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Abstract

The entanglement witness is an important and experimentally applicable tool
for entanglement detection. In this paper, we provide a strictly nonlinear improve-
ment of any entanglement witness for 2 ⊗ d quantum systems. Compared with
any existing entanglement witness, the improved separability criterion only needs
two more measurements on local observables. Detailed examples are employed
to illustrate the efficiency of the nonlinear improvement for general, optimal and
non-decomposable entanglement witnesses.

1 Introduction

As a key physical resource, quantum entanglement can be used to implement many
tasks to achieve quantum advantages for quantum communication and computation,
see, e.g., [1]. However, it is extremely hard to determine whether a given quantum
state is entangled or not, because this is a NP-hard problem from the viewpoint of
computation complexity [2]. Up to now, various separable criteria have been suggested,
see, e.g., [3] for comprehensive surveys. However, many of them require density matrix
reconstruction via quantum sate tomography, which is challenging in experiments for
high dimensional quantum systems.

Entanglement witnesses (EWs) [4] provide important feasible approaches for entan-
glement detection, which do not require the full information of quantum states. An
EW is a Hermitian operator, whose mean values for all separable states are nonneg-
ative, but can be negative for at least one entanglement state. It was shown in [5]
that any entanglement state can be detected by at least one EW. Nevertheless, for
an unknown entangled state, the construction of the corresponding EW is generally
quite difficult. Several constructions of EWs have been proposed for some specific en-
tangled states, see, e.g., [6, 7]. EWs can also be used to quantify entanglement [8]
and design measurement-device-independent ways for entanglement detection [9]. The
experimental implements of EWs have also been realized in different physical systems
[10, 11].

1



The nonlinear improvement of EWs has been addressed based on nonlinear cor-
rections [12]. In [13] the quadratic and nonlinear terms were designed for iteration
to find a sequence of stronger nonlinear EWs. Arrazola, Gittsovich and Lütkenhaus
[14] proposed an accessible nonlinear EW, which makes use of the same data as for
the evaluation of the original EW. In [15] a family of EWs based on local orthogonal
observables was presented, which has been nonlinearly improved in [16]. These linear
and nonlinear forms have been further optimized in [17].

The separability and entanglement of 2 ⊗ d quantum states have been extensively
studied in [18, 19, 20]. Specifically, Bell-type inequalities for detecting entanglement
were constructed in [19, 20], which provide experimental ways for entanglement detec-
tion, as only mean values of local observables are involved.

This paper is devoted to giving an alternative way of general nonlinear improvement
of any EW for 2 ⊗ d quantum systems. The inequalities for entanglement detection
given in [19, 20] can be seen as special examples of our nonlinear improvement of EW.
Compared with the original EW, the experimental implementation of the improved
criterion only requires two more evaluations of local observables. This is welcome in
experimental realization.

The remainder of the paper is organized as follows. After introducing EWs for 2⊗d
quantum systems in Section 2, we study the nonlinear improvement of any EW for the
2 ⊗ d quantum system in Section 3, together with detailed examples to illustrate the
efficiency of such nonlinear improvement. In Section 4, some concluding remarks are
given.

2 EWs for 2⊗ d quantum systems

Let A ∈ Cm×d and B ∈ Cd×d. We denote by A†, ||A||∞, r(B), γ(B) and Tr(B) the
conjugate transpose of A, the spectral norm of A, the numerical radius of B [21], the
spectral radius of B and the trace of B, respectively. The inequality B > 0 (B ≥ 0)
means that B is Hermitian positive definite (semidefinite).

Any Hermitian operator W acting on Cm⊗Cd is said to be an entanglement witness
(EW) if it satisfies the following conditions [4]:

(i) W is block positive, i.e., Tr(Wρsep) ≥ 0 for all separable states ρsep in Cm ⊗ Cd;

(ii) there exists at least an entanglement state ρent in Cm⊗Cd such that Tr(Wρent) <
0.

Theoretically, any entangled state can be detected by at least one EW [5]. The aim
of this paper is to improve any given EW for 2⊗d quantum states in terms of a nonlinear
improvement. Any Hermitian operator W acting on C2 ⊗ Cd can be partitioned into

W =

(
W11 W12

W †
12 W22

)
, (1)
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where W11, W22 and W12 ∈ Cd×d. We have

Proposition 1. Any Hermitian operator W defined as in (1) is an EW if and only if
the following conditions hold:

(a) W is not positive semidefinite, i.e., W has at least one negative eigenvalue;

(b) W11 ≥ 0, W22 ≥ 0;

(c) for any pure state |ξ⟩ ∈ Cd,

⟨ξ|W11|ξ⟩⟨ξ|W22|ξ⟩ ≥ |⟨ξ|W12|ξ⟩|2. (2)

Proof. We only need to prove that the item (i) in the definition of EW is equivalent to
the items (b)-(c). In fact, the item (i) holds if and only if, for any pure states |ϕ⟩ ∈ C2

and |ξ⟩ ∈ Cd,

⟨ϕ, ξ|W |ϕ, ξ⟩ = ⟨ϕ| (⟨ξ|W |ξ⟩) |ϕ⟩ = ⟨ϕ|
(

⟨ξ|W11|ξ⟩ ⟨ξ|W12|ξ⟩
⟨ξ|W †

12|ξ⟩ ⟨ξ|W22|ξ⟩

)
|ϕ⟩ ≥ 0,

i.e., for any pure state |ξ⟩ ∈ Cd, ⟨ξ|W |ξ⟩ ≥ 0. By [22], the inequality ⟨ξ|W |ξ⟩ ≥ 0, ∀|ξ⟩ ∈
Cd, is further equivalent to the fact that the inequalities ⟨ξ|W11|ξ⟩ ≥ 0, ⟨ξ|W22|ξ⟩ ≥ 0
and (2) hold for any pure state |ξ⟩ ∈ Cd. 2

Up to now there are few constructions of EWs for 2 ⊗ d quantum systems when
d > 2. In particular, if W22 = αW11 > 0 for some α > 0, then the item (a) in
Proposition 1 holds if and only if the Schur complement of W11,

W22 −W †
12W

−1
11 W12 = W

1
2
11(αId −W

− 1
2

11 W †
12W

−1
11 W12W

− 1
2

11 )W
1
2
11,

is not positive semidefinite [22], i.e.,

γ

(
W

− 1
2

11 W †
12W

−1
11 W12W

− 1
2

11

)
= ||W̃12||2∞ > α,

where W̃12 = W
− 1

2
11 W12W

− 1
2

11 , and Id is the d× d identity matrix. While the item (c) in
Proposition 1 holds if and only if for any pure state |ξ⟩ ∈ Cd,

|⟨ξ|W12|ξ⟩|2

⟨ξ|W11|ξ⟩2
=

|⟨η|W̃12|η⟩|2

⟨η|η⟩2
≤ α,

which is equivalent to r(W̃12) ≤
√
α, where |η⟩ = W

1
2
11|ξ⟩ may be not normalized.

Therefore, if W22 = αW11 > 0 for some α > 0, W is an EW if and only if

r(W̃12) ≤
√
α < ||W̃12||∞. (3)
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3 Nonlinear improvement of any 2⊗ d EW

Let the Hermitian operator W be defined as in (1). We define

W1 =

(
W11 0
0 0

)
, W2 =

(
0 0
0 W22

)
and W3 =

(
0 W12

W †
12 0

)
. (4)

Clearly, W1 and W2 can be locally decomposed into

W1 = |0⟩⟨0| ⊗W11, W2 = |1⟩⟨1| ⊗W22. (5)

The following proposition establishes an equivalent condition ofW being block positive.

Proposition 2. Let W11 ≥ 0 and W22 ≥ 0. Then W is block positive if and only
if, for any separable state ρsep in C2 ⊗ Cd,

⟨W1⟩ρsep⟨W2⟩ρsep ≥ 1

4
|⟨W3⟩ρsep |2. (6)

Proof. From Proposition 1, W is block positive if and only if the inequality (2) holds
for any |ξ⟩ ∈ Cd. We now prove (2) is equivalent to (6).

(2)=⇒(6): We first consider the case when ρsep is a separable pure state: ρsep =
|η⟩⟨η| with

|η⟩ = |ϕ⟩ ⊗ |ξ⟩, |ϕ⟩ =
(

a0
a1

)
. (7)

One has

⟨W1⟩|η⟩⟨η|⟨W2⟩|η⟩⟨η| = |a0|2|a1|2⟨ξ|W11|ξ⟩⟨ξ|W22|ξ⟩ (8)

≥ |Re(a∗0a1⟨ξ|W12|ξ⟩)|2 =
1

4
|⟨W3⟩|η⟩⟨η||2, (9)

where ∗ denotes the conjugate of a complex number, and we have used (2) for the
inequality. Thus, the inequality (6) holds for any separable pure state.

Any separable mixed state ρsep can be decomposed into ρsep =
∑

i pi|τi⟩⟨τi|, where
|τi⟩ = |ϕi⟩ ⊗ |ξi⟩, pi > 0,

∑
i pi = 1. Set

A =
1

2
(W1 +W2), B =

1

2
(W1 −W2).

From (8) and (9), we have, for any |τi⟩,

⟨W1⟩|τi⟩⟨τi|⟨W2⟩|τi⟩⟨τi| = ⟨A⟩2|τi⟩⟨τi| − ⟨B⟩2|τi⟩⟨τi| ≥
1

4
|⟨W3⟩|τi⟩⟨τi||

2,

which implies

⟨A⟩2|τi⟩⟨τi| ≥ ⟨B⟩2|τi⟩⟨τi| +
1

4
|⟨W3⟩|τi⟩⟨τi||

2.
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From Lemma 1 in [20], we obtain

⟨A⟩2ρsep ≥ ⟨B⟩2ρsep +
1

4
|⟨W3⟩ρsep |2,

which is equivalent to (6).

(6)=⇒(2): For any pure separable state |η⟩ defined as in (7), we obtain, from (6),

⟨W1⟩|η⟩⟨η|⟨W2⟩|η⟩⟨η| = |a0|2|a1|2⟨ξ|W11|ξ⟩⟨ξ|W22|ξ⟩

≥ 1

4
|⟨W3⟩|η⟩⟨η||2 = |Re(a∗0a1⟨ξ|W12|ξ⟩)|2.

Assume that ⟨ξ|W12|ξ⟩ = x + iy, x, y ∈ R, where i =
√
−1. Then the above inequality

can be further written as ⟨ξ|W12|ξ⟩ =
√

x2 + y2(cos θ+ i sin θ), where θ is the argument
of ⟨ξ|W12|ξ⟩ satisfying −π < θ ≤ π. If we choose

a0 =
1√
2
, a1 =

1√
2
(cos θ − i sin θ),

then the inequality (2) holds. 2

Based on Proposition 2, we now give the main result.

Corollary 1. Let W defined as in (1) be an EW. Then any separable state ρsep
in C2 ⊗ Cd satisfies

⟨W1⟩ρsep⟨W2⟩ρsep ≥ 1

4
|⟨W3⟩ρsep |2. (10)

The mean value of W3 = W − W1 − W2 can be obtained from the mean values
of W , W1 and W2. Therefore, compared with the witness W , to use (10) to detect
entanglement, one needs only two more measurements on the local observables W1

and W2 given in (5). Thus, the inequality (10) is very experimentally plausible for
entanglement detection.

We now show that the inequality (10) is better than the witness W itself in entan-
glement detection.

Proposition 3. For any EW W , (10) is strictly stronger than W .

Proof. For any state ρ in C2 ⊗ Cd, if

⟨W1⟩ρ⟨W2⟩ρ ≥ 1

4
|⟨W3⟩ρ|2, (11)

then one gets

⟨W ⟩ρ = ⟨W1⟩ρ + ⟨W2⟩ρ + ⟨W3⟩ρ ≥ 2
√
⟨W1⟩ρ⟨W2⟩ρ + ⟨W3⟩ρ

≥ |⟨W3⟩ρ|+ ⟨W3⟩ρ ≥ 0.
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Thus, any entangled state ρ with ⟨W ⟩ρ < 0 must violate the inequality (11), namely,
the inequality (10) is strictly stronger than the one from W . 2

Hence, any 2⊗d EW can be improved by our nonlinear inequality (10) in Corollary
1. Nevertheless, the following proposition shows that the condition W being an EW
cannot be weakened.

Proposition 4. Let W11 ≥ 0 and W22 ≥ 0. Then W ≥ 0 if and only if, for any
state ρ in C2 ⊗ Cd,

⟨W1⟩ρ⟨W2⟩ρ ≥ 1

4
|⟨W3⟩ρ|2. (12)

Proof. (12) =⇒ W ≥ 0 : From the proof of Proposition 3, for any state ρ ∈ C2 ⊗Cd,
the inequality (12) leads to ⟨W ⟩ρ ≥ 0, and then W ≥ 0.

W ≥ 0 =⇒ (12): We consider the following two cases.

Case 1. W11 > 0. In this case, any pure state |ϕ⟩ ∈ C2 ⊗ Cd can be partitioned

into |ϕ⟩ =
(

|ϕ1⟩
|ϕ2⟩

)
, where |ϕi⟩ ∈ Cd, i = 1, 2, may be not normalized. We get

|⟨W3⟩|ϕ⟩⟨ϕ||2 = 4|Re(⟨ϕ1|W12|ϕ2⟩)|2 ≤ 4|⟨ϕ1|W12|ϕ2⟩|2

≤ 4⟨ϕ1|W11|ϕ1⟩⟨ϕ2|W †
12W

−1
11 W12|ϕ2⟩

≤ 4⟨ϕ1|W11|ϕ1⟩⟨ϕ2|W22|ϕ2⟩ = 4⟨W1⟩|ϕ⟩⟨ϕ|⟨W2⟩|ϕ⟩⟨ϕ|,

where we have used the Cauchy-Schwarz inequality in the second inequality. The third
inequality is due to the fact that, for the case W11 > 0, W is positive semidefinite if
and only if W22 −W †

12W
−1
11 W12 is positive semidefinite [22]. Therefore, the inequality

(12) holds for any pure state.

For any mixed state ρ with spectral decomposition, ρ =
∑

i pi|τi⟩⟨τi|, pi > 0,
∑

i pi =
1, by an analogous argument as in the proof of “(2)=⇒(6)” from Proposition 2, we get
(12) for any mixed state.

Case 2. W11 ≥ 0. Denote W (ϵ) = W + ϵI2d for any positive number ϵ. From
W (ϵ) > 0 and Case 1, we have

⟨W1(ϵ)⟩ρ⟨W2(ϵ)⟩ρ ≥ 1

4
|⟨W3(ϵ)⟩ρ|2,

where W1(ϵ), W2(ϵ) and W3(ϵ) for W (ϵ) are analogously defined as in (4). Thus, as
ϵ → 0+, we can get (12). 2

Thus, the inequality (10) in Corollary 1 cannot detect any entanglement when W
is not an EW. The following simple example shows that the optimal EW [23] can be
strictly improved by our criterion (10).

Example 1. Consider the mixture of a Bell state with white noise

ρp = p|ϕ⟩⟨ϕ|+ 1− p

4
I4,
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where

|ϕ⟩ = 1√
2
(|01⟩+ |10⟩), 0 ≤ p ≤ 1.

The flip operator F =
∑1

i,j=0 |i⟩⟨j|⊗|j⟩⟨i| is an optimal EW [6]. Numerical computation
shows that F cannot detect any entanglement of ρp. But the nonlinear improvement
of F from (10) can detect the entanglement of ρp for 0.3334 ≤ p ≤ 1.

We now construct a general EW based on (3). Consider the following Hermitian
operator acting on C2 ⊗ C4:

Wα
s =

(
I4 W12

W †
12 αI4

)
,

where

W12 =


0 3

2 0 0
0 0 0 0
0 0 0 3

2
0 0 0 0

 .

If we take α = r(W12)
2 = 0.752, then from (3), Wα

s is an EW by ||W12||∞ = 1.5. The
following example verifies the corresponding improvement of Wα

s from (10).

Example 2. Consider the following 2⊗ 4 state

ρp = p|ξ⟩⟨ξ|+ (1− p)ρ,

where 0 ≤ p ≤ 1, |ξ⟩ = 1√
2
(|00⟩ + |11⟩), and ρ is the positive partial transpose (PPT)

entangled state constructed in [24]:

ρ =
1

7b+ 1



b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0
0 0 b 0 0 0 0 b
0 0 0 b 0 0 0 0

0 0 0 0 1
2(1+b) 0 0 1

2

√
1− b2

b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0

0 0 b 0 1
2

√
1− b2 0 0 1

2(1+b)


, (13)

with 0 < b < 1.

Table 1 displays the entanglement detection of ρp by Wα
s and its nonlinear improve-

ment from (10) with α = 0.752. It can be found that the improved criteria from our
criterion (10) is more efficient than Wα

s .

The following example shows that the non-decomposable EWs [23] can also be
strictly improved by our criterion (10).

Example 3. The PPT entanglement state ρ defined in (13) can be transformed into
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b = 0.2 b = 0.4 b = 0.6 b = 0.8

Wα
s 0.2248 ≤ p ≤ 1 0.1381 ≤ p ≤ 1 0.0912 ≤ p ≤ 1 0.0619 ≤ p ≤ 1

(10) from Wα
s 0.2246 ≤ p ≤ 1 0.1282 ≤ p ≤ 1 0.0691 ≤ p ≤ 1 0.0290 ≤ p ≤ 1

Table 1: Entanglement detection of ρp for different values of b.

the other PPT entanglement state:

ρ̃b = I2 ⊗ V ρI2 ⊗ V †,

where

V =
1√
2
[(I2 + iσ1)03 ⊕ (I2 + iσ1)12],

where the sub-indices 03 and 12 denote the subspaces of the four dimensional space.

Based on ρ̃b, Lewenstein et al. [23] constructed the non-decomposable EWs in
detecting the entanglement of ρ̃b. Let Pb be the projector onto the kernel of ρ̃b. Then
WL

b = Pb+P T2
b −ϵbI8 is a non-decomposable EW, where T2 denotes the partial transpose

with respect to the second system, and

ϵb = inf
|e,f⟩

⟨e, f |(Pb + P T2
b )|e, f⟩.

We now use WL
b and its nonlinear improved criterion (10) to detect the entanglement

in the sate ρ̃pb = pρ̃b+
1−p
8 I8. Table 2 shows the entanglement conditions of ρ̃pb from WL

b

and its nonlinear improved criterion based on (10) for different values of b. It is easy
to see that the EW WL

b is always weaker than the corresponding nonlinear improved
criterion from (10).

WL
b (10) from WL

b

b = 0.2 0.98073582801 ≤ p ≤ 1 0.98072097191 ≤ p ≤ 1

b = 0.4 0.98681160139 ≤ p ≤ 1 0.98681096542 ≤ p ≤ 1

b = 0.6 0.99264908563 ≤ p ≤ 1 0.99264906811 ≤ p ≤ 1

b = 0.8 0.99698286647 ≤ p ≤ 1 0.99698286637 ≤ p ≤ 1

Table 2: Entanglement conditions of ρ̃pb from WL
b and its nonlinear improvement based

on (10).

We have shown by detailed examples that the nonlinear improved criterion (10) of
any EW W is always better than W itself in quantum entanglement detection. As a
last remark, let us consider the following operator acting on C2 ⊗ Cd,

WU,V
z = U ⊗ V W̄zU

† ⊗ V †,

where

W̄z =
1

2

(
|0⟩⟨0| |1⟩⟨0|
|0⟩⟨1| |1⟩⟨1|

)
,
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U and V are 2 × 2 and d × d unitary matrices, respectively. Since for any pure state
|ξ⟩ = (x1, x2, · · · , xd)†, ⟨ξ|0⟩⟨0|ξ⟩⟨ξ|1⟩⟨1|ξ⟩ − ⟨ξ|1⟩⟨0|ξ⟩⟨ξ|0⟩⟨1|ξ⟩ = 0, WU,V

z is block
positive. Meanwhile, one eigenvalue of W̄z is −1

2 . Hence WU,V
z is an EW.

Concerning the nonlinear improvement of WU,V
z , let Ai = UσiU

† be observables
given by Pauli matrices σi, i = 1, 2, 3. Set Bj = V λjV

†, j = 1, · · · , d+ 1, where

λ1 = |0⟩⟨0| − |1⟩⟨1|, λ2 = |0⟩⟨0| − |2⟩⟨2|, · · · ,
λd−1 = |0⟩⟨0| − |d− 1⟩⟨d− 1|, λd = |0⟩⟨1|+ |1⟩⟨0|,
λd+1 = i|0⟩⟨1| − i|1⟩⟨0|.

Denote

R1 = 2I2 ⊗ Id + (2− d)I2 ⊗B1 + 2I2 ⊗B2 + · · ·+ 2I2 ⊗Bd−1 + dA3 ⊗B1,

R2 = dI2 ⊗B1 + 2A3 ⊗ Id + (2− d)A3 ⊗B1 + 2A3 ⊗B2 + · · ·+ 2A3 ⊗Bd−1,

R3 = 2d(A1 ⊗Bd +A2 ⊗Bd+1).

Then the EW WU,V
z can be exactly written as

WU,V
z =

1

Tr(2R1 +R3)
((R1 +R2) + (R1 −R2) +R3) =

1

Tr(2R1 +R3)
(2R1 +R3).

From (10) in Corollary 1, we have, for any separable state ρsep in C2 ⊗ Cd,

⟨R1 +R2⟩ρsep⟨R1 −R2⟩ρsep ≥ 1

4
⟨R3⟩2ρsep ,

which can be further written as

⟨R1⟩ρsep ≥
(
⟨R2⟩2ρsep +

1

4
⟨R3⟩2ρsep

) 1
2

. (14)

The inequality (14) is just the entanglement criterion for C2⊗Cd systems presented in
[20]. It covers the corresponding result in [19] for d = 2. Hence, the separable criterion
(14) is indeed a nonlinear improvement of WU,V

z by (10).

4 Conclusions

We have shown that any EW for 2 ⊗ d quantum systems can be improved by a non-
linear version. The improved criterion has been shown to be strictly stronger than the
original EW. Any general, optimal or non-decomposable EW can always be nonlin-
early improved, as shown by our examples. The method for entanglement detection
given in [19, 20] can be regarded as special cases of our approach. It is worthwhile to
emphasize that, similar to an EW, its nonlinear improved criterion can be also easily
verified by experimental measurements. Compared with any original EW, the exper-
imental implementation of the improved criterion only requires measurements of two
more local observables. Besides, it would be also interesting to investigate the nonlinear
improvement of any EW for m⊗ d (m ≥ 3) quantum systems.
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