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Abstract We study the Einstein-Podolsky-Rosen (EPR) steering and present steerability cri-

teria for arbitrary qubit-qudit (qudit-qubit) systems based on mutually unbiased measurements

(MUMs) and general symmetric informationally complete measurements (general SIC-POVMs).

Avoiding the usual complicated steering inequalities, these criteria can be more operational than

some existing criteria, and implemented experimentally. Detailed examples are given to illustrate

the efficiency of the criteria in both computation and experimental implementation.

Keywords EPR steering · Steerability criterion · MUM · General SIC-POVM

1 Introduction

As a distinctive and key feature in quantum world, the nonlocality challenges our intuition and
comprehension about the nature. In the heart of nonlocality is the concept “EPR paradox” raised
by Einstein, Podolsky, and Rosen in their seminal paper [1], which indicates that there were some
conflicts between quantum mechanics and local realism. They proposed the possible existence
of “local hidden variable” (LHV) models. With respect to the EPR paradox Schrödinger intro-
duced the concept “steering” [2, 3] to characterize the Alice’s ability of remotely steering Bob’s
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state by local measurements. These counterintuitive nonlocal effects, or “spooky action at a dis-
tance”, were collectively dubbed “entanglement”. In 1964, Bell introduced his famous inequality
for local hidden variable theories, which crucially brought the nonlocality debate to an exper-
imentally testable form [4]. Thus, three distinct types of nonlocal correlations: entanglement,
Schrödingers steering and Bell nonlocality, were intuitively elaborated, which have opened an
epoch of unrelenting exploration of quantum correlations.

The nonlocality and quantum entanglement play important roles in our fundamental under-
standings of physical world as well as in various novel quantum informational tasks. A bipartite
quantum state admits no LHV models if it violates some Bell inequalities such that the local
measurement outcomes can not be modeled by classical random distributions over probability
spaces, termed as Bell nonlocal [4–6]. A quantum state without entanglement must admit LHV
models. However, not all the entangled quantum states are of nonlocality.

Entanglement and Bell nonlocality have attained flourishing developments. The concept of
EPR steering was only introduced in 2007 [10]. The task of quantum steering is that a referee has
to determine, by using the measurement outcomes communicated classically from the two parties
to the referee, whether two spatially separated parties share entanglement, when one of the two
parties is untrusted. The notion of EPR steering was introduced as the inability to construct a
local hidden state (LHS) model to explain the joint probabilities of measurement outcomes. It
has been shown that EPR steering is an intermediate between entanglement and Bell nonlocality.
According to the hierarchy of nonlocality, the set of steerable states is a strict subset of entangled
states and a strict superset of Bell nonlocal states [11]. Moreover, the EPR steering is inherently
asymmetric with respect to the observers, unlike quantum nonlocality and entanglement [12].
There exist entangled states which are one-way steerable, demonstrating steerability from one
observer to another spatially separated observer, but not vice-versa [12–14].

EPR steering not only has foundational significance of describing the nonlocality, but also
has a vast range of information theoretic applications, ranging from one-sided device-independent
quantum key distribution [15], advantages in sub-channel discrimination [16], secure quantum
teleportation [17], quantum communication [18], detecting bound entanglement [19], one-sided
device-independent randomness generation [20], to one-sided device-independent self-testing of
pure maximally as well as non-maximally entangled states [21].

Against the above backdrop, from a fundamental viewpoint as well as an information-theoretic
perspective, it is important to detect whether a quantum state is steerable or not. A number
of criteria have been proposed till date [22–41]. Recently, in [42, 43], the authors focused on
detecting arbitrary qubit-qudit state ρAB and gave a criterion by detecting the entanglement of
a new constructed state, µρAB+(1−µ) I

2⊗ρB , without using any steering inequality. Following the
positive partial transposition criterion [44,45], the authors in [43] present a brief idea on how their
result can be implemented in experiments for two-qubit states. Although such result consumes
some resources, it provides a way of detecting EPR steering by avoiding steering inequalities.

In [48] the authors formulated an effective tool called mutually unbiased measurements
(MUMs) to study the problem of quantum entanglement. Besides, there is another useful tool
called general symmetric informationally complete measurements (general SIC-POVMs) [49,50].
Both the MUMs and general SIC-POVMs can be used to detect quantum entanglement [46,
51–55]. These entanglement criteria are shown to be powerful and can be implemented experi-
mentally. Due to the relationship between the entanglement and the EPR steering, we present
steering criteria in terms of MUMs and general SIC-POVMs.
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2 Detection of EPR Steering

The EPR steering is usually formulated by considering a quantum information task [10,11]. Sup-
pose two spatially separated observers, say Alice and Bob, want to share entanglement between
each other. Alice prepares a bipartite quantum state ρAB and sends one partite to Bob. Bob
trusts his own but not Alice’s apparatus. He will be convinced that they share an entangled state
only if there exists evidence that Alice can “steer” Bob’s state by performing measurements on
their respective subsystems. If Alice (Bob) performs projective measurement A (B) with mea-
surement outcomes a (b) on her (his) system, the joint probability of obtaining the outcomes a
and b is given by

P (a, b|A,B; ρAB) = Tr[(ΠAa ⊗ΠBb )ρAB], (1)

where ΠAa and ΠAa are the corresponding projective operators for Alice and Bob, respectively.
The only way that the dishonest Alice pretends to steer Bobs state, is to send some local

hidden states (LHS) with ensemble {pλρλ}, where λ is the hidden variable, ρλ is the state
that Alice sends with probability pλ (

∑
λ pλ = 1). She announces an outcome according to her

knowledge about the sent states. In this case the correlation will be of the form

P (a, b|A,B; ρAB) =
∑
λ

pλ P (a|A, λ)PQ(b|B, ρλ), (2)

where P (a|A, λ) can be any possible probability distribution that Alice designed, PQ(b|B, ρλ) =
Tr[ΠBb ρλ] denotes the quantum probability of outcome b given by measuring B on the local
hidden state ρλ. If Bob finds that any LHS models fail to satisfy such correlation Eq. (2), he has
to admit that Alice can steer his system and the corresponding bipartite state is entangled. In
short, the bipartite state ρAB is unsteerable by Alice to Bob if and only if the joint probability
distributions satisfy the relation (2) for all measurements A and B.

2.1 Detecting EPR Steering via Mutually Unbiased Measurements

Two orthonormal bases B1 = {|i⟩}di=1 and B2 = {|j⟩}dj=1 of Cd are said to be mutually unbiased
if

|⟨i|j⟩| = 1√
d
, for all i, j = 1, 2, · · · , d. (3)

A set of orthonormal bases {B1,B2, · · · ,Bm} in Cd is called a set of mutually unbiased bases
(MUBs) if every pair of bases in the set is mutually unbiased. In a d dimensional Hilbert space,
there are at most d+ 1 pairwise unbiased bases. This set is called a complete set of MUBs. It is
still an open problem whether complete set of MUBs exists for arbitrary d.

In Ref. [48], the authors introduced the concept of MUMs. Two POVM measurements on Cd

, P(b) = {P (b)
n }dn=1, b = 1, 2, are said to be mutually unbiased measurements if

Tr[P (b)
n ] = 1,

Tr[P (b)
n P

(b
′
)

n′ ] =
1

d
, b ̸= b

′

Tr[P (b)
n P

(b)

n′ ] = δnn′κ+ (1− δnn′ )
1− κ

d− 1
, (4)
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where 1/d < κ 6 1, and κ = 1 if and only if P(1) and P(2) reduce to projective measurements
with respect to two MUBs.

A general construction of d+1 MUMs has been presented in [48]. Let {Fn,b : n = 1, 2, · · · , d−
1, b = 1, 2, · · · , d+1} be a set of d2−1 Hermitian and traceless operators acting on Cd, satisfying
Tr(Fn,bFn′,b′) = δnn′δbb′ . Define d(d+ 1) operators

F (b)
n =

{
F (b) − (d+

√
d)Fn,b, n = 1, 2, · · · , d− 1,

(1 +
√
d)F (b), n = d,

(5)

where F (b) =
d−1∑
n=1

Fn,b, b = 1, 2, · · · , d+ 1. Then the d+ 1 MUMs are given by

P (b)
n =

1

d
I+ tF (b)

n , (6)

with b = 1, 2, · · · , d+ 1, n = 1, 2, · · · , d, and t is so chosen such that P
(b)
n > 0. d+ 1 MUMs can

be expressed in such form for any dimension d.

Now we study the steering criteria for qudit-qubit and qubit-qudit quantum systems based
on MUMs.

Theorem 1 Let ρAB be a qudit-qubit state in Cd ⊗ C2 shared by Alice and Bob, and {P(b)}d+1
b=1

and {Q(b)}3b=1 be any two complete MUMs on Cd and C2 with the parameter κ1 and κ2, respec-

tively, where P(b) = {P (b)
n }dn=1 and Q(b) = {Q(b)

n }2n=1. Set R
(b)
n = Q

(b)
n for 1 6 b 6 3, 1 6 n 6 2,

and R
(b)
n = I

2 for 3 < b 6 d+ 1 or 3 6 n 6 d. Define J(ρ) =
d+1∑
b=1

d∑
n=1

Tr[(P
(b)
n ⊗R

(b)
n )ρ]. If

J(ρAB) >

√
κ1 + 1

√
4κ2 + 4 + (d+ 3)(d− 2)

2µ
− (d+ 1)(1− µ)

2µ
, (7)

then ρAB is steerable from Bob to Alice, where µ ∈ (0, 1√
3
].
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Proof Denote τAB = µρAB +(1−µ)ρA⊗ I
2 , where ρA = TrB [ρAB ] is the reduced state at Alice’s

side. we have

J(τAB) =
d+1∑
b=1

d∑
n=1

Tr[(P (b)
n ⊗R(b)

n )τAB ]

=
d+1∑
b=1

d∑
n=1

Tr[(P (b)
n ⊗R(b)

n )(µρAB + (1− µ)ρA ⊗ I
2
)]

= µ

d+1∑
b=1

d∑
n=1

Tr[(P (b)
n ⊗R(b)

n )(ρAB)] + (1− µ)

d+1∑
b=1

d∑
n=1

Tr[(P (b)
n ⊗R(b)

n )(ρA ⊗ I
2
)]

= µ
d+1∑
b=1

d∑
n=1

Tr[(P (b)
n ⊗R(b)

n )(ρAB)] + (1− µ)
d+1∑
b=1

d∑
n=1

Tr[P (b)
n ρA ⊗R(b)

n

I
2
]

= µ
d+1∑
b=1

d∑
n=1

Tr[(P (b)
n ⊗R(b)

n )(ρAB)] + (1− µ)
d+1∑
b=1

d∑
n=1

Tr[P (b)
n ρA]Tr[R

(b)
n

I
2
]

= µJ(ρAB) + (1− µ)

3∑
b=1

{
2∑

n=1

Tr[P (b)
n ρA]Tr[Q

(b)
n

I
2
] +

d∑
n=3

Tr[P (b)
n ρA]Tr[

I2

4
]}

+ (1− µ)
d+1∑
b=4

d∑
n=1

Tr[P (b)
n ρA]Tr[

I2

4
]

= µJ(ρAB) +
(d+ 1)(1− µ)

2

>
√
κ1 + 1

√
κ2 + 1 +

(d+ 3)(d− 2)

4
.

The last inequality follows from (7).
In [55], the authors presented a separability criterion: if a bipartite state τAB in Cd1 ⊗ Cd2

(d1 ≥ d2) is separable, one has J(τ) 6
√
κ1 + 1

√
κ2 + 1 + (d1−d2)(d1+d2+1)

4 . In particular, for the

case d1 = d and d2 = 2, one has J(τ) 6
√
κ1 + 1

√
κ2 + 1 + (d+3)(d−2)

4 for all separable states τ

in Cd ⊗C2. From this criterion we have that τAB must be entangled. In addition, from that any
qudit-qubit state ρAB is EPR steering from Bob to Alice if the state τAB = µρAB+(1−µ)ρA⊗ I

2
is entangled [42,43], we complete the proof.

�

On the other hand, for a qubit-qudit state ρAB in C2 ⊗ Cd shared by Alice and Bob, we can
detect the EPR steering from Alice to Bob through the following theorem.

Theorem 2 Let {P(b)}3b=1 and {Q(b)}d+1
b=1 be any two complete MUMs on C2 and Cd with the

parameter κ1 and κ2, respectively, where P(b) = {P (b)
n }2n=1, Q(b) = {Q(b)

n }dn=1. Set R
(b)
n = P

(b)
n ,

for 1 6 b 6 3, 1 6 n 6 2, and R
(b)
n = I

2 for 3 < b 6 d + 1 or 3 6 n 6 d. For a qubit-qudit state
ρAB in C2 ⊗ Cd shared by Alice and Bob, if

J(ρAB) =
d+1∑
b=1

d∑
n=1

Tr[(R(b)
n ⊗Q(b)

n )ρAB] >

√
4κ1 + 4 + (d+ 3)(d− 2)

√
κ2 + 1

2µ
− (d+ 1)(1− µ)

2µ
,(8)

then ρAB is steerable from Alice to Bob, where µ ∈ (0, 1√
3
].
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The proof is similar to that of Theorem 1, by defining the state σAB = µρAB+(1−µ) I
2 ⊗ρB ,

where ρB = TrA[ρAB] is the reduced state at Bob’s side.
As a particular case, let us consider a two-qubit state ρAB in C2 ⊗C2. Denote σ1, σ2 and σ3

the Pauli matrices. We have the following corollary:

Corollary 1 Set H(ρAB) = Tr[(σ1 ⊗ σ1 − σ2 ⊗ σ2 + σ3 ⊗ σ3)ρAB ]. If H(ρAB) >
1

µ
, µ ∈ (0, 1√

3
],

then the qubit-qubit state ρAB is steerable from Bob to Alice and from Alice to Bob.

Proof A two-qubit state ρAB can be written in the following form under local unitary transfor-
mation,

ρAB =
1

4
(I⊗ I+ a · σ ⊗ I+ I⊗ b · σ +

3∑
i=1

ciσi ⊗ σi), (9)

where σ = (σ1, σ2, σ3), a = (a1, a2, a3), b = (b1, b2, b3) ∈ R3 are the Bloch vectors, ai =
Tr[(σi ⊗ I)ρAB], bi = Tr[(I⊗ σi)ρAB ], ci = Tr[(σi ⊗ σi)ρAB], i = 1, 2, 3.

Let {P (b)
n }2n=1, b = 1, 2, 3, be the three MUMs with the parameter κ constructed from the gen-

eralized Gell-Mann operators [48], and P̄n
(b)

the conjugation of P
(b)
n . It is obvious that {P̄n

(b)}2n=1,
b = 1, 2, 3 are the three MUMs with the same parameter κ. We get

J(ρAB) =

3∑
b=1

2∑
n=1

Tr[(P (b)
n ⊗ P̄ (b)

n )ρAB ]

=
3 + (2κ− 1)(Tr[(σ1 ⊗ σ1 − σ2 ⊗ σ2 + σ3 ⊗ σ3)ρAB ])

2

=
3 + (2κ− 1)H(ρAB)

2
.

According to Theorem 1 (Theorem 2), we have ρAB is steerable from Bob to Alice and from

Alice to Bob, if J(ρAB) >
3µ+2κ−1

2µ for d = 2 and κ1 = κ2 = κ, which follows from H(ρAB) >
1

µ
,

µ ∈ (0, 1√
3
].

�

In the following, we detect EPR steering of different families of two-qubit mixed states by
using our results. We show by those detailed examples that our criterion based on MUMs is more
convenient and operational, and more powerful than some criteria using steering inequality.

Example 1.We consider the Werner derivative states [56], which are a class of non-maximally
entangled mixed states and can be obtained by applying a nonlocal unitary operator on the
Werner state,

ρwd = p|ψθ⟩⟨ψθ|+ (1− p)
I
2
⊗ I

2
, (10)

where |ψθ⟩ = cosθ|00⟩+ sinθ|11⟩, 0 6 θ 6 π/4, 0 6 p 6 1. From Corollary 1, we have H(ρwd) =
p(1 + 2sin(2θ)). Therefore, ρwd is steerable (from Alice to Bob and from Bob to Alice) for

1/
√
3 6 p < 1 and arcsin[

1

2
(
√
3 − 1)]/2 < θ 6 π/4, see Fig. 1. It should be noted that this

steering criterion can be also derived from the result of Ref. [57]. However, our criteria from
Theorem 1 and 2 do not need to know the detailed state. The detection of the steerability of a
state can be done by direct measurements on the state.
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Fig. 1 The gray area represents the range of steerability that can be detected experimentally.

Example 2. Consider the following class of maximally steerable mixed states (the states
that violate the most the steering inequality for a given mixedness) proposed in [58],

ρτ =


(1− τ)/4 0 0 (1− τ)/4

0 (1 + τ)/4 (1 + τ)/4 0
0 (1 + τ)/4 (1 + τ)/4 0

(1− τ)/4 0 0 (1− τ)/4

 , (11)

where −1 6 τ 6 1. By straightforward computation, we have that H(ρτ ) = 1−2τ > 1/µ, namely,
−1 6 τ 6 (1−

√
3)/2. Thus our criterion can detect the both-way steerability of the state ρτ for

−1 6 τ 6 (1−
√
3)/2. Here the upper bound (1−

√
3)/2 is approximately −0.366 given in [43].

Example 3. Consider maximally entangled mixed states presented in [59],

ρMunro =


h(C) 0 0 C/2
0 1− 2h(C) 0 0
0 0 0 0
C/2 0 0 h(C)

 , (12)

where C is the concurrence [60] of ρMunro, h(C) = 1/3 for C < 2/3 and h(C) = C/2 for

C > 2/3. Here, the concurrence of a pure state |ψ⟩ is defined by C(|ψ⟩) =
√
2(1− Trρ2A) with

ρA = TrB [ρAB ] the reduced density matrix. The concurrence of a mixed state ρ is defined by

the convex roof extension: C(ρ) = min
{pi,|ψi⟩}

∑
i

piC(|ψi⟩) with pi > 0,
∑
i

pi = 1, and the mini-

mization goes over all possible pure state decompositions ρ =
∑
i

pi|ψi⟩⟨ψi|. It is straightforward

to obtain H(ρMunro) = 4C − 1. Thus, the both-way EPR steerability of ρMunro is detected for

C > (1 +
√
3)/4 ≈ 0.683.

It has been shown that the state (12) demonstrates both-way steerability for C > 0.707
by using the two-setting linear steering inequality [25](see Appendix). Therefore, in the region
0.683 < C 6 0.707, the steerability of state ρMunro can be detected by our criterion, but not by
the two-setting linear steering inequality.



8 Le-Min Lai1 et al.

2.2 Detecting EPR Steering via general SIC-POVMs

A POVM {Pj} with d2 rank-1 operators acting on Cd is called symmetric informationally (SIC)
complete, if

Pj =
1

d
|ϕj⟩⟨ϕj |,

d2∑
j=1

Pj = I, (13)

where j = 1, 2, · · · , d2, the vectors |ϕj⟩ satisfy |⟨ϕj |ϕk⟩|2 = 1/(d+ 1), j ̸= k.
The general SIC measurements were introduced in Refs. [49,50]. A set of d2 positive semidef-

inite operators {Pα}d
2

α=1 on Cd is said to be a general SIC measurements if

d2∑
α=1

Pα = I, Tr[P 2
α] = a,

Tr[PαPβ ] =
1− da

d(d2 − 1)
, (14)

where α, β ∈ {1, 2, · · · , d2}, α ̸= β, the parameter a satisfies 1/d3 < a 6 1/d2. a = 1/d2 if and
only if all Pα are rank one, which gives rise to a SIC-POVM. It can be shown that Tr(Pα) = 1/d

for all α, and general SIC-POVM can be explicitly constructed [50]. Let {Fα}d
2−1
α=1 be a set of

d2−1 Hermitian, traceless operators acting on Cd, satisfying Tr(FαFβ) = δα,β . Set F =
d2−1∑
α=1

Fα.

The d2 operators

Pα =
1

d2
I+ t[F − d(d+ 1)Fα], α = 1, 2, · · · , d2 − 1,

Pd2 =
1

d2
I+ t(d+ 1)F (15)

form a general SIC measurement. Here t should be chosen such that Pα > 0 and the parameter
a is given by

a =
1

d3
+ t2(d− 1)(d+ 1)3. (16)

Instead of the MUMs used in Theorem 1 (Theorem 2), now we consider the general SIC-
POVMs. We have the following EPR steering criteria for qubit-qudit and qudit-qubit states.
The proofs of the following theorems are similar to the case of MUMs.

Theorem 3 Let ρAB be a qudit-qubit state in Cd ⊗ C2 shared by Alice and Bob. Denote P =
{Pj}d

2

j=1 and Q = {Qj}4j=1 two sets of general SIC-POVMs on Cd and C2 with the efficiency
parameters a1 and a2, respectively. Set Rj = Qj for j = 1, 2, 3, 4, and Rj = I/4 for j =

5, 6, · · · , d2. Define J(ρ) =
d2∑
j=1

Tr[(Pj ⊗Rj)ρ]. Then, the ρAB is steerable from Bob to Alice if

J(ρAB) >

√
a1d2+1
d(d+1)

√
4a2+1

6 + d2−4
16

µ
− 1− µ

4µ
, (17)

where µ ∈ (0, 1√
3
].
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Theorem 4 Let ρAB be a qubit-qudit state in C2⊗Cd shared by Alice and Bob, P = {Pj}4j=1 and

Q = {Qj}d
2

j=1 be two sets of general SIC-POVMs on C2 and Cd with the efficiency parameters

a1 and a2, respectively. Denote Rj = Pj for j = 1, 2, 3, 4, Rj = I/4 for j = 5, 6, · · · , d2. If

J(ρAB) >

√
4a1+1

6 + d2−4
16

√
a2d2+1
d(d+1)

µ
− 1− µ

4µ
, (18)

then ρAB is steerable from Alice to Bob, where µ ∈ (0, 1√
3
].

As a direct application of Theorems 3 and 4, for two-qubit states we can get the same results
as the ones from corollary 1. Namely, the EPR steerable criteria based on MUMs works as well
as the criteria based on general SIC-POVMs for two-qubit systems.

3 Conclusion

We have presented criteria for detecting EPR steering of arbitrary qubit-qudit states and qudit-
qubit states through MUMs and general SIC-POVMs. These criteria can be more convenient
and efficient, and can be implemented experimentally. The novelty of the results is that it allows
one to detect EPR steering without using the usual complicated steering inequalities. From
experimental point of view, our results enable one to test EPR steering of an arbitrary qudit-
qubit and qubit-qudit state indirectly through two classes of measurements. Our approach may
be helpful to avoid the locality loophole in EPR steering test, as the degree of correlation required
for entanglement testing via MUMs and general SIC-POVMs is smaller than that for violation of
a steering inequality. By detailed examples it has been shown that our criteria based on MUMs
and general SIC-POVMs are more convenient and operational than some existing criteria in both
computation and experimental implementation.
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34. Kogias, I., Skrzypczyk, P.,Cavalcanti, D., Aćın, A., Adesso, G.: Hierarchy of steering criteria based on moments

for all bipartite quantum systems. Phys. Rev. Lett. 115, 210401(2015)
35. Cavalcanti, E. G., Foster, C. J., Fuwa, M., Wiseman, H. M.: Analog of the Clauser-Horne-Shimony-Holt

inequality for steering. J. Opt. Soc. Am. B 32, A74 (2015)
36. Roy, A., Bhattacharya, S. S., Mukherjee, A., Banik, M.: Optimal quantum violation of Clauser-Horne-

Shimony-Holt like steering inequality. J. Phys. A 48, 415302 (2015)
37. Zukowski, M., Dutta, A., Yin, Z.: Geometric Bell-like inequalities for steering, Phys. Rev. A 91, 032107 (2015)
38. Girdhar, P., Cavalcanti, E. G.: All two-qubit states that are steerable via Clauser-Horne-Shimony-Holt-type

correlations are Bell nonlocal. Phys. Rev. A 94, 032317 (2016)
39. Costa, A. C. S., Angelo, R. M.: Quantification of Einstein-Podolski-Rosen steering for two-qubit states. Phys.

Rev. A 93, 020103(R) (2016)
40. Cavalcanti, D., Guerini, L., Rabelo, R., Skrzypczyk, P.: General method for constructing local hidden variable

models for entangled quantum states. Phys. Rev. Lett. 117, 190401 (2016)



Detecting EPR steering via two classes of local measurements 11

41. Hirsch, F., Quintino, M. T., Vertesi, T., Pusey, M. F., Brunner, N.: Algorithmic construction of local hidden
variable models for entangled Quantum States. Phys. Rev. Lett. 117, 190402 (2016)

42. Chen, C. B., Ren, C. L., Ye, X. J., C, J. L.: Mapping criteria between nonlocality and steerability in qudit-
qubit systems and between steerability and entanglement in qubit-qudit systems. Phys. Rev. A 98, 052114
(2018)

43. Das, D., Sasmal, S., Roy, S.: Detecting Einstein-Podolsky-Rosen steering through entanglement detection.
Phys. Rev. A 99, 052109 (2019)

44. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)
45. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions.

Phys. Lett. A 223, 1 (1996)
46. Spengler, C., Huber, M., Brierley, S., Adaktylos, T., Hiesmayr, B. C.: Entanglement detection via mutually

unbiased bases. Phys. Rev. A 86, 022311 (2012)
47. Wootters, W. K., Fields, B. D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys.

(NY) 191, 363(1989)
48. Kalev, A., Gour, G.: Mutually unbiased measurements in finite dimensions. New J. Phys. 16, 053038 (2014)
49. Appleby, D. M.: Symmetric informationally complete measurements of arbitrary rank. Opt. Spectrosc. 103,

416 (2007)
50. Gour, G., Kalev, A.: Construction of all general symmetric informationally complete measurements. J. Phys.

A Math. Theor 47, 335302 (2014)
51. Chen, B., Ma, T., Fei, S. M.: Entanglement detection using mutually unbiased measurements. Phys. Rev. A

89, 064302 (2014)
52. Liu, L., Gao, T., Yan, F.: Separability criteria via sets of mutually unbiased measurements. Sci. Rep. 5: 13138

(2015)
53. Chen, B., Li, T., Fei, S. M.: General SIC measurement-based entanglement detection. Quant. Inf. Process.

14, 2281(2015)
54. Xi, Y., Zheng, Z. J., Zhu, C. J.: Entanglement detection via general SIC-POVMs. Quant. Inf. Process. 15,

5119 (2016)
55. Lu, Y. Y., Shen, S. Q., Xu, T. Y., Yu, J.: New separability criteria based on two classes of measurements.

Int. J. Theor. Phys. 57: 208-218(2018)
56. Hiroshima, T., Ishizaka, S.: Local and nonlocal properties of Werner states. Phys. Rev. A 62, 044302 (2000)
57. Chen, Z. H., Ye, X. J., Fei, S. M.: Quantum steerability based on joint measurability. Sci. Rep. 7: 15822

(2017)
58. Ren, C. L., Su, H. Y., Shi, H. F., Chen, J. L.: Maximally steerable mixed state based on the linear steering

inequality and the Clauser-Horne-Shimony-Holt-like steering inequality. Phys. Rev. A 97, 032119 (2018)
59. Munro, W. J., James, D. F. V., White, A. G., Kwiat, P. G.: Maximizing the entanglement of two mixed

qubits. Phys. Rev. A 64, 030302(R) (2001)
60. Mintert, F., Carvalhoa, A. R. R., Kus, M., Buchleitner, A.: Measures and dynamics of entangled states. Phys.

Rep. 415, 207 (2005)
61. Saunders, D. J., Palsson, M. S., Pryde, G. J., Scott, A. J., Barnett, S. M., Wiseman, H. M.: The simplest

demonstrations of quantum nonlocality. New J. Phys. 14, 113020 (2012)
62. Saunders, D. J., Jones, S. J., Wiseman, H. M., Pryde, G. J.: Experimental EPR-steering using Bell-local

states. Nat. Phys. 6, 845 (2010)

APPENDIX

We presened some seminal standard steering inequalities used experimentally in the following.
Experimentally useful criterion for the EPR paradox were only proposed in 1989 by Reid [22]

using conditional variances and the Heisenberg uncertainty relation.
The two experimenters, Alice and Bob, can measure the conditional probabilities of Bob

finding outcome xB in a measurement of x̂B given that Alice finds outcome xA in a measurement
of x̂A, i.e., P (xB |xA). Based on a result xA, Alice can make an estimate of the result for Bob’s
outcome xB . Denote this estimate xestB (xA). The average inference variance of xB given estimate
xestB (xA) is defined as

△2
inf xB = ⟨[xB − xestB (xA)]

2⟩ =
∫
dxAdxBP (xA, xB)[xB − xestB (xA)]

2. (19)

An inference variance △2
infyB is defined similarly.
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Reid showed that the violation of the following uncertainty relation is a signature of the EPR
steering for any bipartite state:

△inf xB △inf yB > 1. (20)

This is the EPR-Reid criterion, which has been experimentally demonstrated. For a detailed
review and further development see [26].

In a seminal paper [25], Cavalcanti, Jones, Wiseman, and Reid (CJWR) developed a general
construction of experimental EPR-steering inequalities based on the assumption of existence of
local hidden state (LHS) model, where Reid’s criterion was shown to emerge as a special case.

In particular, CJWR gave the following series of linear steering inequalities usefully in exper-
iment to check whether a two-qubit state is steerable from Alice to Bob when both the parties
are allowed to perform n dichotomic measurements on his or her part:

FCJWR
n (ρ, µ) =

1√
n
|
n∑
1

⟨Ai ⊗Bi⟩| 6 1, (21)

where Ai = ui · σ, Bi = vi · σ,σ = (σ1, σ2, σ3) is a vector composed of the Pauli matrices,
ui ∈ R3 are unit vectors, vi ∈ R3 are orthonormal vectors, µ = {u1, · · · ,un,v1, · · · ,vn} is the
set of measurement directions, ⟨Ai ⊗Bi⟩ = Tr[(Ai ⊗Bi)ρ], and ρ ∈ HA ×HB is two-qubit state
shared between two spatially separated parties (Alice and Bob)..

These are called n-setting linear steering inequalities. The linear steering inequalities with
n = 2 and n = 3 (which are relevant for spin-12 observables) are of the form:

F2(ρ, µ) =
1√
2
|

2∑
1

⟨Ai ⊗Bi⟩| 6 1, (22)

and

F3(ρ, µ) =
1√
3
|

3∑
1

⟨Ai ⊗Bi⟩| 6 1. (23)

Cavalcanti et al. [35]considered a scenario in which Alice performs two dichotomic measurements
while Bob performs two mutually unbiased qubit measurements. The authors then derived the
following CHSH-like steering inequality:

FCHSH
2 (ρ, µ) =

1

2
[
√
f+(ρ, µ) +

√
f−(ρ, µ)] 6 1, (24)

where f±(ρ, µ) = ⟨(A1±A2)⊗B1⟩2+ ⟨(A1±A2)⊗B2⟩2. In [36], It was shown that the maximal
value of the function 2FCHSH

2 (ρ, µ) can reach is 2
√
2.

For any bipartite quantum state ρ, violations of the above inequalities imply the EPR steer-
ability.


