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Abstract

Monogamy and polygamy are the most striking features of the quantum world. We investigate

the monogamy and polygamy relations satisfied by all quantum correlation measures for arbitrary

multipartite quantum states. By introducing residual quantum correlations, analytical polygamy

inequalities are presented, which are shown to be tighter than the existing ones. Then, similar

to polygamy relations, we obtain strong monogamy relations that are better than all the existing

ones. Typical examples are presented for illustration.
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INTRODUCTION

Quantum correlation is one of the most important properties of quantum physics, which

has been extensively studied due to its importance in quantum communication and quan-

tum information processing. One significant property of quantum correlation is known

as monogamy. For a tripartite system A, B and C, the usual monogamy of a quan-

tum correlation measure Q implies that the correlation QA|BC between A and BC sat-

isfies QA|BC ≥ QAB + QAC . Dually, the polygamy relation is quantitatively displayed

as QA|BC ≤ QAB + QAC . It is shown that while monogamy inequalities provide an up-

per bound for bipartite sharability of quantum correlations in a multipartite system, the

polygamy inequalities give a lower bound. The first monogamy relation was proven for

arbitrary three-qubit states based on the squared concurrence. Later, various monogamy

inequalities have been established for a number of entanglement measures in multipartite

quantum systems [1–8]. Polygamy relations are also generalized to multiqubit systems [9]

and arbitrary dimensional multipartite states [3–5].

As is well known, the usual monogamy and polygamy relations are not always satisfied

by any correlation measures like entanglement of formation [10] quantifying the amount of

entanglement required for preparation of a given bipartite quantum state. It has been shown

that the αth (α ≥ 2) power of concurrence and the αth (α ≥
√
2) power of entanglement

of formation do satisfy the monogamy relations for N -qubit states [2, 3]. One may ask

whether any measures of quantum correlations satisfy a kind of monogamy or polygamy

relations. In this paper, we first show that all quantum correlation measures satisfy some

kind of polygamy relations for arbitrary multipartite quantum states. Then we introduce

the residual quantum correlations, and present tighter polygamy inequalities that are better

than all the existing ones. At last, similar to polygamy relations, we present the strong

monogamy relations that are also better than the existing ones.

STRONG POLYGAMY RELATIONS FOR MULTIPARTITE QUANTUM SYS-

TEMS

Let Q be an arbitrary quantum correlation measure of bipartite systems. Q is said to

be polygamous for an N -partite quantum state ρAB1B2···BN−1
, if it satisfies the following
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inequality,

Q(ρAB1) +Q(ρAB2) + · · ·+Q(ρABN−1
) ≥ Q(ρA|B1B2···BN−1

), (1)

where ρABi
, i = 1, ..., N − 1, are the reduced density matrices, Q(ρA|B1B2···BN−1

) denotes

the quantum correlation Q of the state ρAB1B2···BN−1
under bipartite partition A and

B1B2 · · ·BN−1, which keeps invariant under discarding subsystems only for states satisfying

monogamy relations. For simplicity, we denote Q(ρABi
) by QABi

, and Q(ρA|B1B2···BN−1
) by

QA|B1B2···BN−1
. We define the Q-polygamy score for the N -partite state ρAB1B2···BN−1

,

δQ =
N−1∑
i=1

QABi
−QA|B1B2···BN−1

. (2)

Non-negativity of δQ for all quantum states implies the polygamy of Q. For instance, the

square of the concurrence in term of the concurrence of assistance has been shown to be

polygamous for all multiqubit states [9].

Given any quantum correlation measure that is not polygamous for a multipartite quan-

tum state, it is always possible to find a function of the measure which is polygamous for the

same state [11]. It has been proved that for any d⊗d1⊗· · ·⊗dN−1 state ρAB1B2···BN−1
, there

exists βmax(Q) ∈ R such that for any 0 ≤ γ ≤ βmax(Q), the quantum correlation measure

Q satisfies the following polygamous relation [11]

Qγ
A|B1B2···BN−1

≤
N−1∑
i=1

Qγ
ABi

. (3)

In the following, we denote β = βmax(Q) the maximal value such that Qβ satisfies the

above inequality. Similar to the three tangle of concurrence, for tripartite quantum states

ρABC , we define the residual quantum correlation as a function of α,

Qα
A|B|C = Qα

AB +Qα
AC −Qα

A|BC , 0 ≤ α ≤ β. (4)

For the class of GHZ states, the equality (4) is valid for β = 0.

From the original definition in [15], the residual quantum correlation is defined to be

QA|B|C = QA|BC − QAB − QAC for some quantum correlation measures Q satisfying the

monogamy relations QA|BC ≥ QAB + QAC . Generally, it is not the quantum correlation

measure Q itself, but the αth power satisfies the monogamy inequality, for instance, the αth

(α ≥ 2) power of concurrence and the αth (α ≥
√
2) power of entanglement of formation
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[2]. It is also the case for polygamy relations. Therefore, here we use the αth power of the

quantum correlation to define the “residual quantum correlation”.

The residual quantum correlations quantify the degree of entanglement distributions

among the subsystems: the smaller of α in (4), the greater degree of violation of the

polygamy inequality. Let us consider the tripartite systems. The residual quantum

correlation is defined by Qα
A|B|C = Qα

AB + Qα
AC − Qα

A|BC (0 ≤ α ≤ β). For two

states ρABC and δABC such that Qα1

A|B|C(ρABC) = Qα2

A|B|C(δABC) = 0, α1 ≤ α2, we

have |Q(ρAB) − Q(ρAC)| ≤ |Q(δAB) − Q(δAC)|. The distribution of quantum correla-

tion in ρABC is more averaged than that in state δABC . For example, consider the state

|ψ⟩ = λ0|000⟩ + λ1e
iφ|100⟩ + λ2|101⟩ + λ3|110⟩ + λ4|111⟩, where λi ≥ 0, i = 0, · · · , 4 and∑4

i=0 λ
2
i = 1. We have the concurrences CA|BC = 2λ0

√
λ22 + λ23 + λ24, CAB = 2λ0λ2, and

CAC = 2λ0λ3. Taking λ0 = λ1 = λ2 = λ3 = λ4 =
√
5
5
, we have ρABC = |ψ1⟩⟨ψ1|, where

|ψ1⟩ =
√
5
5
|000⟩+

√
5
5
eiφ|100⟩+

√
5
5
|101⟩+

√
5
5
|110⟩+

√
5
5
|111⟩. One gets C(ρA|BC)

α = (2
√
3

5
)α,

C(ρAB)
α = C(ρAC)

α = (2
5
)α and α1 ≈ 1.26185 from Qα1

A|B|C(ρ) = 0. If we take

λ0 = λ2 = 1
2
, λ1 = λ3 = λ4 =

√
6
6
, then the state becomes δABC = |ψ2⟩⟨ψ2|, where

|ψ2⟩ = 1
2
|000⟩ +

√
6
6
eiφ|100⟩ + 1

2
|101⟩ +

√
6
6
|110⟩ +

√
6
6
|111⟩. One has α2 ≈ 1.33770 based

on Qα2

A|B|C(δABC) = 0. From above, one can easily get that the entanglement distribution

between the subsystems in ρABC is more averaged than that in δABC .

Consider a d ⊗ d1 ⊗ d2 ⊗ d3 state ρAB1B2B3 . Define Qα
A|B′

1|B′
2

=

max{Qα
A|B1|B2

,Qα
A|B1|B3

,Qα
A|B2|B3

}, where B′
1 and B′

2 stand for two of B1, B2 and B3

such that Qα
A|B′

1|B′
2
= max{Qα

A|B1|B2
,Qα

A|B1|B3
,Qα

A|B2|B3
}.

[Theorem 1]. For any d⊗ d1 ⊗ d2 ⊗ d3 state ρAB1B2B3 , we have

Qα
A|B1B2B3

≤
3∑

i=1

Qα
ABi

−Qα
A|B′

1|B′
2
, (5)

for 0 ≤ α ≤ β.

[Proof]. By definition we have

3∑
i=1

Qα
ABi

−Qα
A|B′

1|B′
2

= Qα
AB′

3
+Qα

A|B′
1B

′
2

≥ Qα
A|B1B2B3

,

where B′
3 is the complementary of B′

1B
′
2 in the subsystem B1B2B3, the equality is due to

the definition of the residual quantum correlation. From (3) we get the inequality.

4



Concerning the parameter β in Theorem 1, let us consider the following 4-qubit state,

|ψ⟩AB1B2B3 = cos θ0|0000⟩+ sin θ0 cos θ1e
iφ|1000⟩+ 1

2
sin θ0 sin θ1|1010⟩

+
3

4
sin θ0 sin θ1|1100⟩+

√
3

4
sin θ0 sin θ1|1110⟩, (6)

where θ0, θ1 ∈ [0, π
2
]. We have CA|B1B2B3 = 2 cos θ0 sin θ0 sin θ1, CAB1 = cos θ0 sin θ0 sin θ1,

CAB2 = 3
2
cos θ0 sin θ0 sin θ1 and CAB3 = CA|B′

1|B′
2
= 0. From (5) we obtain (1

2
)α + (3

4
)α ≥ 1,

namely, α ≤ 1.507126. Therefore, β = 1.507126 is the largest value saturating the inequality

(5) for the state (6).

Inequality (5) presents a tighter polygamy relations for 0 ≤ α ≤ β. Specially, inequality

(5) is satisfied only when α = 0 for particular quantum states like the GHZ-class states.

Generalizing the conclusion of Theorem 1 to N partite case, we have the following result.

[Theorem 2]. For any d⊗ d1 ⊗ · · · ⊗ dN−1 state ρAB1B2···BN−1
, we have

Qα
A|B1B2···BN−1

≤
N−1∑
i=1

Qα
ABi

−
N−2∑
k=2

Qα
A|B′

1|B′
2|···|B′

k
, (7)

for 0 ≤ α ≤ β, where Qα
A|B′

1|B′
2|···|B′

k
= max1≤l≤k+1{Qα

A|B1|···|B̂l|···|Bk+1
} (where B̂l stands

for Bl being omitted in the sub-indices), Qα
A|B1|B2|···|Bk+1

=
∑k+1

i=1 Qα
ABi

− Qα
A|B1B2···Bk+1

−∑k
i=2 Qα

A|B′
1|B′

2|···|B′
i
, 2 ≤ k ≤ N − 2, 1 ≤ l ≤ k + 1, N ≥ 4.

[Proof]. We prove the theorem by induction. For N = 4 it reduces to Theorem 1. Suppose

the Theorem 2 holds for N = n, i.e.,

Qα
A|B1B2···Bn−1

≤
n−1∑
i=1

Qα
ABi

−Qα
A|B′

1|B′
2
− · · · − Qα

A|B′
1|B′

2|···|B′
n−2
. (8)

Then for N = n+ 1, we have

n∑
i=1

Qα
ABi

−Qα
A|B′

1|B′
2
− · · · − Qα

A|B′
1|B′

2|···|B′
n−1

≥ Qα
A|B′

1B
′
2···B′

n−1
+Qα

AB′
n

≥ Qα
A|B1B2···Bn

,

where B′
n is the complementary of B′

1, B
′
2, · · · , B′

n−1 in the subsystem B1, B2, · · · , Bn, the

first inequality is due to (8). By (3) we get the last inequality.

Since the last term
∑N−2

k=2 Qα
A|B′

1|B′
2|···|B′

k
, 2 ≤ k ≤ N − 2, N ≥ 4 in (7) is nonneg-

ative, the inequality (7) is always tighter than (3). Let us consider the following ex-

ample based on the quantum entanglement measure concurrence. For a bipartite pure
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state |ϕ⟩AB, the concurrence is C(|ϕ⟩AB) =
√

2 [1− Tr(ρ2A)], where ρA is the reduced

density matrix by tracing over the subsystem B, ρA = TrB(|ϕ⟩AB⟨ϕ|). For a mixed

state ρAB =
∑

i pi|ϕi⟩AB⟨ϕi|, the concurrence is defined by the convex roof extension,

C(ρAB) = min{pi,|ϕi⟩}
∑

i piC(|ϕi⟩), where the minimum is taken over all possible decom-

positions of ρAB =
∑
i

pi|ϕi⟩⟨ϕi|, with pi ≥ 0 and
∑
i

pi = 1. The concurrence of assistance

is defined by Ca(ρAB) = max{pi,|ϕi⟩}
∑

i piC(|ϕi⟩). And the entanglement of assistance τa is

given by τa(ρAB) =
∑D1

m=1

∑D2

n=1Ca((ρAB)mn) =
∑D1

m=1

∑D2

n=1(max
∑

i pi|⟨ϕi|(Lm
A ⊗Ln

B)|ϕ∗
i ⟩|)

[17], where D1 = d1(d1 − 1)/2, D2 = d2(d2 − 1)/2, Lm
A = Pm

A (−|i⟩A⟨j| + |j⟩A⟨i|)Pm
A ,

Ln
B = P n

B(−|k⟩B⟨l| + |l⟩B⟨k|)P n
B, and Pm

A = |i⟩A⟨i| + |j⟩A⟨j|, P n
B = |k⟩B⟨k| + |l⟩B⟨l| are

the projections onto the subspaces spanned by {|i⟩A, |j⟩A} and {|k⟩B, |l⟩B}, respectively. A

general polygamy inequality for any multipartite pure state |ϕ⟩A1···An was established as [9],

τ 2a (|ϕ⟩A1|A2···An) ≤
∑n

i=2 τ
2
a (ρA1Ai

), where ρA1Ak
is the reduced density matrix of subsystems

A1Ak for k = 2, · · · , n. It has been further shown that [11],

ταa (|ϕ⟩A1|A2···An) ≤
n∑

i=2

ταa (ρA1Ai
), (9)

where 0 ≤ α ≤ 2

Example 1. Let us consider the entanglement of assistance τa of the following 5-qubit

pure state,

|ψ⟩AB1B2B3B4 =
1√
5
(|10000⟩+ |01000⟩+ |00100⟩+ |00010⟩+ |00001⟩). (10)

We have β = 2, τa(|ψ⟩A|B1B2B3B4) =
4
5
, τa(ρABi

) = 2
5
, i = 1, 2, 3, 4. τaA|Bi|Bj |Bk

= 3(1
2
)α −

(
√
3
2
)α, i ̸= j ̸= k ∈ {1, 2, 3, 4}. From the result (9) in [11], we get ταa (|ψ⟩A|B1B2B3B4) ≤ 4(2

5
)α.

From our inequality (7) in Theorem 2, we have ταa (|ψ⟩A|B1B2B3B4) ≤ 4(2
5
)α − 3(1

2
)α + (

√
3
2
)α.

Obviously, our result (7) is better than that in [11], see Fig. 1.

In Theorems 1 and 2 we have taken into account the maximum value among

Qα
A|B1|···|B̂l|···|Bk

. If instead of the maximum value, one just considers the mean value of

Qα
A|B1|···|B̂l|···|Bk

, one may have the following corollary.

[Corollary 1]. For any d⊗ d1 ⊗ · · · ⊗ dN−1 state ρA|B1B2···BN−1
, we have

Qα
A|B1B2···BN−1

≤
N−1∑
i=1

Qα
ABi

−
N−1∑
k=3

(
1

k

k∑
l=1

Qα
A|B1|···|B̂l|···|Bk

)
, (11)
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FIG. 1: Solid (blue) line is the αth power of τa under bipartition A|B1B2B3B4; Dashed

(red) line is the upper bound in (9); Dotted (green) line is the upper bound in (7).

for all 0 ≤ α ≤ β, N ≥ 4, where

Qα
A|B1|B2|···|Bj

=

j∑
i=1

Qα
ABi

−Qα
A|B1B2···Bj

−
j∑

k=3

(
1

k

k∑
l=1

Qα
A|B1|···|B̂l|···|Bk

)
, (12)

3 ≤ j ≤ N − 1, 3 ≤ k ≤ N − 1 and 1 ≤ l ≤ k.

Next, we adopt an approach used in Ref. [12] to improve further the above results on

polygamy relations for multipartite quantum correlation measures. First, we give a Lemma.

[Lemma 1]. For any d1 ⊗ d2 ⊗ d3 mixed state ρABC , if QAB ≥ QAC , we have

Qα
A|BC ≤ Qα

AB + LQα
AC , (13)

for all 0 ≤ α ≤ β, where L = (2
α
β − 1).

[Proof]. For arbitrary d1 ⊗ d2 ⊗ d3 tripartite state ρABC . If QAB ≥ QAC , we have

Qα
A|BC ≤ (Qβ

AB +Qβ
AC)

α
β = Qα

AB

(
1 +

Qβ
AC

Qβ
AB

)α
β

≤ Qα
AB

1 + (2
α
β − 1)

(
Qβ

AC

Qβ
AB

)α
β


= Qα

AB + (2
α
β − 1)Qα

AC ,

where the first inequality is due to (3), the second inequality is due to the inequality (1+t)x ≤

1 + (2x − 1)tx for 0 ≤ x ≤ 1, 0 ≤ t ≤ 1.
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In the above Lemma, without loss of generality, we have assumed that QAB ≥ QAC , as

the subsystems A and B are equivalent. Moreover, in the proof of the Lemma 1 we have

assumed QAB > 0. If QAB = 0 and QAB ≥ QAC , then QAB = QAC = 0. The upper bound

is trivially zero. Generalizing the Lemma 1 to multipartite quantum systems, we have the

following Theorem.

[Theorem 3]. For any d⊗ d1 ⊗ · · · ⊗ dN−1 state ρAB1···BN−1
, if QABi

≥ QA|Bi+1···BN−1
for

i = 1, 2, · · · ,m, and QABj
≤ QA|Bj+1···BN−1

for j = m + 1, · · · , N − 2, ∀ 1 ≤ m ≤ N − 3,

N ≥ 4, we have

Qα
A|B1B2···BN−1

≤ Qα
AB1

+ LQα
AB2

+ · · ·+ Lm−1Qα
ABm

(14)

+Lm+1(Qα
ABm+1

+ · · ·+Qα
ABN−2

) + LmQα
ABN−1

,

for all 0 ≤ α ≤ β, where L = (2
α
β − 1).

[Proof]. By using the Lemma 1 repeatedly, one gets

Qα
A|B1B2···BN−1

≤ Qα
AB1

+ LQα
A|B2···BN−1

(15)

≤ Qα
AB1

+ LQα
AB2

+ L2Qα
A|B3···BN−1

≤ · · · ≤ Qα
AB1

+ LQα
AB2

+ · · ·

+Lm−1Qα
ABm

+ LmQα
A|Bm+1···BN−1

.

As QABj
≤ QA|Bj+1···BN−1

for j = m+ 1, · · · , N − 2, by (13) we get

Qα
A|Bm+1···BN−1

≤ LQα
ABm+1

+Qα
A|Bm+2···BN−1

≤ L(Qα
ABm+1

+ · · ·+Qα
ABN−2)

+Qα
ABN−1

. (16)

Combining (15) and (16), we have Theorem 3.

Similar to the Theorem 2, (14) can be improved by adding a term for residual quantum

correlation. By a similar derivation to Theorem 2, we have

[Theorem 4]. For any d⊗ d1 ⊗ · · · ⊗ dN−1 state ρAB1···BN−1
, if QABi

≥ QA|Bi+1···BN−1
for

i = 1, 2, · · · ,m, and QABj
≤ QA|Bj+1···BN−1

for j = m + 1, · · · , N − 2, ∀ 1 ≤ m ≤ N − 3,

N ≥ 4, we have

Qα
A|B1B2···BN−1

≤
N−1∑
i=1

Q̂α
ABi

−
N−2∑
k=2

Q̂α
A|B′

1|B′
2|···|B′

k
, (17)

for all 0 ≤ α ≤ β, where Q̂α
AB1

= Qα
AB1

, Q̂α
AB2

= LQα
AB2

, · · · , Q̂α
ABm

= Lm−1Qα
ABm

,

Q̂α
ABm+1

= Lm+1Qα
ABm+1

, · · · , Q̂α
ABN−2

= Lm+1Qα
ABN−2

, Q̂α
ABN−1

= LmQα
ABN−1

, L = (2
α
β −

8
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FIG. 2: Solid (blue) line is the αth power of τa under bipartition A|B1B2B3B4; Dashed

(red) line is the upper bound (7); Dotted (green) line is the upper bound in (17).

1). The residual quantum correlation term Q̂α
A|B′

1|B′
2|···|B′

k−1
= max1≤l≤k{Q̂A|B1|···|B̂l|···|Bk

},

Q̂α
A|B1|B2|···|Bk

=
∑k

i=1 Q̂α
ABi

−Qα
A|B1B2···Bk

−
∑k−1

i=2 Q̂α
A|B′

1|B′
2|···|B′

i
, 2 ≤ k ≤ N − 2, 1 ≤ l ≤ k.

As an example, let us consider consider again the the concurrence of the state (10). From

our inequality (7) in Theorem 2, we have ταa (|ψ⟩A|B1B2B3B4) ≤ 4(2
5
)α − 3(1

2
)α + (

√
3
2
)α. From

the inequality (17) in Theorem 4, we have ταa (|ψ⟩A|B1B2B3B4) ≤ 3(2
√
2

5
)α − 2(2

5
)α − 2(1

2
)
α
2 +

(1
2
)α + (

√
3
2
)α. Obviously, the inequality (17) is better than the inequality in [11]. We see in

Fig. 2 that the bound (7) is improved.

STRONG MONOGAMY RELATIONS FOR MULTIPARTITE QUANTUM SYS-

TEMS

We now study the monogamy relations for multipartite states. The monogamy relations

limit the distributions of quantum correlations among the multipartite systems and play an

important role in secure quantum cryptography [13] and in condensed matter physics such

as the n-representability problem for fermions [14].

Monogamy and polygamy of entanglement can restrict the possible correlations between

the authorized users and the eavesdroppers, thus tightening the security bounds in quantum

cryptography. The optimized monogamy and polygamy relations give rise to finer char-

acterizations of the entanglement distributions. Furthermore, to optimize the efficiency of

9



entanglement used in quantum cryptography, finer characterizations of the entanglement

distributions are preferred in some physical systems for stronger security in quantum key

distribution [16].

Monogamy relations of entanglement for multiqubit some higher-dimensional quantum

systems have been investigated in terms of various entanglement measures [2, 3, 5, 15,

18]. However, there are other measures such as quantum discord, quantum deficit, and

entanglement of formation, which do not satisfy the monogamy relations for pure three-qubit

states [19, 20]. In [21] the authors find a monotonically increasing function of quantum

measures, from which a quantum correlation can always be made to be monogamous for

given state. It has been proved that for arbitrary dimensional tripartite states, there exists

xmin(Q) ∈ R such that for any y ≥ xmin(Q), a quantum correlation measure Q satisfies the

following monogamy relation [21],

Qy
A|BC ≥ Qy

AB +Qy
AC . (18)

In the following, we denote x = xmin(Q) the minimal value such that Qx satisfies the

above inequality. Inequality (18) has been generalized to the N partite case for all measures

of quantum correlations [22],

Qy
A|B1B2···BN−1

≥
N−1∑
i=1

Qy
ABi

, (19)

for y ≥ x, N ≥ 3. (19) has been further improved such that for y ≥ x, if QABi
≥

QA|Bi+1···BN−1
for i = 1, 2, · · · ,m, and QABj

≤ QA|Bj+1···BN−1
for j = m + 1, · · · , N − 2, ∀

1 ≤ m ≤ N − 3, N ≥ 4, then [22],

Qy
A|B1B2···BN−1

≥
N−1∑
i=1

Q̂y
ABi

+
N−2∑
k=2

Q̂y
A|B′

1|B′
2|···|B′

k
, (20)

for all y ≥ x, Q̂y
AB1

= Qy
AB1

, Q̂y
AB2

= KQy
AB2

, · · · , Q̂y
ABm

= Km−1Qy
ABm

, Q̂y
ABm+1

=

Km+1Qy
ABm+1

, · · · , Q̂y
ABN−2

= Km+1Qy
ABN−2

, Q̂y
ABN−1

= KmQy
ABN−1

and K = y
x
. The

residual quantum correlation term Q̂y
A|B′

1|B′
2|···|B′

k−1
= max1≤l≤k{Q̂A|B1|···|B̂l|···|Bk

} (where B̂l

stands for Bl being omitted in the sub-indices), Q̂y
A|B1|B2|···|Bk

= Qy
A|B1B2···Bk

−
∑k

i=1 Q̂
y
ABi

−∑k−1
i=2 Q̂

y
A|B′

1|B′
2|···|B′

i
, 2 ≤ k ≤ N − 2, 1 ≤ l ≤ k.

In fact, as a kind of characterization of the quantum correlation distribution among the

subsystems, the monogamy inequalities satisfied by the quantum correlations can be further

refined and become tighter.
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[Lemma 2]. For any d1 ⊗ d2 ⊗ d3 mixed state ρABC , if QAB ≥ QAC , we have

Qy
A|BC ≥ Qy

AB + LQy
AC , (21)

for all y ≥ x, where L = (2
y
x − 1).

[Proof]. For arbitrary d1 ⊗ d2 ⊗ d3 tripartite state ρABC . If QAB ≥ QAC , we have

Qy
A|BC ≥ (Qx

AB +Qx
AC)

y
x = Qy

AB

(
1 +

Qx
AC

Qx
AB

) y
x

≥ Qy
AB

[
1 + L

(
Qx

AC

Qx
AB

) y
x

]
= Qy

AB + LQy
AC ,

where the first inequality is due to (18), the second inequality is due to the inequality

(1 + t)x ≥ 1 + (2x − 1)tx for x ≥ 1, 0 ≤ t ≤ 1 [5].

[Theorem 5]. For any d⊗ d1 ⊗ · · · ⊗ dN−1 state ρAB1···BN−1
, if QABi

≥ QA|Bi+1···BN−1
for

i = 1, 2, · · · ,m, and QABj
≤ QA|Bj+1···BN−1

for j = m + 1, · · · , N − 2, ∀ 1 ≤ m ≤ N − 3,

N ≥ 4, we have

Qy
A|B1B2···BN−1

≥
N−1∑
i=1

Q̃y
ABi

+
N−2∑
k=2

Q̃y
A|B′

1|B′
2|···|B′

k
, (22)

for all y ≥ x, where Q̃y
AB1

= Qy
AB1

, Q̃y
AB2

= LQy
AB2

, · · · , Q̃y
ABm

= Lm−1Qy
ABm

, Q̃y
ABm+1

=

Lm+1Qy
ABm+1

, · · · , Q̃y
ABN−2

= Lm+1Qy
ABN−2

, Q̃y
ABN−1

= LmQy
ABN−1

, L = (2
y
x − 1). The resid-

ual quantum correlation term Q̃y
A|B′

1|B′
2|···|B′

k−1
= max1≤l≤k{Q̃A|B1|···|B̂l|···|Bk

}, Q̃y
A|B1|B2|···|Bk

=

Qy
A|B1B2···Bk

−
∑k

i=1 Q̃
y
ABi

−
∑k−1

i=2 Q̃
y
A|B′

1|B′
2|···|B′

i
, 2 ≤ k ≤ N − 2, 1 ≤ l ≤ k.

[Proof]. By using the Lemma 2 repeatedly, one gets

Qy
A|B1B2···BN−1

≥ Qy
AB1

+ LQα
A|B2···BN−1

≥ Qy
AB1

+ LQα
AB2

+ L2Qy
A|B3···BN−1

≥ · · · ≥ Qy
AB1

+ LQy
AB2

+ · · ·

+Lm−1Qy
ABm

+ LmQy
A|Bm+1···BN−1

. (23)

As QABj
≤ QA|Bj+1···BN−1

for j = m+ 1, · · · , N − 2, by (15) we get

Qy
A|Bm+1···BN−1

≥ LQy
ABm+1

+Qy
A|Bm+2···BN−1

≥ L(Qy
ABm+1

+ · · ·+Qy
ABN−2)

+Qy
ABN−1

. (24)

11



Combining (23) and (24), we have

Qy
A|B1B2···BN−1

≥
N−1∑
i=1

Q̃y
ABi

. (25)

Suppose that Theorem 5 holds for N = n, i.e.,

Qy
A|B1B2···Bn−1

≥
n−1∑
i=1

Q̃y
ABi

+ Q̃y
A|B′

1|B′
2
+ · · ·+ Q̃y

A|B′
1|B′

2|···|B′
n−2
. (26)

Then for N = n+ 1, we have

n∑
i=1

Q̃y
ABi

+ Q̃y
A|B′

1|B′
2
+ · · ·+ Q̃y

A|B′
1|B′

2|···|B′
n−1

≤ Q̃y
A|B′

1B
′
2···B′

n−1
+ Q̃y

AB′
n

≤ Qy
A|B1B2···Bn

,

where B′
n is the complementary of B′

1B
′
2, · · · , B′

n−1 in the subsystem B1B2, · · · , Bn. The

first inequality is due to (26). By (25) we get the last inequality.

Example 2. For the concurrence of the W state,

|W ⟩A|B1B2B3 =
1

2
(|1000⟩+ |0100⟩+ |0010⟩+ |0001⟩), (27)

we have x = 2, CABi
= 1

2
, i = 1, 2, 3, and CA|B1B2 = CA|B1B3 = CA|B2B3 =

√
2
2
. From the

inequality (20), one has Ĉy
A|B1|B2

= Ĉy
A|B1|B3

= Ĉy
A|B2|B3

= (
√
2
2
)y − (1 + y

2
)(1

2
)y. Hence the

lower bound of Cy
A|B1B2B3

is
∑3

i=1 Ĉ
y
ABi

+ Ĉy
A|B1|B2

= (
√
2
2
)y + y

2
(1
2
)y. From the inequality (22)

in Theorem 5, we have C̃y
A|B1|B2

= C̃y
A|B1|B3

= C̃y
A|B2|B3

= (
√
2
2
)y − (1

2
)
y
2 . The lower bound of

Cy
A|B1B2B3

is
∑3

i=1 C̃
y
ABi

+ C̃y
A|B1|B2

= (
√
2
2
)y + (2

y
2 − 1)(1

2
)y. One can see that our result is

better than (20) in [22], see Fig. 3.

CONCLUSION

Monogamy and polygamy inequalities are the key features of multipartite entanglement,

which distinguish the quantum from the classical correlations. We have investigated the

monogamy and polygamy relations satisfied by arbitrary quantum correlation measures for

arbitrary multipartite quantum states. Similar to the three tangle of concurrence, we have

introduced the αth (0 ≤ α ≤ β) power of the residual quantum correlation. In term of

the residual quantum correlations, analytical polygamy inequalities have been presented,
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FIG. 3: Solid (blue) line is the yth power of concurrence under bipartition A and B1B2B3;

Dashed (red) line for the lower bound (20) in [22]; Dotted (green) line for the lower bound

in (22).

which are shown to be tighter than the existing ones. Similarly, we have obtained the strong

monogamy relations that are also better than all the existing ones. Detailed examples have

been given for illustration. The novel residual quantum correlation we introduced may also

contribute to improve other relations satisfied by quantum correlation measures.
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