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Modelling efforts in opinion dynamics have to a large extent ignored that opinion exchange be-
tween individuals can also have an effect on how willing they are to express their opinion publicly.
Here, we introduce a model of public opinion expression. Two groups of agents with different opin-
ion on an issue interact with each other, changing the willingness to express their opinion according
to whether they perceive themselves as part of the majority or minority opinion. We formulate
the model as a multi-group majority game and investigate the Nash equilibria. We also provide
a dynamical systems perspective: Using the reinforcement learning algorithm of Q-learning, we
reduce the N -agent system in a mean-field approach to two dimensions which represent the two
opinion groups. This two-dimensional system is analyzed in a comprehensive bifurcation analysis
of its parameters. The model identifies social-structural conditions for public opinion predominance
of different groups. Among other findings, we show under which circumstances a minority can
dominate public discourse.

“The actual strength of [...] different camps of
opinion does not necessarily determine which
view will predominate in public. An opinion
can dominate in public and give rise to the
pressure of isolation even if the majority of
the population holds the opposing view that
has come under pressure—yet does not pub-
licly admit to holding this position.”[1]

I. INTRODUCTION

Fundamental to models of opinion dynamics is the as-
sumption that people’s opinions are, in some way or an-
other, influenced by the opinion of their peers. There is
an extensive amount of models of opinion change in social
systems (see [2–4] for reviews). While it is a plausible as-
sumption that people who express their opinion about an
issue are sensitive to approval and disapproval, feedback
on the opinion need not necessarily lead to its reconsid-
eration. It might also affect one’s willingness of opinion
expression: The more positive (negative) the feedback,
the more (less) motivated one feels to publicly express
one’s opinion.

In comparison, this approach to public discourse has
remained, from a modelling perspective, rather unex-
plored. However, it is worth to be considered: In general,
people are not always willing to reveal their opinion on
certain issues to others [5]. A recent study shows that
only a minority of users who consume news online is also
involved in sharing and discussing them [6]. Thorough re-
search on opinion dynamics must take into account that
some individuals might choose to not express their opin-
ion publicly, which has profound effect on how others
perceive the opinion climate in a social system. We will
hence, in this paper, focus on a model of the expression
of, and not the change in, opinions.
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An theory of public opinion expression has already
been developed around fifty years ago, with Elisabeth
Noelle-Neumann’s influential ‘spiral of silence’ [1, 7].
Roughly speaking, Noelle-Neumann sees the fear of iso-
lation as an essential drive for how humans publicly be-
have. Especially with respect to morally charged topics,
individuals constantly and mostly sub-consciously mon-
itor the ‘opinion landscape’ around them (they possess
a “quasi-statistical sense” [1, 7]) and might refrain from
expressing their opinion if they believe to be part of the
minority. On the other hand, a belief to hold the major-
ity position might encourage them to express their view.
Since each individual’s decision whether to express her
opinion or not influences how others perceive the opin-
ion landscape, whose evaluation might then change ac-
cordingly, a dynamical development (for which Noelle-
Neumann used the metaphor of a spiral) follows in which
the seemingly dominant opinion fraction becomes more
and more vocal and the perceived minority fraction be-
comes more and more silent. Noelle-Neumann’s spiral of
silence is particularly interesting for mathematical mod-
elling since it links a micro mechanism with a dynamical
development at the macro level.

While there have been attempts to model opinion ex-
pression and specifically the spiral of silence, they are ei-
ther in large parts simulative [8–12] or directed towards
the effect of specific circumstances on the spiral of silence
(mass media [13], social bots [9], or the long-time effect
of charismatic agents [12]). Granovetter and Soong [14],
and subsequently Krassa [15], employ a threshold model
of opinion expression which only applies to cases in which
a certain opinion is already suppressed. We aim here to-
wards a more general, structural understanding of the
dynamics of opinion expression.

We develop a model which employs an account of so-
cial influence termed social feedback theory [16]. The
behavioral adjustment of agents depends solely on the
social feedback they receive when they express their opin-
ion. This affective experience-based interaction mecha-
nism has already been shown to lead to opinion polariza-
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tion in connected networks of sufficiently high modularity
[17]. In the present approach, the effect of social inter-
action is directed towards the willingness of or incentive
for individuals to publicly express their opinion. We in-
vestigate the structural conditions that promote or hin-
der opinion expression of different opinion groups. This
is firstly done from a game-theoretic angle. To address
questions of bounded rationality and equilibrium selec-
tion, we also develop a dynamical systems perspective,
using reinforcement learning in the form of Q-learning
[18]. This allows us to perform a a mean-field approxima-
tion for the expected reward of the two opinion groups,
which reduces the system to two dimensions.

In the following, we will first describe the baseline so-
cial structure and the two central structural parameters
of the model. In section III, we represent the model as
a multi-group majority game on the agent network, and
investigate its Nash equilibria with respect to the struc-
tural parameters. Section IV introduces Q-learning and
a subsequent two-dimensional approximation of the dy-
namical system. In section V we perform a bifurcation
analysis for the different parameters involved. We con-
clude with a discussion of the results and an outlook in
section VI.

II. SOCIAL-STRUCTURAL SETTING

For simplicity, we assume that there are two groups
of individuals holding two different opinions on an issue.
The opinion of an agent i, oi, is referred to by either 1
or 2, depending on the group she belongs to. G1 is the
group of agents holding opinion 1, G2 the one holding
opinion 2. According to their opinion, the connections
between agents are described by weighted blocks (the en-
tries q11, q12, q21 and q22 in the different blocks represent
the weight of every connection within that block) accord-
ing to the adjacency matrix A,

A =

 q21

q12q11

q22


. (1)

Opinion group G1 has size N1 and opinion group G2 has
size N2. The weight of an edge between any two agents
of community 1 is q11, and analogously q22 for the sec-
ond community. Cross-edge weights are given by q12 and
q21. All weights q11, q22, q12, q21 ∈ [0, 1]. We assume an
undirected network, hence

q12 = q21.

The weights of the edges can be interpreted as the
intensity or strength of the connections: The smaller the

weight, the less strong agents notice the presence of each
other. We can express the fraction of others an agent
perceives to hold the same opinion by

f11 =
(N1 − 1)q11

(N1 − 1)q11 +N2q12
(2)

for agents belonging to opinion group G1 and

f22 =
(N2 − 1)q22

(N2 − 1)q22 +N1q12
, (3)

for agents that are part of opinion group G2. The per-
ceived fractions of others belonging to the other opinion
group are consequently

f12 =
N2q12

(N1 − 1)q11 +N2q12
(4)

and

f21 =
N1q12

(N2 − 1)q22 +N1q12
. (5)

We now introduce the two central structural parameters,
γ and δ. They are the ratios of the weighted in-group
to the out-group connections for each opinion group and
given by

γ =
N1 − 1

N2
· q11
q12

(6)

and

δ =
N2 − 1

N1︸ ︷︷ ︸
group sizes

· q22
q12

,︸ ︷︷ ︸
weights

(7)

γ > 1 or δ > 1 means that the agents of one opinion
group are more strongly connected (under consideration
of both the group sizes and the weights) to agents of the
same than of the other opinion, while γ < 1 or δ < 1 indi-
cates that agents of the opinion group are more strongly
connected to agents holding a different opinion. In the
following, if we say that an opinion group is internally
well-connected, we mean that the structural parameter
of the group is bigger than 1. With γ and δ, the above
fractions (2), (3), (4) and (5) can be simplified to

f11 =
γ

γ + 1
, f12 =

1

γ + 1
, (8)

f22 =
δ

δ + 1
, f21 =

1

δ + 1
. (9)

Alternatively, we can interpret the fractions f11, f22, f12
and f21 as the probabilities of interaction between agents
of the different groups.1 This interpretation will be made
use of in section IV.

1 In this case, A is interpreted as a stochastic block matrix and the
weights q11, q22 and q12 as probabilities of there being an edge
between any two agents, depending on their group affiliation.
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III. A SILENCE GAME

We now use the social structure described in section
II as the setting of a ‘silence game’. The opinions of
the agents are fixed according to their group affiliation
and do not change. Each agent can choose one of two
actions: Public expression of opinion, or silence. Their
preference over the actions depends on the perception of
their opinion environment. If it appears to them that
they are part of a minority opinion, they become silent.
If they think that they are part of the majority, they
express their opinion.2 But only the expressive agents
shape the subjective impression of the opinion landscape
of each individual. Silent ones do not contribute (they are
not counted in the inequalities below). After all, silence
means that the individual’s opinion is not public.

Moreover, we introduce as an additional model as-
sumption that opinion expression does not come for free.
It is costly to express one’s opinion,3 which is accounted
for by a constant cost c. This constant might make more
than a simple (perceived) opinion majority necessary for
an agent to also have an incentive to express her opinion.

The ordinal preferences of an individual i over the ac-
tions e (for opinion expression) and s (for silence) are
given as follows: The payoff or utility for opinion expres-
sion, Ui(e, a−i) (given the actions of all others a−i), is
bigger than the one for silence,

Ui(e, a−i) > Ui(s, a−i),

if more agents in the perceived social environment of i
speak out who share i’s opinion. We can make this con-
dition explicit by the inequality∑

j∈G1
j 6=i

q11aj

(N1 − 1)q11 +N2q12
>

∑
j∈G2

q12aj

(N1 − 1)q11 +N2q12
+ c (10)

if i is part of opinion group G1 and∑
j∈G2
j 6=i

q22aj

(N2 − 1)q22 +N1q12
>

∑
j∈G1

q12aj

(N2 − 1)q22 +N1q12
+ c (11)

for i being part of G2. Both the right- and the left-hand
side are normalized with respect to the overall weighted
connections of agent i. Here, the actions aj are given by
aj = 1 for expression and aj = 0 for silence. If the two
sides (10) or (11) are equal, the individual is indifferent
in her preference over the actions.

A strategy profile is called a Nash equilibrium (NE) if
no individual i can increase her expected reward by uni-
laterally deviating from the equilibrium. In our system,

2 Games with fixed, different group affiliations of agents are con-
sidered e.g. in [19] or [20].

3 We may think of the effort of typing a reply to someone in social
media, or the effort of joining a demonstration for or against
some issue.

the equilibrium condition is met if there is a strategy
profile for which each individual that expresses herself
has (10) or (11) (depending on the opinion group of the
agent) satisfied, and if for each individual that is silent,
the corresponding inequality is not fulfilled.

It is already visible in (10) and (11) that apart from
the fact that an individual does account for her own ex-
pressed opinion in the inequality (i 6= j in the sum on
the left-hand side), the rest of the contributions in the
inequalities are the same for all agents of one opinion
group. It is also visible that if (10) or (11) is satisfied
for an agent i that expresses herself, it must be satisfied
for all silent individuals of her group as well: They ‘see’
one more agent expressing their opinion than i, since i
does not account for herself in her evaluation of her en-
vironment. Hence, we have an additional positive term
on their left-hand side. On the other hand, if the in-
equality is not fulfilled for a silent agent of one group, it
can also not be fulfilled for an expressive one. Therefore,
in a pure-strategy equilibrium, all agents of one opinion
group must choose the same action.

This simplifies the inequalities above. If all agents of
an opinion group act the same, (10) and (11) can be
expressed in terms of the structural parameters γ and δ.
Four pure-strategy NEs might be possible, depending on
γ and δ. Both groups can be silent, or only one of them,
but not the other, or none:

• If both groups express their opinion (we call this
state (e, e); the first entry stands for the collective
action of G1, the second for the action of G2), the
following conditions must be satisfied to make this
state a NE:

(N1 − 1)q11 −N2q12
(N1 − 1)q11 +N2q12

− c =
γ − 1

γ + 1
− c > 0, 4 (12)

(N2 − 1)q22 −N1q12
(N2 − 1)q22 +N1q12

− c =
δ − 1

δ + 1
− c > 0. (13)

• (e, s) is a NE if

(N1 − 1)q11
(N1 − 1)q11 +N2q12

− c =
γ

γ + 1
− c > 0, (14)

− N1q12
(N2 − 1)q22 +N1q12

− c = − 1

δ + 1
− c < 0. (15)

• (s, e) is a NE if

− N2q12
(N1 − 1)q11 +N2q12

− c = − 1

γ + 1
− c < 0, (16)

(N2 − 1)q22
(N2 − 1)q22 +N1q12

− c =
δ

δ + 1
− c > 0. (17)

4 We use equation (6) in the equivalence.
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FIG. 1. The available pure-strategy Nash equilibria in dif-
ferent regimes of γ and δ. The equilibria are abbreviated by
either e for expression or s for silence for each opinion group
(the first entry is for the collective action of G1, the second
for the one of G2). For costs c > 0, γ and δ below c

1−c will
lead to a situation in which the only available Nash equilib-
rium is one in which no one expresses her opinion publicly.
An increase in the structural parameters above this threshold
leads to additional Nash equilibria in which at least one of
the two opinion groups speaks out. If both γ and δ are bigger
than c+1

1−c , an additional Nash equilibrium arises in which all
agents express their opinion.

• (s, s) is a NE if

−c < 0. (18)

The different existence regimes of the pure-strategy
NEs are given in Figure 1. If γ and δ are both smaller
than c

1−c , then even if all group members express their
opinion and the other opinion group is silent, it is too
costly (compared to the amount of connections to agents
of the own opinion group) to express one’s opinion and
the only NE is the one in which all individuals are silent.
If γ or δ or both are bigger than c

1−c , but smaller than
c+1
1−c , either both opinion groups are silent or one of the
groups expresses themselves, but not both: The strength
of internal connections of each group are not sufficient
to account for the negative influence of the other, ex-
pressive group. Not both (12) and (13) can be satisfied.
Hence, this structural regime only allows public opinion
predominance of one group (or complete silence).5 If γ
and δ are both bigger than c+1

1−c , it is possible that both
opinion groups express their opinon publicly at the same

5 If either only the conditions for (e, s) or only for (s, e) are satis-
fied, it is clear which opinion will dominate publicly (if any). If
both are satisfied, the situation becomes more interesting in the
sense that it depends on the initial conditions and the dynamical
development of the system which opinion will predominate. We
will approach these issues in sections IV and V.

time. Then, the positive influence of the in-group mem-
bers still dominates, even if all out-group members are
expressive as well. Hence, also (12) and (13) are satisfied.

Obviously, there are also mixed-strategy NEs. Suppose
the situation is as follows: The agents of each group mix
their actions uniformly such that each agent is exactly
indifferent between expressing herself or staying silent.
Then, no one has an incentive for action change, and we
therefore have a NE. This equilibrium is, nevertheless,
only metastable in the sense that it only takes one agent
to increase (or decrease) her expression probability in
order to make it favourable for all other agents of one
opinion group to express themselves (or become silent).

γ and δ do not only depend on the number of agents
holding one or another opinion. They are also influenced
by the internal connection weights of agents of one opin-
ion group. Hence, a well-connected minority group can
dominate public discourse if the corresponding structural
parameter is above the threshold of c

1−c . But while the
regimes of different NEs in Figure 1 are displayed cor-
rectly, it might give the impression that γ or δ are param-
eters that can be tuned by simply increasing the weight
of a connection between two agents of the same group,
that is, q11 or q22 (all other parameters fixed). That is
not the case. Some numerical minorities cannot be bal-
anced by increasing internal connections since q11 and
q22 are bounded by 1. If there are too few agents in one
opinion group, even setting q11 or q22 to 1 will not be
elevate γ or δ above a certain threshold. This is made
visible in Figure 2. The figure shows the different ex-
istence regimes of the NEs for different combinations of
internal connection weights q11 and q22 and partitions of
a total of N = 100 agents between groups G1 and G2.
q12 and c are fixed. Each point in the plot stands for
a combination of the number of agents in opinion group
G1, N1, and the in-group connection weights q11, out of
which one can compute the value of γ. The lines of con-
stant γ are plotted in red. Since the overall number of
agents N = 100 is fixed, N2 is not independent and deter-
mined by the choice of N1 by N −N1. If we just assume
that q22 = q11, each point in the plot at the same time
represents also a combination of the relevant parameters
of opinion group G2 out of which one can compute δ.
Curves of constant δ are the blue lines and symmetrical
to the γ-curves with respect to N1 = 50.

A vertical line in the plot, e.g. at N1 = 20, can be
interpreted as follows: Each constant γ or δ value that
it intersects on its way to q11 = q22 = 1 is reachable
for this partition of agents in the two groups if q11 and
q22 are tuned accordingly. But if there is no intersection
for a specific γ or δ, then even if the internal connection
weights are maximized, the structural strength of the re-
spective group cannot reach that value due to their lim-
ited group size. For N1 = 20, a state in which both opin-
ion groups are expressing themselves (the upper right,
green area in Figure 1) cannot be reached since opinion
group G1 has too few agents to produce a γ high enough
to satisfy (12). In general, there are numerical thresh-
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FIG. 2. The constant γ- and δ-curves for N = 100 agents.
They are plotted with respect to N1, N2 = N − N1, and
q11 = q22. Each blue curve stands for a combination of the
number of opinion group members N1 and internal connec-
tion weights q11 that yields a constant value of the structural
parameters γ, each red one for a combination of N2 and q22
that produces constant δ. The color-coding for the different
Nash equilibrium regions is analogous to Figure 1. It is vis-
ible that the numerical minority of an opinion group cannot
always be compensated by increasing q11 (or q22), the weight
of a connection between two agents of the same opinion group.
Moreover, the fixed γ- and δ-curves are symmetric with re-
spect to N1 = N2 = 50, where they intersect. (For better
readability, the dashed δ-curves have not been labelled. They
correspond to their γ-counterparts.)

olds (dependent on the costs c, the cross-group connec-
tion weight q12 and the overall number of agents N) be-
low which reaching a state in which both group express
themselves or in which the own group becomes dominant
becomes impossible from a game-theoretic perspective.
The game-theoretic approach hence can give (all other
parameters fixed) limits for the effect of group-internal
coordination in the form of internal cohesion on public
discourse.

IV. Q-LEARNING AND A DYNAMICAL
SYSTEMS PERSPECTIVE

While we are able to determine the Nash equilibria of
the system, the game-theoretical point of view does not
answer questions of equilibrium selection or the effects of
bounded rationality. In this section, we will introduce a
dynamical systems perspective to approach those ques-
tions.

We posit a simple interaction mechanism between the
agents on the network of section II. It is given as follows:
If an agent expresses her opinion, she will be paired with
a random neighbor. Now, the fractions f11, f12, f21, and
f22 correspond to the probability of meeting a neighbor
of a certain opinion group given the own opinion group

of an agent. The neighbor then gives (if she also is in
an expressive state) social feedback to the agent, either
agreement or disagreement, which will contribute to the
agent’s impression of her opinion environment. Put in an
algorithmic way:

1. A random agent is selected.

2. If willing to speak out, the agent expresses her opin-
ion to a random neighbor at cost c.

3. If the neighbor is also willing to speak out, she gives
feedback on the agent’s opinion.

4. According to the feedback, the agent will become
more/less willing to speak out.

As in [17], we will describe the development of the
system as reinforcement learning dynamics, more specifi-
cally, as dynamics induced by Q-learning. In Q-learning,
the reinforcement mechanism that updates the agent’s
willingness to express her opinion is given by

Qt+1
i = (1− α)Qti + αrti , (19)

where rti is the reward for agent i at time step t upon
expression

rti =

 −c for random neighbor being silent,
−1− c for disagreeing random neighbor,
1− c for agreeing random neighbor.

(20)
The Q-function is expected to converge to the reward
over time.6 The probability of expression is a function
of the value of Qi. We assume here a Boltzmann action
selection mechanism, i.e. the probability of expression of
agent i is given by

pti =
1

1 + e−βQ
t
i

, (21)

the probability of staying silent by 1 − pti. If β = 0, the
action choice of the agent is completely independent of
theQ-values and randomized. For increasing β, the agent
becomes more sensitive in her action selection towards
her current evaluation of her local opinion environment.
Then, a positive Q-value indicates that it is more likely
for her to express herself than not, while a negative one
indicates the opposite. If β →∞, the probabilities of the
actions become deterministic.

The expected reward for agent i upon opinion expres-
sion is given by either (if i belongs to opinion group G1)

Ep[rti ] =−c+ f11
1

N1 − 1

∑
j∈G1
j 6=i

1

1 + e−βQ
t
j

−

f12
1

N2

∑
j∈G2

1

1 + e−βQ
t
j

, (22)

6 (19) describes Q learning for myopic agents, i.e. with discount
factor 0.
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or (if i belongs to opinion group G2)

Ep[rti ] =−c+ f22
1

N2 − 1

∑
j∈G2
j 6=i

1

1 + e−βQ
t
j

−

f21
1

N1

∑
j∈G1

1

1 + e−βQ
t
j

. (23)

We follow [18], where Q-learning in two-player two-action
games is investigated, and take the continuous-time limit
of the Q-learning equation (19). We divide time there
into intervals δt. We replace t+ 1 with t+ δt and α with
α′δt. This yields

Qi(t+ δt)−Qi(t) = α′δt(ri(t)−Qi(t))

and hence

Q̇i = α′(ri(t)−Qi(t)). (24)

Over time, the difference of the largest and the lowest Q-
value of an opinion group decays at least exponentially
in expectation (see the Appendix for the estimation):

d

dt
(Qmax

i∈G1
−Qmin

i∈G1
) ≤ −α′(Qmax

i∈G1
−Qmin

i∈G1
),

d

dt
(Qmax

i∈G2
−Qmin

i∈G2
) ≤ −α′(Qmax

i∈G2
−Qmin

i∈G2
).

That is, the Q-values of the agents of one group are
expected to converge over time. This allows us to employ
a mean-field approximation for the expected reward of
the two opinion groups: We introduce the average Q-
values for each opinion group7

Q1(t) =
1

N1

∑
i∈G1

Qi(t), Q2(t) =
1

N2

∑
i∈G1

Qi(t).

(25)
This means that we do not distinguish any more between
the agents of the respective opinion groups. We assign
them the average of their group’s Q-value. This simpli-
fication will have an effect on the probability of opinion
expression for the individuals. Instead of averaging over
each groups probability of expression, we simply insert
the averaged Q-values into the equation:

1

N1

∑
j∈G1

1

1 + e−βQj(t)
−→ 1

1 + e−βQ1(t)
= p1(t), (26)

1

N2

∑
j∈G2

1

1 + e−βQj(t)
−→ 1

1 + e−βQ2(t)
= p2(t). (27)

7 Note the slight abuse of notation here: From now on, the index
of Q and p will not indicate single individuals any more, but the
average Q-value and the corresponding expression probability of
the different opinion groups.
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FIG. 3. Three phase portraits of the Q1- (x-axis) and Q2-
values (y-axis) of the two-dimensional system for different
configurations of γ and δ. We have c = 0.1, β = 10, and
structural parameters γ = δ = 0.1 (bottom left), γ = δ = 1
(bottom right), and γ = δ = 3 (top right). The yellow and
blue lines in the phase portraits are the isoclines of the equa-
tions for Q1 and Q2. The fixed points are located at their
intersections.

The expected reward for the different opinion groups
are given by the equations8

Ep[r1(t)] = −c+
γ

γ + 1
p1(t)− 1

γ + 1
p2(t), (28)

Ep[r2(t)] = −c+
δ

δ + 1
p2(t)− 1

δ + 1
p1(t), (29)

where the probabilities of expression for each group are
p1(t) and p2(t), and it is not distinguished any more be-
tween the individuals.

We can therefore write our two-dimensional formula-
tion as follows:

Q̇1(t) = α′(−c+
γ

γ + 1
p1(t)− 1

γ + 1
p2(t)−Q1(t)), (30)

Q̇2(t) = α′(−c+
δ

δ + 1
p2(t)− 1

δ + 1
p1(t)−Q2(t)). (31)

According to equations (30) and (31), we can produce
a phase portrait of the system including its trajectories

8 f11, f12, f21, and f22 have been replaced according to equations
(8) and (9) with γ

γ+1
, 1
γ+1

, δ
δ+1

, and 1
δ+1

.
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FIG. 4. The trajectories of the Q-values in simulations, av-
eraged over 50 runs with N · 105 steps, for different values of
α with a starting point close to the border (red line) of the
two basins of attraction of the two stable fixed points. The
starting Q-values were Qi∈G1 = 0, Qi∈G2 = −0.25. There
were N = 200 agents, 100 of each opinion group, and c = 0.1,
q11 = 0.04, q12 = 0.05, and q22 = 0.15. A relatively big
α = 0.1 makes the trajectory leave the lower right basin of
attraction of the two-dimensional system (black trajectory).
Due to the high α, the fixed point of the other basin of attrac-
tion is also missed by some margin. The lower α, the closer
the trajectories get to the fixed point and the more probable
it is that they will stay in the basin predicted by the two-
dimensional approximation. For α = 0.01 (turquoise) and
α = 0.001 (light green), the trajectories run towards the pre-
dicted fixed point. The yellow and blue lines are the isoclines
of the equations for Q1 and Q2. The fixed points are located
at their intersections.

and fixed points for given exploration rate β, structural
parameters γ and δ, and costs of expression c. An ex-
ample of how the phase portraits change with γ and δ is
given in Figure 3.

There, it is visible that the stable fixed points of the
system include basins of attraction, that is, regimes of
values of Q1 and Q2 for which the system is expected
to end up in those fixed points. The basins of attrac-
tion in the two-dimensional approximation correspond
exactly to those of the stochastic N -agent system in the
limit α → 0. For larger α, both fixed points and basins
of attraction do not necessarily correspond to the two-
dimensional approximation. We show averages over sim-
ulation runs for different values of α in Figure 4.

V. BIFURCATION AND STABILITY ANALYSIS

In order to find the fixed points of Q1 and Q2, we set
(30) and (31) to 0, solve (30) for Q2 and insert it into
(31), which yields:

Q2 = − 1

β
ln (

1
γ

1+e−βQ1
− (γ + 1)(Q1 + c)

− 1) (32)

δ

δ + 1
(

γ

1 + e−βQ1
− (γ + 1)(Q1 + c))− 1

δ + 1

1

1 + e−βQ1
+

1

β
ln (

1
γ

1+e−βQ1
− (γ + 1)(Q1 + c)

− 1)− c = 0 (33)

Equation (33) now gives us the Q1-value of the fixed
points of the system, with which we can calculate the
corresponding Q2-value by equation (32). In essence, the
fixed points depend on four parameters: β, γ, δ, and c.
We will carry out a bifurcation analysis of these param-
eters in the following.

After having solved equations (33) and (32) for Q1 and
Q2, we can assess the stability of the respective fixed
points by calculating the eigenvalues of their Jacobian;
two negative (real parts of the) eigenvalues indicate a
stable attractor. In the following, we analyze the bifur-
cation structure of the system depending on the different
types of parameters in the system.

A. Structural power

The parameter γ describes the ratio of internal versus
external connectedness of G1. γ > 1 means that on aver-
age each member of G1 is connected to more agents of the
own than of the other opinion group. (Everything stated
in this paragraph applies equivalently to δ, which is just
the parameter for the ratio of internal versus external
connectedness of the other group.)

As is visible in Figure 5, for small γ (< 0.5), given
β = 10, δ = 2.36 (that is, a quite well-connected op-
posite opinion group) and c = 0.1, there is only one
(stable) fixed point with negative Q1-value and positive
Q2. While γ grows, a saddle-node bifurcation occurs such
that one stable and one unstable fixed point appear for
positive Q1 and negative Q2. Another saddle-node bi-
furcation occurs at around γ = 2; and for γ > 4.2, the
low-Q1 fixed points disappear in another saddle-node.

How can this be interpreted? In essence, an opinion
community that is not well-connected internally (γ <
0.5) will be driven into silence (a Q-value much lower
than 0) by the opposite opinion group that is internally
more cohesive. With increasing γ, that is, increasing in-
ternal connectedness, other fixed points appear in which
the former group is expressive. To be precise, the Q-
values here are only indicative of probabilities of opinion
expression according to the Boltzmann action selection
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FIG. 5. The development of the Q1- (top) and Q2-value (bot-
tom) of the fixed points with γ given β, relatively high δ,
and c. The colors of the curves in the two plots indicate the
different fixed point pairs of Q1 and Q2. A dashed line indi-
cates an unstable fixed point, a continuous one a stable fixed
point. It is visible in the plots that a poorly connected opin-
ion group G1 (γ < 0.5) will be driven into silence by the other
group (beige curve). With increasing in-group connectivity,
fixed points arise for which G1 expresses their opinion in two
saddle-node bifurcations (red for an an (e, s)-equilibrium and
blue for (e, e)). For γ > 4.5, G1 is so well-connected that the
equilibrium disappears in which the group is silent.

which depends on Q. If Q is smaller than 0, the prob-
ability of expression is smaller than the probability of
staying silent. In the following, if we say that one opin-
ion group is expressive, we mean that they have a Q-value
bigger than 0 which makes their probability of expression
higher than that of silence. With a further increase of γ,
the stable fixed point for which only the opposite opinion
group is expressive disappears and we remain with three
fixed points (the middle one unstable), for which either
the first opinion group is ‘loud’ alone or both groups ex-
press their opinions. Hence, G1 is now too cohesive to be
driven into silence by the other group. Increased internal
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FIG. 6. The development of Q1- and Q2-fixed points with γ
given β, moderate δ and c. For γ < 0.4, only group G2 is
expressive. A second fixed point arises for higher γ in which
G1 is predominating public discourse. There is no fixed point
in which both groups are expressive.

cohesion of one opinion group can hence have the effect
that this group, which is not necessarily a majority, will
dominate public discourse.

A lower δ-value (e.g. δ = 1.6) leads to a reduction
in available fixed points (Figure 6) such that only two
saddle-node bifurcations occur and at high γ only one
fixed point remains in which the first opinion group is
expressive.

B. Costs

The costs for opinion expression have a profound im-
pact on the fixed points of the system. If opinion expres-
sion is very ‘expensive,’ (in Figure 7: c > 0.4), there is
only one fixed point in the system for which both opin-
ion groups stay silent. For decreasing costs, two pairs of
fixed points arise in a saddle-node bifurcation. Each of
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FIG. 7. The development of the fixed points with c given β
and γ = δ. The two are symmetric since c is the same for
both and has the same impact on both groups if they also
have identical structural parameters. If expression is costly,
everyone is silent, if it has negative costs, everyone speaks
out.

the pairs corresponds to a situation in which one opin-
ion group is expressive, while the other is silent (in Fig-
ure 7, we have identical values for γ and δ). The fixed
point in which both opinion groups are silent becomes
unstable with decreasing c in a pitchfork bifurcation.
Below c = 0.1, another pitchfork bifurcation arises for
which the stable fixed point now corresponds to a state
in which both groups are expressing their opinion. Costs
can also be negative: Then, the individuals might be in-
trinsically motivated or externally encouraged to speak
out.9 For sufficiently negative costs (in the case of Fig-
ure 7: c < −0.05), only one fixed point exists: Everyone

9 Ideas such as e.g. free speech might have such an effect: People
then see it as their duty to voice their opinion, especially if it
does not conform to the apparent majority.

has an incentive to speak out, at least for internally well-
connected opinion groups. The fixed points for which
only one of the groups is expressive disappear in two
saddle-nodes.

C. Asymmetric costs

The model allows us to also assign different costs to
each opinion group, such that c1 6= c2. Internal motiva-
tion for a cause, for example, can be an incentive to speak
out and might even be indicated by negative costs (that
is, an urge to express one’s opinion). Moreover, there
might be biases in the infrastructures on which debate
takes place such that it takes more effort for one group
to speak out than for the other.10

The bifurcation in Figure 8 (for the case of two inter-
nally well-connected opinion groups) illustrates the effect
that different expression costs in the populations exhibit
on public discourse. In Figure 8, a bifurcation over c1
is shown. Negative costs for opinion expression in opin-
ion group G1 yield two stable equilibria in which opinion
group 1 is expressive, either together with opinion group
G2 or alone. With increasing costs, a stable fixed point
arises in a saddle node for which G1 is silent (at c1 ≈ 0),
while G2 is expressive. At c1 ≈ 0.15 and at c1 ≈ 0.4, the
two fixed points for which G1 expresses opinion disap-
pear. For costs that high, opinion group G1 will not be
publicly audible any more. Asymmetric costs can hence
drive certain opinion groups into silence.

D. Exploration rate

The parameter β determines how sensitive agents are
in their actions towards the current evaluation of their
expected reward. A high β-value indicates a choice of
the agent similar to a best response to their current eval-
uation of the expected reward, while β = 0 means that
each available action is chosen with equal probability.

As is visible in Figure 9, for very low β, there is only
one fixed point available with a very low Q-value for both
opinion groups. With β (≈ 5), further fixed points arise
in a supercritical pitchfork bifurcation, and then, at β >
6, another (now subcritical) pitchfork bifurcation arises,
such that we arrive at three stable fixed points (one in
which both groups are in an expressive mode, and one
for opinion dominance for each group) and two unstable
ones in-between. Hence, if the action selections is close
to a best response, we get more possible equilibria in the
system. In the intermediate region, we have a situation
in which only one of the two groups can be expressive,
despite them both being internally well-connected.

10 One may think here about online platforms whose design favours
engagement of certain demographic groups or states that encour-
age or try to prevent certain opinion groups to speak out.
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FIG. 8. Fixed-point development with c1 independent of c2,
given β = 10, γ = δ = 2.36, c2 = 0.1. Strongly negative
c1 corresponds to a strong motivational disposition (or many
hard cores) in the opinion group to express their opinion.
There, only fixed points in which this opinion group is ex-
pressive exist. For decreasing motivation (fewer hard cores),
fixed points arise in which the second opinion group is the
only expressive one.

VI. DISCUSSION AND OUTLOOK

a. The spiral of silence and beyond. The present
model provides a structural view on collective opinion
expression. It reproduces the counterintuitive result pos-
tulated by Noelle-Neumann in her theory of the spiral of
silence [1, 7], namely the possibility of the public domi-
nance of a minority opinion. While the influence of mass
media has been stressed in many publications concern-
ing the spiral of silence, we show that no mass media is
needed for this effect. Being an internally well-connected
community alone can be enough to gain public opinion
predominance. This finding gains traction in light of the
advent of social media, which facilitated communication
among like-minded people and decentralized information
distribution. Apart from that, the present approach also
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FIG. 9. The development of the fixed points with β given
c = 0.1 and γ = δ = 2.36. Since γ and δ are the same, the
plots are symmetric.

provides conditions for the ‘overcoming’ of the spiral of
silence (in the sense that both groups express their opin-
ion publicly), for which the numerical proportions do not
necessarily have to change. The increase in internal co-
hesion of the different opinion groups can be sufficient.
On the other hand, it is also shown that if the minority is
too small, even maximum internal cohesion cannot heave
the minority opinion into public predominance (see again
Figure 2).

b. Perception biases. In [8], the effect of the ego-
network size, that is, the (average) number connections
of the agents, on the occurrence of the spiral of silence
was investigated. It was concluded that an increase in
network density makes it more probable that one opin-
ion group does not speak out publicly. In our work, we
show that more density might even have the opposite
effect. It depends on where the additional connections
are made: If new connections are guided by homophily,
such that the opinion blocks become more cohesive, the
spiral of silence might even be overcome (see path (i)
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FIG. 10. Illustration of the transitions between the game-
theoretic equilibrium regions for (i) stronger internal cohesion
of both opinion groups (‘echo chambers’), (ii) less internal co-
hesion of both (heterophilious connections), and (iii) stronger
internal cohesion for only one opinion group (’#metoo’).

in Figure 10). We then arrive at a structure similar to
‘echo chambers,’ in which only the voices affirming one’s
own view are heard and the others are blocked out (see
[21] for a contribution linking opinion dynamics to the
emergence of echo chambers). If the additional connec-
tions are made between the opinion blocks, both γ and
δ decrease, which might make it more probable that the
individuals have a more realistic picture of the overall
opinion landscape. Then, the spiral effect is indeed more
probable. But if the cross-group connections grow even
further, both opinion groups misjudge their proportion to
their own disadvantage, such that no group speaks out
if there are costs associated to opinion expression (path
(ii) in Figure 10). The structure of the social contacts
alone is already sufficient to cause misjudgements about
opinion proportions in a social system. This is closely
linked to more general accounts of perception biases [22].

c. Critical mass. Furthermore, the model links to
studies dealing with tipping points in social systems and
the necessary numerical allocations, depending on the
network structures. This has e.g. been analyzed for so-
cial conventions [23]. If the social network of individuals
is structured in opinion blocks, there is a hard numerical
limit for the overcoming of a state in which one opinion
is dominating publicly. For example, for a cross-opinion
connection probability of 0.2 (as in Figure 2), the state
in which both opinion camps are expressive cannot be
reached if the minority makes up less than 22% of the
population.

d. Limits and outlook. While we have stressed the
generality of this work, we want to emphasize its limits
as well: The homogeneous network structure of opinion
blocks is not particularly realistic. Real social networks
are rather heterogeneous, with well-connected and very
active hubs and more ‘remote’ individuals. Nevertheless,
weighted (or stochastic [24]) blocks can serve as a baseline
for mathematical accessibility.

Moreover, this work is concerned with one way of react-
ing on social feedback, namely, the change in willingness
to express one’s opinion. Change in opinion is not in-
cluded. It is probable that these phenomena take place
on different time scales. Also, the social environments
prompting opinion change might be different from the
ones in which opinion predominance is fought for. In
demonstrations, if two opinion camps meet each other,
the main objective might not be information exchange or
the need to convince each other, but to gain public audi-
bility. Hence, a combination of models of opinion change
and opinion expression might be in order in a multi-layer
network approach, in which opinion formation and the
competition for public opinion predominance take place
on possibly different but interdependent network struc-
tures.
While there are plenty of studies on experimental evi-
dence for the micromechanisms grounding the spiral of
silence (see [5] for a review), we are also seeking a more
systematic larger-scale view on collective phenomena of
opinion expression, which are closely related to the pa-
rameters γ and δ in the model. A very prominent exam-
ple of emerging collective opinion expression online, for
which this model provides an explanation, is the Twitter-
hashtag ‘#metoo’ and the subsequent movement against
sexual harassment and sexual assault: Women found a
device (in this case, a hashtag) that allowed them to find
and connect to people who had experienced the same,
and also to people who supported them. And all of a
sudden, it was easier for them to speak out (path (iii) in
Figure 10). Measurements are an intricate task here: The
networks one constructs out of interactions between in-
dividuals are only the networks of interaction, that is, of
only one part of the actions one wants to observe. Silent
individuals do usually not show up in such networks since
they are not involved in an observable way.

In conclusion, we develop a model of opinion expres-
sion which allows the investigation of how social struc-
tures can prevent or promote public opinion expression
of different opinion groups. This approach allows direct
connection to an influential theory of the social sciences,
the spiral of silence [1, 7]. We approach the model both
from a game-theoretic and from a dynamical systems per-
spective and show how the public audibility of certain
opinions depends on the sensitivity of the agents towards
their current evaluation of expected reward, the struc-
tural cohesion of the opinion groups and the costs for
opinion expression.
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Appendix A: Expected decrease of the difference in
Q-values

We carry out the estimation for opinion group G1, but
the analogue holds for opinion group G2. We can give

an upper bound for the change in Q-value for the agent
with the maximum Q-value of the group, Q̇max

i∈G1
, and a

lower bound for the change in Q-value for the agent with
the minimum Q-value of the group, Q̇min

i∈G1
due to the

monotonicity of the function 1
1+e−x :

Q̇max
i∈G1

=α′(
γ

γ + 1

1

N1 − 1

∑
j∈G1
j 6=i

1

1 + e−βQj
− 1

γ + 1

1

N2

∑
j∈G2

1

1 + e−βQj
−Qmax

i∈G1
− c) ≤

α′(
γ

γ + 1

1

N1
(
∑
j∈G1
j 6=i

1

1 + e−βQj
+

1

1 + e−βQ
max
i∈G1

)− 1

γ + 1

1

N2

∑
j∈G2

1

1 + e−βQj
−Qmax

i∈G1
− c), (A1)

Q̇min
i∈G1

=α′(
γ

γ + 1

1

N1 − 1

∑
j∈G1
j 6=i

1

1 + e−βQj
− 1

γ + 1

1

N2

∑
j∈G2

1

1 + e−βQj
−Qmin

i∈G1
− c) ≥

α′(
γ

γ + 1

1

N1
(
∑
j∈G1
j 6=i

1

1 + e−βQj
+

1

1 + e−βQ
min
i∈G1

)− 1

γ + 1

1

N2

∑
j∈G2

1

1 + e−βQj
−Qmin

i∈G1
− c). (A2)

If we now look at the change in time in the difference of
Qmax
i∈N1

and Qmin
i∈N1

, we can conclude by the above inequali-
ties that the difference decreases at least exponentially in
expectation by substracting the right hand-sides of (A1)

and (A2).

d

dt
(Qmax

i∈G1
−Qmin

i∈G1
) ≤ −α′(Qmax

i∈G1
−Qmin

i∈G1
). (A3)

The analogue holds for opinion group G2:

d

dt
(Qmax

i∈G2
−Qmin

i∈G2
) ≤ −α′(Qmax

i∈G2
−Qmin

i∈G2
). (A4)
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