α+

( yx )
α ≥ 1 for nonzero x. Denote t = y

x . Then 0 ≤ t ≤ 1.

Set f(t) = (1−t)α+tα. We have df
dt = α[tα−1−(1−t)α−1].

For 0 ≤ t ≤ 1
2 ,

df
dt ≥ 0, since 1 − t ≥ t and α − 1 < 0.

Therefore, f(t) ≥ f(0) = 1 in this case. For 1
2 < t ≤ 1,

df
dt ≤ 0, since t ≥ 1 − t and α − 1 ≤ 0. Hence, f(t) ≥
f(1) = 1 in this case. In summary, for 0 < α ≤ 1,
f(t)min ≥ f(0) = f(1) = 1. Similarly, one can get the
second inequality in Lemma. When α = 0 or x = 0, the
inequality is trivial. Hence we complete the proof of the
Lemma. �
[Theorem 2]. For any N -qubit state |ψ⟩ABC1···CN−2

,
we have

Cα(ρAB|C1···CN−2
)

≥ max

{
h

k1−1∑
i=1

Cα(ρAMi) + Cα(ρAMk1
)− JB ,

h

k2−1∑
i=1

Cα(ρBMi) + Cα(ρBMk2
)− JA

}
, (10)

for 0 ≤ α ≤ 2, N ≥ 4, where C2
a(ρAMi) is de-

fined in (6) and JA =
∑k1
i=1 h

i−1Cαa (ρAMi), JB =∑k2
i=1 h

i−1Cαa (ρBMi), h = 2
α
2 − 1, k1, k2 are defined sim-

ilar to inequality (6).
[Proof]. Without loss of generality, there always exists

a proper ordering of the subsystemsMti ,Mti+1, · · · ,Mki

(i = 1, 2) such that C2
a(ρAMt1

) ≥
∑k1
l=t1+1 C

2
a(ρAMl

) and

C2
a(ρBMt2

) ≥
∑k2
l=t2+1 C

2
a(ρBMl

), 1 ≤ ti ≤ ki − 1 (i =
1, 2), 2 ≤ k1, k2 ≤ N − 1.

For N -qubit pure state ρABC1···CN−2
, if

C(ρA|BC1···CN−2
) ≥ C(ρB|AC1···CN−2

), one has

Cα(ρAB|C1···CN−2
)

= (2T (ρAB))
α
2

≥ |2T (ρA)− 2T (ρB)|
α
2

= |C2(ρA|BC1···CN−2
)− C2(ρB|AC1···CN−2

)|α2
≥ Cα(ρA|BC1···CN−2

)− Cα(ρB|AC1···CN−2
)

≥ h

k1−1∑
i=1

Cα(ρAMi) + Cα(ρAMk1
)− Cα(ρB|AC1···CN−2

)

≥ h

k1−1∑
i=1

Cα(ρAMi) + Cα(ρAMk1
)− JB ,

where the first inequality is due to the left inequality in
(5). From Lemma, one gets the second inequality. Using
the inequality (1+ t)x ≥ 1+ (2x− 1)tx, t ≥ 1, 0 ≤ x ≤ 1,
we get the third inequality. The last inequality is due to
Theorem 1.

If C(ρA|BC1···CN−2
) ≤ C(ρB|AC1···CN−2

), similar to the
above derivation, we can obtain another inequality in
Theorem 2. �

Theorem 2 shows that the entanglement contained in
the pure states ρABC1···CN−2

is related to the sum of
entanglement between bipartitions of the system. The
lower bound in inequalities (10) is easily calculable. As
an example, let us consider the four-qubit pure state
|ψ⟩ABCD = 1√

2
(|0000⟩ + |1001⟩). We have C(ρAB) =

C(ρAC) = 0, C(ρAD) = 1, and Ca(ρBA) = Ca(ρBC) =
Ca(ρBD) = 0. Therefore, C(|ψ⟩AB|CD) ≥ 2

α
2 − 1,

0 ≤ α ≤ 2. Namely, the state |ψ⟩ABCD saturates the
inequality (10) for α = 2.

Similar to the proof of Theorem 2, from (2) we can
derive another upper bound of the αth power of concur-
rence as follows.

[Theorem 3]. For any N -qubit state |ψ⟩ABC1···CN−2 ,
we have

Cα(|ψ⟩AB|C1···CN−2
)

≥ max


(
N−2∑
i=1

C2(ρACi) + C2(ρAB)

)α
2

− JB ,

(
N−2∑
i=1

C2(ρBCi) + C2(ρAB)

)α
2

− JA

 , (11)

for 0 ≤ α ≤ 2, N ≥ 4, where C2
a(ρAMi) is de-

fined in (6) and JA =
∑k1
i=1 h

i−1Cαa (ρAMi), JB =∑k2
i=1 h

i−1Cαa (ρBMi), h = 2
α
2 − 1.

Example 2. Let us consider the 4-qubit generalized
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FIG. 2: Y stands for the differences between the left and right
of the generalized monogamy inequalities: solid (red) line for
(11); dashed (blue) line for (9) in [21].

W -class state,

|W ⟩ABC1C2 = λ1|1000⟩+ λ2|0100⟩
+λ3|0010⟩+ λ4|0001⟩, (12)

where
∑4
i=1 λ

2
i = 1. We have C(|W ⟩AB|C1C2

) =

2
√
(λ21 + λ22)(λ

2
3 + λ24), C(ρAB) = Ca(ρAB) = 2λ1λ2,

C(ρAC1) = Ca(ρAC1) = 2λ1λ3, C(ρAC2) = Ca(ρAC2) =

2λ1λ4. Taking λ1 = 3
4 , λ2 = 1

2 , λ3 =
√
2
4

and λ4 = 1
4 , we get JA = JB =

(
3
8

)α
+

h
(

3
√
2

8

)α
+ h2

(
3
4

)α
. Set y1 = Cα(|W ⟩AB|C1C2

) −(
(C2(ρAB) + C2(ρAC1) + C2(ρAC2))

α
2 − JA

)
to be the

difference between the left and right side of (11). We have

y1 =
(√

39
8

)α
−
(√

63
8

)α
+
(
3
4

)α
+ h

(
3
√
2

8

)α
+ h2

(
3
8

)α
.

From the inequality (9) in [21], such difference is given by

y2 =
(√

39
8

)α
−
(√

63
8

)α
+
(
3
8

)α
+ α

2

(
3
√
2

8

)α
+
(
α
2

)2 ( 3
4

)α
.

From Fig. 2 we can see that the difference between the
left and right of the generalized monogamy inequality
(11) is smaller than that of the result from [21].
Different from the usual monogamy inequalities un-

der the partition A and B1...BN−2 [39], Theorem 2 and
Theorem 3 give monogamy relations under the partition
AB and C1...CN−2, which present finer weighted charac-
terizations of the entanglement distributions among the
subsystems, as illustrated in Example 2. Moreover, the
result in Ref. [20] is a special case of Theorem 3 for
α = 2.
Theorem 2 and Theorem 3 give rise to monogamy-

type lower bound of C(|ψ⟩AB|C1···CN−2
). According to

the subadditivity of the linear entropy, we also have the
following conclusion:
[Theorem 4]. For any 2 ⊗ 2 ⊗ · · · ⊗ 2 pure state

|ψ⟩ABC1···CN−2
, we have

Cα(|ψ⟩AB|C1···CN−2
) ≤ JA + JB (13)

0.0 0.5 1.0 1.5 2.0
Α

0.8
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C

FIG. 3: C as a function of α. Solid (Red) line is the value
of Cα(|ψ⟩AB|CD); Dotted (Black) line is the upper bound of
(13); Dashed (Blue) line is the upper bound of (11) in [21] .

for 0 ≤ α ≤ 2, N ≥ 4, where JA and JB are defined
similarly as in Theorem 2.

[Proof]. Without loss of generality, there always
exists a proper ordering of the subsystems such that
C2
a(ρAMt1

) ≥
∑k1
l=t1+1 C

2
a(ρAMl

) and C2
a(ρBMt2

) ≥∑k2
l=t2+1 C

2
a(ρBMl

) for any 1 ≤ t1, t2 ≤ k − 1 and
2 ≤ k1, k2 ≤ N − 1. For qubit state |ψ⟩ABC1···CN−2

,
one has

Cα(|ψ⟩AB|C1···CN−2
)

= (2T (ρAB))
α
2

≤ (2T (ρA) + 2T (ρB))
α
2

= (C2(ρA|BC1···CN−2
) + C2(ρB|AC1···CN−2

))
α
2

≤ Cα(ρA|BC1···CN−2
) + Cα(ρB|AC1···CN−2

)

≤ JA + JB ,

where the first inequality is due to the right inequality in
(5). The second inequality is due to Lemma. Using the
Theorem 1, one gets the last inequality. �

Let us consider the following four-qubit pure state,
|ψ⟩ABCD = 1√

3
(|0000⟩+ |0010⟩+ |1011⟩). Then from the

result in [21], one gets Cα(|ψ⟩AB|CD) ≤ ( 2
√
2

3 )α+ α
2 (

2
3 )
α.

While from our Theorem 4, we have Cα(|ψ⟩AB|CD) ≤
( 2

√
2

3 )α + h( 23 )
α for any 0 ≤ α ≤ 2, where h = 2

α
2 − 1,

see Fig. 3.

Now we generalize our results to the concurrence
CABC1|C2···CN−2

(|ψ⟩) under the partition ABC1 and
C2 · · ·CN−2 (N ≥ 6) for pure state |ψ⟩ABC1···CN−2

. Sim-
ilar to Theorem 2, Theorem 3 and Theorem 4, we obtain
the following corollaries:

[Corollary 1]. For any N -qubit pure state
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|ψ⟩ABC1···CN−2 , we have

Cα(|ψ⟩ABC1|C2···CN−2
)

≥ max

{
h

K1−1∑
i=1

Cα(ρAMi
) + Cα(ρAMK−1

)− JB ,

h

K1−1∑
i=1

Cα(ρBMi) + Cα(ρBMK−1)− JA

}
− JC1 ,(14)

or

Cα(|ψ⟩ABC1|C2···CN−2
)

≥ max


(
N−2∑
i=1

C2(ρACi) + C2(ρAB)

)α
2

− JB ,

(
N−2∑
i=1

C2(ρBCi) + C2(ρAB)

)α
2

− JA

− JC1 , (15)

where JA, JB are defined as in Theorem 2, JC1 =∑k
i=1 h

i−1Cαa (ρC1Mi), h = 2
α
2 − 1, 2 ≤ m ≤ N − 3, N ≥

6.
[Proof]. For any N -qubit pure state |ψ⟩ABC1···CN−2 , if

C(|ψ⟩AB|C1···CN−2
) ≥ C(|ψ⟩C1|ABC2···CN−2

), we have

Cα(|ψ⟩ABC1|C2···CN−2
)

= (2T (ρABC1))
α
2

≥ |2T (ρAB)− 2T (ρC1)|
α
2

= |C2(|ψ⟩AB|C1···CN−2
)− C2(|ψ⟩C1|ABC2···CN−2

)|α2
≥ Cα(|ψ⟩AB|C1···CN−2

)− Cα(|ψ⟩C1|ABC2···CN−2
),

where the first inequality is due to T (ρABC1) ≥ T (ρAB)−
T (ρC1). Using Lemma, we get the second inquality.
Combining Theorem 1 and Theorem 2, we obtain (14),
and combining Theorem 1 and Theorem 3, we obtain
(15). �
[Corollary 2]. For any N -qubit pure

state |ψ⟩ABC1···CN−2 , if C(|ψ⟩AB|C1···CN−2
) ≤

C(|ψ⟩C1|ABC2···CN−2
), we have

Cα(|ψ⟩ABC1|C2···CN−2
)

≥

(
C2(ρAC1) + C2(ρBC1) +

N−2∑
i=2

C2(ρC1Ci)

)α
2

−JA − JB , (16)

and

Cα(|ψ⟩ABC1|C2···CN−2
) ≤ JA + JB + JC1 , (17)

where JA, JB are defined in Theorem 2, JC1 is defined
in Corollary 1.
In Corollary 2, the upper bound is due to the

right inequalities of (5) and (7). Analogously, by
using T (ρABC1) ≥ |T (ρAC1) − T (ρB)|, T (ρABC1) ≥

|T (ρA) − T (ρBC1)|, and T (ρABC1) ≤ |T (ρAC1) +
T (ρB)|, T (ρABC1) ≤ |T (ρA)+T (ρBC1)|, one can get (16)
and (17).

The lower bounds in Corollary 1 and Corollary 2 are
not equivalent. We consider the following two examples
to show that Corollary 1 and Corollary 2 give rise to
different lower bounds. Let us consider the pure state
|ψ⟩ABC1C2C3C4

= 1√
2
(|000000⟩ + |101000⟩). We have

C(|ψ⟩) ≥ 1 from (15) and C(|ψ⟩) ≥ 0 from (16). Namely,
bound (15) is better than (16) in this case. Nevertheless,
for the state |ψ⟩ABC1C2C3C4 = 1√

2
(|000000⟩ + |001100⟩),

one has C(|ψ⟩) ≥ 0 from (15) and C(|ψ⟩) ≥ 1 from (16).
The bound (16) is better than (15) in this case.

TIGHTER GENERALIZED MONOGAMY AND
POLYGAMY RELATIONS OF NEGATIVITY

Another well-known quantifier of bipartite entangle-
ment is the negativity. Given a bipartite state ρAB in
HA ⊗HB , the negativity is defined by [35],

N(ρAB) =
||ρTA

AB || − 1

2
,

where ρTA

AB is the partially transposed matrix of ρAB with
respect to the subsystem A, ||X|| denotes the trace norm
of X, i.e ||X|| = Tr

√
XX†. Negativity is a computable

measure of entanglement, and is a convex function of
ρAB . It vanishes if and only if ρAB is separable for the 2⊗
2 and 2⊗ 3 systems [36]. For the purposes of discussion,
we use the following definition of negativity: N(ρAB) =
||ρTA

AB || − 1.
For any bipartite pure state |ψ⟩AB in a d⊗ d quantum

system with Schmidt rank d, |ψ⟩AB =
∑d
i=1

√
λi|ii⟩, one

has

N(|ψ⟩AB) = 2
∑
i<j

√
λiλj , (18)

from the definition of concurrence (1), we have

C(|ψ⟩AB) = 2

√∑
i<j

λiλj . (19)

Combining (18) with (19), one obtains

N(|ψ⟩AB) ≥ C(|ψ⟩AB). (20)

For any bipartite pure state |ψ⟩AB with Schmidt rank
2, one hasN(|ψ⟩AB) = C(|ψ⟩AB) from (18) and (19). For
a mixed state ρAB , the convex-roof extended negativity
(CREN) is defined by

Nc(ρAB) = min
∑
i

piN(|ψi⟩AB),
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where the minimum is taken over all possible pure state
decompositions {pi, |ψi⟩AB} of ρAB . CREN gives a
perfect discrimination of positively partial transposed
bound entangled states and separable states in any bi-
partite quantum systems [37, 38]. For a mixed state
ρAB , the convex-roof extended negativity of assistance
(CRENOA) is defined by [39]

Na(ρAB) = max
∑
i

piN(|ψi⟩AB),

where the maximum is taken over all possible pure state
decompositions {pi, |ψi⟩AB} of ρAB .
CREN is equivalent to concurrence for any pure state

with Schmidt rank 2 [39]. Consequently for any two-
qubit mixed state ρAB , one has

Nc(ρAB) = C(ρAB) (21)

and

Na(ρAB) = Ca(ρAB). (22)

For N -qubit pure state |ψ⟩A|B1B2,··· ,BN−1
, from (20),

(21), (22) and the monogamy of the concurrence, we have

Nα(|ψ⟩A|B1B2,··· ,BN−1
)

≥ Nα
c (ρAB1) +Nα

c (ρAB2) + · · ·+Nα
c (ρABN−1),(23)

for α ≥ 2. The dual inequality [39] in terms of CRENOA
is given by

N2(|ψ⟩A|B1B2,··· ,BN−1
)

≤ N2
a (ρAB1) +N2

a (ρAB2) + · · ·+N2
a (ρABN−1)

=
k∑
i=1

N2
a (ρAMi), (24)

where N2
a (ρAMi) =

∑Mi

j=Mi−1+1N
2
a (ρABj ) with M0 =

0,
∑k
i=1Mi = N − 1, 1 ≤ k ≤ N − 1. By similar

consideration to concurrence, we get the upper bound of
the αth power of negativity as follows.
[Theorem 5]. For any N -qubit pure state

|ψ⟩AB1B2,··· ,BN−1
, we have

Nα(|ψ⟩A|B1B2,··· ,BN−1
)

≤ Nα
a (ρAM1) + hNα

a (ρAM2) + · · ·

+hk−1Nα
a (ρAMk

), (25)

for 0 ≤ α ≤ 2, where h = 2
α
2 − 1, N ≥ 4.

[Theorem 6]. For any qubit state |ψ⟩ABC1···CN−2
, we

have

Nα(ρAB|C1···CN−2
)

≥ max

{
h

k1−1∑
i=1

Nα
c (ρAMi) +Nα

c (ρAMk1
)− J ′

B ,

h

k2−1∑
i=1

Nα
c (ρBMi) +Nα

c (ρBMk2
)− J ′

A

}
, (26)

for 0 ≤ α ≤ 2, N ≥ 4, where J ′
A =

∑k1
i=1 h

i−1Nα
a (ρAMi),

J ′
B =

∑k2
i=1 h

i−1Nα
a (ρBMi

), h = 2
α
2 − 1.

[Proof]. Without loss of generality, there always
exists a proper ordering of the subsystems such that
N2
a (ρAMt1

) ≥
∑k1
l=t1+1N

2
a (ρAMl

) and N2
a (ρBMt2

) ≥∑k2
l=t2+1N

2
a (ρBMl

), 1 ≤ ti ≤ ki − 1 (i = 1, 2), 2 ≤
k1, k2 ≤ N − 1. For pure state |ψ⟩ABC1···CN−2 , we have

Nα(|ψ⟩AB|C1···CN−2
) ≥ Cα(|ψ⟩AB|C1···CN−2

)

≥ max

{
h

k1−1∑
i=1

Cα(ρAMi) + Cα(ρAMk1
)− JB ,

h

k2−1∑
i=1

Cα(ρBMi) + Cα(ρBMk2
)− JA

}

= max

{
h

k1−1∑
i=1

Nα
c (ρAMi) +Nα

c (ρAMk1
)− J ′

B ,

h

k2−1∑
i=1

Nα
c (ρBMi) +Nα

c (ρBMk2
)− J ′

A

}
,

where the first inequality is due to (20), the second in-
equality is from Theorem 2, the equality is based on (21)
and (22). �

[Theorem 7]. For any qubit state |ψ⟩ABC1···CN−2 , we
have

Nα(|ψ⟩AB|C1···CN−2
)

≥ max


(
N−2∑
i=1

N2
c (ρACi) +N2

c (ρAB)

)α
2

− J ′
B ,

(
N−2∑
i=1

N2
c (ρBCi) +N2

c (ρAB)

)α
2

− J ′
A

 ,

for 0 < α ≤ 2, N ≥ 4, where J ′
A =

∑k1
i=1 h

i−1Nα
a (ρAMi),

J ′
B =

∑k2
i=1 h

i−1Nα
a (ρBMi), h = 2

α
2 − 1.

For N -qubit pure state |ψ⟩AB1B2,··· ,BN−1
, based on

the result in [40, 41], one has N(|ψ⟩AB|C1···CN−2
) ≤√

r(r−1)
2 C(|ψ⟩AB|C1···CN−2

), where r is the Schmidt rank

of the pure state |ψ⟩ABC1···CN−2
. From Theorem 4, we

can obtain the upper bound of negativity under the par-
tition AB and C1 · · ·CN−2.

[Theorem 8]. For any qubit state |ψ⟩ABC1···CN−2
, we

have

Nα(|ψ⟩AB|C1···CN−2
) ≤

(
r(r − 1)

2

)α
2

(J ′
A + J ′

B),

for 0 ≤ α ≤ 2, where J ′
A, J

′
B are given in Theorem 6.

CONCLUSION

Entanglement monogamy and polygamy relations
are fundamental properties of multipartite entan-
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gled states. We have presented tighter monogamy
relations of the αth power of concurrence for N -
qubit systems by showing the relations among
C(|ψ⟩AB|C1···CN−2

), C(ρAB), C(ρACi), C(ρBCi), Ca(ρACi),
and Ca(ρBCi), 1 ≤ i ≤ N−2, which give rise to the larger
lower bounds and smaller upper bounds on the entan-
glement sharing among the partitions. The monogamy
relations based on concurrence and COA have been
investigated. We have obtained the smaller upper bound
of the αth (0 ≤ α ≤ 2) power of concurrence based on
COA. We then have derived the tighter monogamy and
polygamy relations satisfied by the αth (0 ≤ α ≤ 2)
power of concurrence in N -qubit pure states under the
partition AB and C1 · · ·CN−2, as well as under the
partition ABC1 and C1 · · ·CN−2. These relations also
give rise to a kind of trade-off relationship restricted
by the lower and upper bounds of concurrences. Based
on the relations between negativity and concurrence,
we have also obtained the similar results for CREN
and CRENOA. These results may be generalized to
monogamy and polygamy relations under arbitrary
partitions CABC1···Ci|Ci+1···CN−2

, 2 ≤ i ≤ N − 2. Our
approach may be also used for the investigation of
entanglement distribution based on other measures of
quantum correlations.
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