
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Trade-off relations of l1-norm coherence

for multipartite systems

by

Zhengmin Jiang, Ting-Gui Zhang, Xiaofen Huang, and

Shao-Ming Fei

Preprint no.: 28 2020





Trade-off relations of l1-norm coherence for multipartite systems

Zhengmin Jiang1, Tinggui Zhang1,†, Xiaofen Huang1, Shao-Ming Fei2,3
1School of Mathematics and Statistics,

Hainan Normal University, Haikou, 571158, China
2 School of Mathematical Sciences,

Capital Normal University, Beijing 100048,China
3 Max-Planck-Institute for Mathematics in the Sciences,

Leipzig 04103,Germany
† Correspondence to tinggui333@163.com

(Dated:)

We study the trade-off relations given by the l1-norm coherence of general multipartite states.
Explicit trade-off inequalities are derived with lower bounds given by the coherence of either bipartite
or multipartite reduced density matrices. In particular, for pure three-qubit states, it is explicitly
shown that the trade-off inequality is lower bounded by the three tangle of quantum entanglement.

PACS numbers: 03.67.-a, 02.20.Hj, 03.65.-w

INTRODUCTION

As one of the central concepts in quantum mechanics
which distinguish quantum from classical physics, coher-
ence plays a significant role in many quantum phenomena
such as the phase space distributions in quantum optics
[1] and higher order correlation functions [2]. It is highly
desirable to precisely quantify the usefulness of coher-
ence as a resource. In the classical work of Baumgratz,
Cramer and Plenio [3], this was achieved by defining the
key concepts such as incoherent states, maximally co-
herent states and incoherent operations. Rapid develop-
ments have been made since then on the fundamental
theory of quantum coherence and its applications [4, 5].

A successful and secure quantum network relies on
quantum correlations distributed among the subsystems
[6]. The so-called monogamy relation of the distribu-
tion of quantum resources characterizes such correlation
distributions. Based on the entanglement measure con-
currence, one has that the concurrences of the reduced
states ρAB and ρAC of an arbitrary three-qubit state
ρABC satisfy the Coffman-Kundu-Wootters relation [7].
Monogamy relations have been investigated for quantum
entanglement [8–11], quantum discord [12, 13], quantum
streering [14], Bell nonlocality [15–19], indistinguishabil-
ity [20], other nonclassical correlations [21, 22] and quan-
tum coherence [23–25].

Distributions of different quantum resources have been
also studied, such as the fundamental monogamy relation
between contextually and nonlocality [26], Bell nonlocal-
ity and three tangle for three-qubit states [27], the in-
ternal entanglement and external correlations [28, 29].
More recently, the trade-off relations for Bell inequality
violations in qubit networks [30], for quantum steering
in distributed scenario [31], for state-dependent error-
disturbance in sequential measurements [32], and for the
entanglement cost and classical communication complex-
ity of causal order structure of a protocol in distributed

quantum information processing [33] have been investi-
gated.

The distribution of quantum coherence in multipartite
systems based on relative entropy is given in [23–25] with
nice geometrical intuition, although the relative entropy
is not easily calculated. The N -partite monogamy of co-
herence is given by defining M =

∑N
n=2 C1:n − C1:2···N ,

where C1:n is the intrinsic coherence between the parti-
tions 1 and n [23]. For M ≤ 0, i.e, C1:2···N ≥

∑N
n=2 C1:n,

one obtains a monogamy relation (e.g. for the GHZ

states). If M > 0, i.e, C1:2···N <
∑N

n=2 C1:n, one has
a polygamous relation (e.g. for the W states).

In [3] two different measures of coherence, the relative
entropy of coherence Cr and the l1 norm of coherence
Cl1 , have been proposed. Cr is an entropic measure,
while Cl1 is a geometric (distance) measure. Both Cr

and Cl1 satisfy the strong monotonicity for all states,
and the corresponding quantum resources theories have
been rigorously established [3]. Some relations between
Cr and Cl1 have been also studied in [34].

For any d-dimensional quantum state ρ, one has
Cr(ρ) ≤ log(d), where the upper bound is attained for

maximally coherent states, |φ⟩ = 1√
d

∑d
i=1 |i⟩ [3, 35]. For

bipartite states ρAB , its correlated coherence Ccc(ρAB)
is defined by Ccc(ρAB) = Cl1(ρAB)−Cl1(ρA)−Cl1(ρB),
with ρA and ρB the reduced density matrices of the sub-
systems. Ccc(ρAB) is always nonnegative [36]. Namely,
Cr(ρAB) ≥ Cr(ρA)+Cr(ρB), which gives a kind of trade-
off relations among the bipartite coherence and the coher-
ence of the subsystems [35]. Cf (ρAB) ≥ Cf (ρA)+Cf (ρB)
is given in [37], Cf (ρ) is a convex roof coherence measure,
and defined as Cf (ρ) = inf{pi,|φi⟩}

∑
i piCf (|φi⟩) with

ρ =
∑

i pi|φi⟩⟨φi|. For tripartite states ρABC , [38] has
been discussed whether a similar trade-off relation like
Cr(ρABC) ≥ Cr(ρAB) + Cr(ρAC) holds. Unfortunately,
this conjecture is invalid. An interesting and important
question one would ask is then what trade-off relations
hold among the tripartite or multipartite coherence and



2

the coherence of the reduced subsystems.

In this paper, we investigate the distribution of quan-
tum coherence in multi-qubit systems by using the easily
calculated l1-norm of quantum coherence [3]. We derive
explicit trade-off inequalities lower bounded by the co-
herence of either bipartite or multipartite reduced den-
sity matrices. For pure three-qubit states, we show an
trade-off relation between the coherence distribution and
the three tangle of quantum entanglement.

TRADE-OFF RELATIONS OF MULTI-QUBIT
COHERENCE

The l1 norm quantum coherence of any quantum state
ρ =

∑
ρij |i⟩⟨j| is given by the non-diagonal entries of ρ

[3],

Cl1(ρ) =
∑

i,j,i ̸=j

|ρij |. (1)

In the following, we denote for a tripartite state ρABC ,
C123 = Cl1(ρABC), C12 = Cl1(ρAB), C13 = Cl1(ρAC),
C23 = Cl1(ρBC), where ρAB = TrC(ρABC), ρAC =
TrB(ρABC) and ρBC = TrA(ρABC) are the reduced den-
sity matrices.

According to the definition of l1 norm quantum co-
herence, for any d-dimensional quantum state ρ, one has
Cl1(ρ) ≤ d − 1, where the upper bound is attained for
maximally coherent states. It is obvious that the co-
herence of each subsystem is less than or equal to the
coherence of whole system, for example, C123 ≥ C12,
C123 ≥ C13 and C123 ≥ C1. In order to study the trade-
off relation between quantum states and their subsys-
tems, we first consider the three-qubit case.

Theorem 1. For any three-qubit quantum state ρABC =∑1
i,j,k,i′,j′,k′=0 ρ

i′j′k′

ijk |ijk⟩⟨i′j′k′|, we have

C123 ≥ C12 + C13 + C23

2
. (2)

Proof: From

C123 =
1∑

i,j,k=0

1∑
i′,j′,k′=0i̸=i′orj ̸=j′ork ̸=k′

|ρi
′j′k′

ijk |,

by using the triangle inequality |a|+ |b| ≥ |a+b|, we have

2C123

≥
1∑

i,j=0

1∑
i′,j′=0i ̸=i′orj ̸=j′

|
1∑

k=0

ρi
′j′k
ijk |

+

1∑
i,k=0

1∑
i′,k′=0i̸=i′ork ̸=k′

|
1∑

j=0

ρi
′jk′

ijk |

+

1∑
j,k=0

1∑
j′,k′=0j ̸=j′ork ̸=k′

|
1∑

i=0

ρij
′k′

ijk |

+D

= C12 + C13 + C23 +D,

where D = |ρ011000|+ |ρ101000|+ |ρ110000|+ |ρ010001|+ |ρ100001|+ |ρ111001|+
|ρ100010|+ |ρ111010|+ |ρ101011|+ |ρ110011|+ |ρ111100|+ |ρ110101|+ |ρ000011|+
|ρ000101|+ |ρ000110|+ |ρ001010|+ |ρ001100|+ |ρ001111|+ |ρ010100|+ |ρ010111|+
|ρ011101|+ |ρ011110|+ |ρ100111|+ |ρ101110|+2(|ρ111000|+ |ρ110001|+ |ρ101010|+
|ρ100011| + |ρ011100| + |ρ010101| + |ρ001110| + |ρ000111|), which gives rise
to (2).

For example, for a pure incoherent product state |ψ⟩ =
aijk|ijk⟩, one has trivially C123 = C12 = C13 = C23 =
0. For coherent state of the form, |ψ⟩ = a000|000⟩ +
a100|100⟩, we get C123 = C12 = C13 = |a000a∗100| +
|a100a∗000| and C23 = 0. The equality holds in this
case, C123 = (C12 + C13 + C23)/2, which gives rise to
C123 ≤ C12 + C13 as C23 = 0. Therefore, the conjecture
in [38], C123 ≥ C12 + C13 is invalid in this case.

In [38], the authors discussed that the trade-off relation
Cr(ρABC) ≥ Cr(ρAB) + Cr(ρAC) does not hold by the
relative entropy. Here, we also give a class of quantum
states that violate the trade-off relation C123 ≥ C12+C13.

Due to that correlated coherence Ccc(ρAB) is always
nonnegative [36], we have Cl1(ρAB) ≥ Cl1(ρA)+Cl1(ρB),
Cl1(ρAC) ≥ Cl1(ρA)+Cl1(ρC) and Cl1(ρBC) ≥ Cl1(ρB)+
Cl1(ρC), namely, C12 ≥ C1 + C2, C13 ≥ C1 + C3 and
C23 ≥ C2 + C3.

C123 ≥ C12 + C13 + C23

2
≥ C1 + C2 + C3. (3)

For the trade-off relation C123 ≥ C12 + C13, we have

C123 ≥ C12 + C13

≥ 2C1 + C2 + C3. (4)

When 2C1 ≥ C123, the inequality (4) does not hold. Sim-
ilarly, when 2Cr(ρA) ≥ Cr(ρABC), the trade-off relation
Cr(ρABC) ≥ Cr(ρAB) + Cr(ρAC) is invalid. This is why
we give the trade-off relation between the tripartite co-
herence and the bipartite coherence in Theorem 1. In
addition, one can get the trade-off relation by using the
triangle inequality as follows,

C123 ≥ C1 + C23, (5)
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where C1 =
∑1

i=0

∑1
i′=0i ̸=i′ |

∑1
j=0

∑1
k=0 ρ

i′jk
ijk |. Simi-

larly, one has C123 ≥ C2 + C13 and C123 ≥ C3 + C12.
Generalizing Theorem 1 to n-qubit case, we have, see

proof in Appendix,

Theorem 2. For any n-qubit quantum state ρ =∑
ρj1j2···jni1i2···in |i1i2 · · · in⟩⟨j1j2 · · · jn|, we have

C123···n ≥

C123···(n−1) + C123···(n−2)n + · · ·+ C234···(n−1)n

n− 1
.(6)

The lower bound of (6) can be further expressed as the
coherence of all m-partite reduced states of the n-qubit
state. Let Γ(m,n) = {a1a2 · · · am|1 ≤ a1 < a2 < · · · <
am ≤ n} denote the set of m different elements from n.
For example, Γ(2, 4) = {12, 13, 14, 23, 24, 34}. Then for
any given m, we have, see proof in Appendix,

Corollary 1. For any n-qubit quantum state ρ =∑
ρj1j2···jni1i2···in |i1i2 · · · in⟩⟨j1j2 · · · jn|, we have

C123···n ≥
∑

a∈Γ(m,n) Ca

Cm−1
n−1

, (7)

where the combination Cm−1
n−1 represents the maximum

number of occurrences of the element ρj1j2···jni1i2···in on the
right side of the inequality.

In particular, taking a ∈ Γ(2, 3) or a ∈ Γ(n−1, n), one
gets the Theorem 1 or Theorem 2, respectively.
The results in Corollary 1 can be straightforwardly

generalized to multi-qudit case.

Corollary 2. For any n-qudit ρ =∑d−1
i1,i2,··· ,in,j1,j2,··· ,jn=0 ρ

j1j2···jn
i1i2···in |i1i2 · · · in⟩⟨j1j2 · · · jn|,

we have

C123···n ≥
∑

a∈Γ(m,n) Ca

Cm−1
n−1

. (8)

(8) can be proved by similar derivations to the proof
of Theorem 2 and Corollary 1. In fact, it is valid for any
multipartite states with different individual dimensions.
Above results valid for any mixed quantum states.

Next, we consider the relationship between the coherence
and the entanglement for the 3-qubit pure states.

Theorem 3. For any three-qubit pure state |ψ⟩ABC =∑1
i,j,k=0 aijk|ijk⟩, we have

C123 ≥ C12 + C13 + C23

2
+ τ123, (9)

where τ123 = 4|d1 − 2d2 + 4d3| is entanglement tangle
[7], d1 = a2000a

2
111 + a2001a

2
110 + a2010a

2
101 + a2100a

2
011, d2 =

a000a111a011a100 + a000a111a101a010 + a000a111a110a001 +
a011a100a101a010 + a011a100a110a001 + a101a010a110a001
and d3 = a000a110a101a011 + a111a001a010a100.

In [23], the authors proposed a trade-off upper bound
for tripartite systems, C123 ≤ C1+C2+C3+C1:2:3, where
C1:2:3 is an intrinsic coherence, defined by minimizing
over the set of separable tripartite states. For the case of
three-qubit pure states, we have a lower bound inequality
given by the entanglement τ123 in Theorem 3. According
to the inequality (3), we have

C123 ≥ C1 + C2 + C3 + τ123. (10)

As examples, let us consider the GHZ state and the
W state. For the GHZ state |GHZ⟩ = cosϕ|000⟩ +
sinϕ|111⟩, ϕ ∈ [0, 2π), we have C123 = 2| sinϕ cosϕ|,
C12 = C13 = C23 = 0, τ123 = 4| cos2 ϕ sin2 ϕ|. As
2| sinϕ cosϕ| ≥ 4| cos2 ϕ sin2 ϕ|, one gets the inequal-
ity (9). For the W state |W ⟩ = sin θ cosϕ|100⟩ +
sin θ sinϕ|010⟩+ cos θ|001⟩ with 0 ≤ ϕ < 2π and 0 ≤ θ <
π, we get C123 = 2(| sin2 θ sinϕ cosϕ|+| sin θ cos θ cosϕ|+
| sin θ cos θ sinϕ|), C12 = 2| sin2 θ sinϕ cosϕ|, C13 =
2| sin θ cos θ cosϕ|, C23 = 2| sin θ cos θ sinϕ| and τ123 = 0,
which satisfy the inequality (9). This example shows that
both GHZ and W states obey the same inequality (9),
which is different from the case in [23], where the GHZ
and W states satisfy different inequalities under the rel-
ative entropy of coherence.

CONCLUSION AND DISCUSSION

We have studied the trade-off relations under the l1-
norm of quantum coherence. The general trade-off rela-
tions satisfied by the coherence of multipartite quantum
states have been derived. For pure three-qubit case, it
has been explicitly shown that the trade-off relation is
lower bounded by the three tangle of quantum entan-
glement. These results may highlight further studies on
coherence and correlation distributions in multipartite
quantum systems.

We have proved that the trade-off relation C(ρABC) ≥
C(ρAB) + C(ρAC) is invalid for relative entropy coher-
ence and l1 norm coherence. Here, We have used the
l1 norm coherence in defining the correlated coherence.
Obviously one may also define the correlated coherence
in terms of the entopic coherence measure or the convex
roof coherence measure. One may expect that the in-
equality like (2) hold for correlated coherence defined by
other quantum coherence measures.
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Rev. Lett. 121, 090403 (2018)

[21] S. Cheng, L. Liu, Phys. Lett. A 382, 26, 1716 (2018)
[22] Z. X. Jin, S.M. Fei, Phys. Rev. A 99, 032343 (2019)
[23] C. Radhakrishnan, M. Parthasarathy, S. Jambulingam,

and T. Byrnes, Phys. Rev. Lett. 116, 150504 (2016).
[24] C. Radhakrishnan, P.W. Chen, S. Jambulingam, T.

Byrnes, Md.M. Ali, arXiv:1711.03299 (2017)
[25] K. Bu, L. Li, A. K. Pati, S.M. Fei, J. Wu,

arXiv:1710.08517 (2017)
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APPENDIX

Proof of Theorem 2

Proof: From the definitions

C123···n =
1∑

i1,i2,··· ,in=0
i1 ̸=j1 or i2 ̸=j2

1∑
j1,j2,··· ,jn=0
or···or in ̸=jn

|ρj1j2···jni1i2···in | ,

C123···(n−1) =

1∑
i1,i2,··· ,in−1=0
i1 ̸=j1 or i2 ̸=j2

1∑
j1,j2,··· ,jn−1=0

or···or in−1 ̸=jn−1

|
1∑

in=0

ρ
j1j2···jn−1in
i1i2···in−1in

| ,

C123···(n−2)n =

1∑
i1,··· ,in−2,in=0
i1 ̸=j1or···or

1∑
j1,··· ,jn−2,jn=0

in−2 ̸=jn−2orin ̸=jn

|
1∑

in−1=0

ρ
j1···jn−2in−1jn
i1···in−2in−1in

| ,

...

C234···n =
1∑

i2,i3,··· ,in=0
i2 ̸=j2 or i3 ̸=j3

1∑
j2,j3,··· ,jn=0
or···or in ̸=jn

|
1∑

i1=0

ρi1j2···jni1i2···in |,

similar to the proof of Theorem 1, by using triangular
inequalities and taking into account the number of times
of the same element appearing on both sides of the in-
equalities, we obtain (3).

Proof of Corollary 1

Proof: According to Theorem 2, we get

C123···n

≥
C123···(n−1) + C123···(n−2)n + · · ·+ C234···(n−1)n

n− 1

=

∑
a∈Γ(n−1,n) Ca

Cn−2
n−1

.
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Hence

C123···n

≥
C123···(n−1) + C123···(n−2)n + · · ·+ C234···(n−1)n

n− 1
.

≥
C123···(n−2) + C12···(n−3)(n−1) + · · ·+ C234···(n−1)

(n− 2)(n− 1)

+
C123···(n−2) + C12···(n−3)n + · · ·+ C234···(n−2)n

(n− 2)(n− 1)
+ · · ·

+
C234···(n−1) + C23···(n−2)n + · · ·+ C345···n

(n− 2)(n− 1)

=
C123···(n−2) + C12···(n−3)(n−1) + · · ·+ C345···n

(n−1)(n−2)
2

.

According to the characteristics of the combination, each
element appears twice on the right side of the second
inequality. One has

C123···n ≥
∑

a∈Γ(n−2,n) Ca

Cn−3
n−1

.

Similarly, we obtain

C123···n ≥
∑

a∈Γ(n−3,n) Ca

Cn−4
n−1

.

C123···n ≥
∑

a∈Γ(n−4,n) Ca

Cn−5
n−1

.

...

C123···n ≥
∑

a∈Γ(1,n) Ca

C0
n−1

,

which give rise to (7).

Proof of Theorem 3

Proof: The two-qubit reduced density matrices of
ρABC = |ψ⟩ABC⟨ψ| are given by

ρAB =
1∑

i,j=0

1∑
i′,j′=0

1∑
k=0

aijka
∗
i′j′k|ij⟩⟨i′j′|,

ρAC =

1∑
i,k=0

1∑
i′,k′=0

1∑
j=0

aijka
∗
i′jk′ |ik⟩⟨i′k′|,

ρBC =
1∑

j,k=0

1∑
j′,k′=0

1∑
i=0

aijka
∗
ij′k′ |jk⟩⟨j′k′|.

According to the proof of Theorem 1 and the fact that
|xy∗| = |xy| for any complex numbers x and y, we have

C123 ≥ C12 + C13 + C23

2
+
D′

2
,

where

D′

2
= |a000a011|+ |a000a101|+ |a000a110|+ |a001a010|

+|a001a100|+ |a001a111|+ |a010a100|+ |a010a111|
+|a011a110|+ |a011a101|+ |a100a111|+ |a101a110|
+2(|a000a111|+ |a001a110|+ |a010a101|+ |a011a100|).

From the inequality a2 + b2 ≥ 2ab for a ≥ 0 and b ≥ 0,
we have

1 =

1∑
i,j,k=0

|aijk|2

≥ 2(|a000a111|+ |a001a110|+ |a010a101|+ |a100a011|)
≥ 0.

Hence

2(|a000a111|+ |a001a110|+ |a010a101|+ |a100a011|)
≥ [2(|a000a111|+ |a001a110|+ |a010a101|+ |a100a011|)]2

= 4[|a000|2|a111|2 + |a001|2|a110|2

+|a010|2|a101|2 + |a100|2|a011|2

+2(|a000a111a011a100|+ |a000a111a101a010|
+|a000a111a110a001|+ |a011a100a101a010|
+|a011a100a110a001|+ |a101a010a110a001|)]

≥ 4|d1 − 2d2|.

Similarly

1 ≥ |a000|2 + |a011|2 + |a101|2 + |a110|2

≥ 2(|a000a011|+ |a101a110|)
≥ 0.

Therefore,

|a000a011|+ |a101a110|
≥ 2(|a000a011|+ |a101a110|)2

= 2(|a000a011|2 + |a101a110|2 + 2|a000a110a101a011|)
≥ 8|a000a110a101a011|.

And similarly,

|a000a101|+ |a011a110| ≥ 8|a000a110a101a011|,
|a000a110|+ |a011a101| ≥ 8|a000a110a101a011|,
|a001a010|+ |a100a111| ≥ 8|a111a001a010a100|,
|a001a100|+ |a010a111| ≥ 8|a111a001a010a100|,
|a001a111|+ |a010a100| ≥ 8|a111a001a010a100|.
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Thus we have

|a000a011|+ |a000a101|+ |a000a110|+ |a001a010|
+|a001a100|+ |a001a111|+ |a010a100|+ |a010a111|
+|a011a110|+ |a011a101|+ |a100a111|+ |a101a110|

≥ 16(|a000a110a101a011|+ |a111a001a010a100|)
≥ 4|4d3|,

Therefore, we obtain

D′

2
≥ 4|d1 − 2d2 + 4d3| = τ123,

and then (9).


