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We study the monogamy and polygamy relations related to quantum correlations for multipartite
quantum systems. General monogamy relations are presented for the αth (0 ≤ α ≤ γ, γ ≥ 2) power
of quantum correlation, and general polygamy relations are given for the βth (β ≥ δ, 0 ≤ δ ≤ 1)
power of quantum correlation. These monogamy and polygamy inequalities are complementary to
the existing ones with different parameter regions of α and β. Applying these results to specific
quantum correlations, the corresponding new classes of monogamy and polygamy relations are
obtained, which include the existing ones as special cases. Detailed examples are given.

PACS numbers:

INTRODUCTION

Monogamy of entanglement is a representative feature
of quantum physics, and therefore is a very important
issue in the study of quantum information and quantum
communication. It tells that the entanglement of a quan-
tum system with one of the other ones limits its entan-
glements with the remaining systems. The monogamy
property is highly related to quantum information pro-
cessing tasks such as the security analysis of quantum
key distribution [1].

The monogamy relation was first presented by Coff-
man, Kundu, and Wootters [2] for three-qubit states
ρABC , E(ρA|BC) ≥ E(ρAB) +E(ρAC), where E is a bipar-
tite entanglement measure, ρAB and ρAC are the reduced
density matrices of ρABC . Later on, the monogmay in-
equality was generalized to the case of multiqubit quan-
tum system [3–5], high-dimensional quantum system [6]
and general settings [7–10].

As a dually monogamous property, polygamy of en-
tanglement has also attracted much attention in recent
years. Polygamy of entanglement is characterized as,
EaA|BC ≤ EaAB + EaAC for a tripartite quantum state
ρABC , where EaA|BC is the assisted entanglement [11]
between A and BC. The first polygamy inequality was
established in three-qubit systems by use of assisted en-
tanglement [11]. It was later generalized to multiqubit
systems [12, 13]. For the case of arbitrary-dimensional
quantum systems, general polygamy inequalities of mul-
tipartite entanglement are also proposed in [13–16] by
using entanglement of assistance.

Recently, monogamy and polygamy relations of multi-
qubit entanglement have been studied in terms of non-
negative power of entanglement measures and assisted
entanglement measures. In [3–5], the authors have shown
that the xth power of the entanglement of formation
(x ≥

√
2) and the concurrence (x ≥ 2) satisfy multi-

qubit monogamy inequalities. Monogamy relations for

quantum steering have also been demonstrated in [17–
21]. Later, polygamy inequalities were proposed in terms
of the αth (0 ≤ α ≤ 1) power of square of convex-roof
extended negativity (SCREN) and the entanglement of
assistance [14, 22]. In [8], the authors introduced the
concept of polygamy relations without inequalities.

Whereas the monogamy of entanglement shows the
restricted sharability of multipartite quantum entangle-
ment, the distribution of entanglement in multipartite
quantum systems was shown to have a dually monoga-
mous property. Based on concurrence of assistance [23],
the polygamy of entanglement provides a lower bound for
the distribution of bipartite entanglement in a multipar-
tite system [24]. Monogamy and polygamy of entangle-
ment can restrict the possible correlations between the
authorized users and the eavesdroppers, thus tightening
the security bounds in quantum cryptography [1]. The
optimized monogamy and polygamy relations give rise to
finer characterizations of the entanglement distributions.

However, the monogamy relations for the αth (0 ≤
α ≤ 2) power and the polygamy relations for the βth
(β ≥ 1) power of general quantum correlations are still
not clear. In this paper, we provide a class of monogamy
and polygamy relations of the αth (0 ≤ α ≤ γ, γ ≥ 2)
and the βth (β ≥ δ, 0 ≤ δ ≤ 1) power for any quantum
correlations. Application of the monogamy relations to
quantum correlations like squared convex-roof extended
negativity, entanglement of formation and concurrence
give rise to tighter monogamy inequalities than the ex-
isting ones [25] for some classes of quantum states. We
take concurrence as an example to illustrate in detail.
Applying the general quantum correlations to specific
quantum correlations, e.g. the concurrence of assistance,
square of convex-roof extended negativity of assistance
(SCRENoA), entanglement of assistance, the correspond-
ing new class of polygamy relations are obtained, which
are complementary to the existing ones [12–16] with dif-
ferent regions of parameter β.
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MONOGAMY RELATIONS FOR GENERAL
QUANTUM CORRELATIONS

Let Q be an arbitrary measure of quantum correlation
for bipartite systems. Q is said to be monogamous if it
satisfies the following inequality for an N -partite quan-
tum state ρAB1B2,··· ,BN−1

[31],

Q(ρA|B1B2,··· ,BN−1
)

≥ Q(ρAB1) +Q(ρAB2) + · · ·+Q(ρABN−1
), (1)

where ρABi , i = 1, ..., N − 1, are the reduced density
matrices, Q(ρA|B1B2,··· ,BN−1

) denotes the quantum cor-
relation Q of the state ρAB1B2,··· ,BN−1

under bipartite
partition A and B1B2, · · · , BN−1. For simplicity, we
denote Q(ρABi) by QABi , and Q(ρA|B1B2,··· ,BN−1

) by
QA|B1B2,··· ,BN−1

. One can define the Q-monogamy score
for the N -partite state ρAB1B2,··· ,BN−1

,

δQ = QA|B1B2,··· ,BN−1
−
N−1∑
i=1

QABi . (2)

Non-negativity of δQ for all quantum states implies the
monogamy of Q. For instance, the square of the concur-
rence has been shown to be monogamous [32, 33] for all
multi-qubit states. However, there are other measures
like entanglement of formation, quantum discord, and
quantum work deficit which are known to be nonmonog-
amous for pure three-qubit states [34, 35].

Given any quantum correlation measure that is non-
monogamic for a multipartite quantum state, it is always
possible to find a monotonically increasing function of the
measure which is monogamous for the same state [36]. It
has been proved that for arbitrary dimensional tripartite
states, there exists γ ∈ R (γ ≥ 2) such that a quantum
correlation measure Q satisfies the following monogamy
relation [36],

QγA|BC ≥ Q
γ
AB +QγAC . (3)

In the following, we denote γ the value such that Q
satisfies the inequality (3). Using the inequality (1+t)x ≥
1 + tx for x ≥ 1, 0 ≤ t ≤ 1, it is easy to generalize the
result (3) to N -partite case,

QγA|B0B1,··· ,BN−1
≥
N−1∑
i=0

QγABi . (4)

First, we give a Lemma.
[Lemma 1]. Suppose that k is a real number satisfying

k ≥ 1. Then, for any real numbers x and t, 0 ≤ x ≤ 1,

t ≥ k, we have (1 + t)x ≥ 1 + (1+k)x−1
kx tx.

[Proof]. Let f(x, y) = (1 + y)x − yx with 0 ≤ x ≤
1, 0 < y ≤ 1

k . Then ∂f
∂y = x[(1 + y)x−1 − yx−1] ≤

0. Therefore, f(x, y) is a decreasing function of y, i.e.,

f(x, y) ≥ f(x, 1k ) = (1+k)x−1
kx . Set y = 1

t , t ≥ k, we

obtain (1 + t)x ≥ 1 + (1+k)x−1
kx tx. �

[Theorem 1]. Suppose that k is a real number satis-
fying k ≥ 1. Then, for any tripartite state ρABC :

(1) if QγAC ≥ kQ
γ
AB , the quantum correlation measure

Q satisfies

QαA|BC ≥ Q
α
AB +

(1 + k)
α
γ − 1

k
α
γ

QαAC (5)

for 0 ≤ α ≤ γ and γ ≥ 2.
(2) if QγAB ≥ kQ

γ
AC , the quantum correlation measure

Q satisfies

QαA|BC ≥ Q
α
AC +

(1 + k)
α
γ − 1

k
α
γ

QαAB (6)

for 0 ≤ α ≤ γ and γ ≥ 2.
[Proof]. For arbitrary tripartite state ρABC , one has

[36], QγA|BC ≥ Q
γ
AB + QγAC . If QAB (QAC) = 0, the

inequality (5) or (6) are obvious. Therefore, assuming
QγAC ≥ kQ

γ
AB > 0, we have

QγxA|BC ≥ (QγAB +QγAC)x

= QγxAB
(

1 +
QγAC
QγAB

)x
≥ QγxAB

(
1 +

(1 + k)x − 1

kx

(
QγAC
QγAB

)x)
= QγxAB +

(1 + k)x − 1

kx
QγxAC , (7)

where the second inequality is due to Lemma 1. Denote
γx = α. Then 0 ≤ α ≤ γ as 0 ≤ x ≤ 1, and we have the
inequality (5). If QAB ≥ kQAC , similarly we get (6).
[Remark 1]. We have presented a universal form of

monogamy relations that are complementary to the exist-
ing ones in [3–5] with different regions of the parameter α
for any quantum correlations. Our general monogamy re-
lations can be used to any quantum correlation measures
like concurrence, negativity, entanglement of formation,
and give rise to tighter monogamy relations than the ex-
isting ones in [25] for some classes of quantum states.
These monogamy relations can be also used to Tsallis-q
entanglement and Renyi-q entanglement, which give new
monogamy relations including the existing ones given in
[5, 12, 37] as special cases.

In the following, we take concurrence as an example to
show the advantage of our conclusions.

Let HX denote a discrete finite-dimensional com-
plex vector space associated with a quantum subsys-
tem X. For a bipartite pure state |ψ〉AB ∈ HA ⊗
HB , the concurrence is given by [38–40], C(|ψ〉AB) =√

2 [1− Tr(ρ2A)], where ρA is the reduced density ma-
trix obtained by tracing over the subsystem B, ρA =
TrB(|ψ〉AB〈ψ|). The concurrence for a bipartite mixed
state ρAB is defined by the convex roof extension,
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C(ρAB) = min{pi,|ψi〉}
∑
i piC(|ψi〉), where the mini-

mum is taken over all possible decompositions of ρAB =∑
i

pi|ψi〉〈ψi|, with pi ≥ 0,
∑
i

pi = 1 and |ψi〉 ∈ HA⊗HB .

For an N -qubit state ρAB1···BN−1
∈ HA ⊗ HB1

⊗
· · · ⊗ HBN−1

, if C(ρABi) ≥ C(ρA|Bi+1···BN−1
) for i =

1, 2, · · · , N − 2, N ≥ 4, the concurrence satisfies [5],

Cα(ρA|B1B2···BN−1
) ≥

N−1∑
j=1

(2
α
2 − 1)j−1Cα(ρABj ),(8)

for α ≥ 2.
For any 2 ⊗ 2 ⊗ 2N−2 tripartite mixed state ρABC , if

C(ρAC) ≥ C(ρAB), the concurrence satisfies [25]

Cα(ρA|BC) ≥ Cα(ρAB) + (2
α
γ − 1)Cα(ρAC) (9)

for 0 ≤ α ≤ γ and γ ≥ 2.
For concurrence, one has γ ≥ 2 [26, 27]. For conve-

nience, we denote CABi = C(ρABi) the concurrence of
ρABi and CA|B1,B2··· ,BN−1

= C(ρA|B1···BN−1
). Then, for

the concurrence, we get the following conclusion by the
similar method to the proof of Theorem 1.

[Corollary 1]. Suppose that k is a real number satis-
fying k ≥ 1. Then, for any 2⊗ 2⊗ 2N−2 tripartite mixed
state:

(1) if CγAC ≥ kC
γ
AB , the concurrence satisfies

CαA|BC ≥ C
α
AB +

(1 + k)
α
γ − 1

k
α
γ

CαAC (10)

for 0 ≤ α ≤ γ and γ ≥ 2.
(2) if CγAB ≥ kC

γ
AC , the concurrence satisfies

CαA|BC ≥ C
α
AC +

(1 + k)
α
γ − 1

k
α
γ

CαAB (11)

for 0 ≤ α ≤ γ and γ ≥ 2.
One can see that Corollary 1 reduces to the monogamy

inequality (8) for three-qubit states, if k = 1, α = γ ≥
2, and reduces to the monogamy inequality (9), if k =
1. For k > 1, the inequality (10) is tighter than the

inequality (9), as (1+k)
α
γ −1

k
α
γ

≥ 2
α
γ − 1, where the equality

holds only for α = γ.
Example 1. Let us consider the three-qubit state |ψ〉

in the generalized Schmidt decomposition form [28, 29],

|ψ〉 = λ0|000〉+ λ1e
iϕ|100〉+ λ2|101〉

+λ3|110〉+ λ4|111〉, (12)

where λi ≥ 0, i = 0, 1, 2, 3, 4 and
4∑
i=0

λ2i = 1.

From the definition of concurrence, we have CA|BC =

2λ0
√
λ22 + λ23 + λ24, CAB = 2λ0λ2 and CAC = 2λ0λ3.

Set λ0 = λ3 = 1
2 , λ1 = λ2 = λ4 =

√
6
6 , k =

√
6
2 , one has

CA|BC =
√
21
6 , CAB =

√
6
6 , CAC = 1

2 . Then CαA|BC =

0.0
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FIG. 1: The axis z is the concurrence of state |ψ〉 and its lower
bounds, which are functions of α, γ. The red surface repre-
sents the concurrence of the state |ψ〉, green surface represents
the lower bound from our result, blue surface (just below the
green one) represents the lower bound from the result in [25].
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FIG. 2: The red surface represents the difference of the con-
currence between (9) and (10) on the right side. The blue
surface is zero plane of z.

(
√
21
6 )α, CαAB + (2

α
γ − 1)CαAC = (

√
6
6 )α + (2

α
γ − 1)( 1

2 )α,

CαAB + (1+k)
α
γ −1

k
α
γ

CαAC = (
√
6
6 )α + (1+k)

α
γ −1

k
α
γ

( 1
2 )α. One

can see that our result is better than the results in
[25] for 0 ≤ α ≤ 2 and γ ≥ 2, see Fig 1. To be

more clear, set z = (1+k)
α
γ −1

k
α
γ

CαAC − (2
α
γ − 1)CαAC =

(1+k)
α
γ −1

k
α
γ

( 1
2 )α − (2

α
γ − 1)( 1

2 )α, where k =
√
6
2 , i.e., z rep-

resents the difference of the concurrence between (9) and
(10) on the right side, see Fig. 2.

There are quantum correlation measures Q that them-
selves satisfy the usual monogamy relations, QA|BC ≥
QAB+QAC . But generally, it is not the quantum correla-
tion measure Q itself, but the αth power of the quantum
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correlation measure Q satisfies the monogamy inequality,
for instance, the αth (α ≥ 2) power of concurrence and
the αth (α ≥

√
2) power of the entanglement of forma-

tion [4]. It is also the case for polygamy relations. Our
Theorem 1 gives a general monogamy relation based on
the αth power of any quantum correlation measure. For
the entanglement measure concurrence in Corollary 1, as
an example, one gets a tighter monogamy relation than
the one in Ref. [25] for 0 < α ≤ 2. Monogamy relations
characterize the distributions of quantum correlations in
multipartite systems and play a crucial role in the secu-
rity of quantum cryptography. Tighter monogamy rela-
tions imply finer characterizations of the quantum corre-
lation distributions, which tighten the security bounds in
quantum cryptography. The complementary monogamy
relations may also help to investigate the efficiency of en-
tanglement used in quantum cryptography [30] and char-
acterizations of the entanglement distributions. These
results may highlight future researches on quantum key
distributions based on multipartite quantum entangle-
ment distributions.

From the Example 1 above, one has that the rela-
tion CA|BC ≥ CAB + CAC is not always satisfied for
three-qubit states. In fact, the relation (3), CαA|BC ≥
CαAB + CαAC , holds only for α ≥ 2 [4]. Nevertheless, the
monogamy relations (10) holds for 0 < α < 2. In this
sense the inequality (10) is complementary to (3). By
using Theorem 1 repeatedly, we have the following theo-
rem for multipartite quantum systems.

[Theorem 2]. Suppose that k is a real number sat-
isfying k ≥ 1. Then, for N -partite quantum state
ρAB1B2···BN−1

such that kQγABi ≤ Q
γ
A|Bi+1···BN−1

for

i = 1, 2, · · · ,m, and QγABj ≥ kQγA|Bj+1···BN−1
for j =

m+ 1, · · · , N − 2, ∀ 1 ≤ m ≤ N − 3, N ≥ 4, we have

QαA|B1B2···BN−1
≥ QαAB1

+
(1 + k)

α
γ − 1

k
α
γ

QαAB2
+ · · ·+

(
(1 + k)

α
γ − 1

k
α
γ

)m−1
QαABm

+

(
(1 + k)

α
γ − 1

k
α
γ

)m+1

(QαABm+1
+ · · ·+QαABN−2

)

+

(
(1 + k)

α
γ − 1

k
α
γ

)m
QαABN−1

(13)

for 0 ≤ α ≤ γ and γ ≥ 2.

[Proof]. For convenience, we denote l = (1+k)
α
γ −1

k
α
γ

.

For N -partite quantum state ρAB1B2···BN−1
, from the in-

equality (5), we have

QαA|B1B2···BN−1

≥ QαAB1
+ lQαA|B2···BN−1

≥ QαAB1
+ lQαAB2

+ l2QαA|B3···BN−1

≥ · · ·
≥ QαAB1

+ lQαAB2
+ · · ·+ lm−1QαABm

+ lmQαA|Bm+1···BN−1
. (14)

Similarly, as QγABj ≥ kQγA|Bj+1···BN−1
for j = m +

1, · · · , N − 2, we get

QαA|Bm+1···BN−1

≥ lQαABm+1
+QαA|Bm+2···BN−1

≥ l(QαABm+1
+ · · ·+QαABN−2

)

+QαABN−1
. (15)

Combining (14) and (15), we have Theorem 2. �

We take concurrence as an example again to show the
advantage of Theorem 2.

[Corollary 2]. Suppose that k ≥ 1. Then,
for N -qubit quantum state ρAB1B2···BN−1

such that
kCγABi ≤ C

γ
A|Bi+1···BN−1

for i = 1, 2, · · · ,m, and CγABj ≥
kCγA|Bj+1···BN−1

for j = m + 1, · · · , N − 2, ∀ 1 ≤ m ≤
N − 3, N ≥ 4, we have

CαA|B1B2···BN−1
≥

CαAB1
+ lCαAB2

+ · · ·+ lm−1CαABm

+lm+1(CαABm+1
+ · · ·+ CαABN−2

)

+lmCαABN−1
(16)

for 0 ≤ α ≤ γ, γ ≥ 2 and l = (1+k)
α
γ −1

k
α
γ

.

For an N -qubit quantum state ρAB1B2···BN−1
, it has

been shown in [4] that the αth concurrence Cα (0 <
α < 2) does not satisfy monogamy inequalities like

Cα(|ψ〉AB1B2···BN−1
) ≥

∑N−1
i=1 Cα(ρABi). Theorem 2

gives a general monogamy inequality satisfied by the αth
power of quantum correlation for the case of 0 < α < γ
and γ ≥ 1. Specifically, using the concurrence as an ex-
ample, we obtain the monogamy inequality satisfied by
αth power of concurrence Cα for the case of 0 < α < 2,
which was absent in [5]. Furthermore, inequality (16) in
Corollary 2 reduces to the monogamy inequality (8) if
k = 1 and α = γ ≥ 2, and to the main result in [25] for
k = 1. For k > 1, the inequality (16) is tighter than the

result in [25], since (1+k)
α
γ −1

k
α
γ

≥ 2
α
γ − 1(0 < α ≤ γ), in

which the equality holds only for α = γ. The monogamy
relations can also be applied to other specific quantum
correlations, and similar new results can be obtained.
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POLYGAMY RELATIONS FOR GENERAL
QUANTUM CORRELATIONS

Polygamy inequality and monogamy inequality are
dual relations. It is also one of the hot issues in the study
of quantum information theory in recent years. Being an
intriguing feature of quantum entanglement, it is tightly
related to many quantum information and communica-
tion processing tasks. In [41], the authors proved that
for arbitrary dimensional tripartite states, there exists
δ ∈ R (0 ≤ δ ≤ 1) such that a quantum correlation
measure Q satisfies the following polygamy relation,

QδA|BC ≤ Q
δ
AB +QδAC . (17)

In the follwing, we introduce the polygamy relations of
the βth (β ≥ δ) power for general quantum correlations,
which is still not clear up to now. We first give a Lemma.

[Lemma 2]. Suppose that k is a real number satisfying
k ≥ 1. Then, for any real numbers x and t, x ≥ 1, t ≥ k,

we have (1 + t)x ≤ 1 + (1+k)x−1
kx tx.

[Proof]. Let f(x, y) = (1 + y)x − yx with x ≥
1, 0 < y ≤ 1

k . Then ∂f
∂y = x[(1 + y)x−1 − yx−1] ≥ 0.

Therefore, f(x, y) is an increasing function of y, i.e.,

f(x, y) ≤ f(x, 1k ) = (1+k)x−1
kx . Set y = 1

t , t ≥ k, we

obtain (1 + t)x ≤ 1 + (1+k)x−1
kx tx. �

Using the similar method to the proof of Theorem 1
and the Lemma 2, we have

[Theorem 3]. Suppose that k is a real number sat-
isfying k ≥ 1. Then, for any tripartite state ρABC ∈
HA ⊗HB ⊗HC :

(1) if QδAC ≥ kQδAB , the quantum correlation measure
Q satisfies

QβA|BC ≤ Q
β
AB +

(1 + k)
β
δ − 1

k
β
δ

QβAC (18)

for β ≥ δ and 0 ≤ δ ≤ 1.

(2) if QδAB ≥ kQδAC , the quantum correlation measure
Q satisfies

QβA|BC ≤ Q
β
AC +

(1 + k)
β
δ − 1

k
β
δ

QβAB (19)

for β ≥ δ and 0 ≤ δ ≤ 1.

By using Theorem 3 repeatedly, with the similar
method to the proof of Theorem 2, we have the following
theorem for multipartite quantum systems.

[Theorem 4]. Suppose that k is a real number sat-
isfying k ≥ 1. Then, for N -partite quantum state
ρAB1B2···BN−1

such that kQδABi ≤ Q
δ
A|Bi+1···BN−1

for

i = 1, 2, · · · ,m, and QδABj ≥ kQδA|Bj+1···BN−1
for j =

m+ 1, · · · , N − 2, ∀ 1 ≤ m ≤ N − 3, N ≥ 4, we have

QβA|B1B2···BN−1
≤ QβAB1

+
(1 + k)

β
δ − 1

k
β
δ

QβAB2
+ · · ·+

(
(1 + k)

β
δ − 1

k
β
δ

)m−1
QβABm

+

(
(1 + k)

β
δ − 1

k
β
δ

)m+1

(QβABm+1
+ · · ·+QβABN−2

)

+

(
(1 + k)

β
δ − 1

k
β
δ

)m
QβABN−1

(20)

for β ≥ δ and 0 ≤ δ ≤ 1.

[Remark 2]. We present a universal form of polygamy
relations that are complementary to the existing ones
in [12–16] with different regions of parameter β for any
quantum correlations. Our general monogamy relations
can be used to any quantum correlation measures like
concurrence of assistance, square of convex-roof extended
negativity of assistance (SCRENoA), entanglement of as-
sistance. Corresponding new class of polygamy relations
can be obtained. In the following, we take SCRENoA as
an example.

Given a bipartite state ρAB in HA⊗HB , the negativity
is defined by [42], N(ρAB) = (||ρTAAB || − 1)/2, where ρTAAB
is the partially transposed ρAB with respect to the sub-
system A, ||X|| denotes the trace norm of X, i.e ||X|| =
Tr
√
XX†. For the purpose of discussion, we use the fol-

lowing definition of negativity, N(ρAB) = ||ρTAAB ||−1. For
any bipartite pure state |ψ〉AB , the negativity N(ρAB) is
given by N(|ψ〉AB) = 2

∑
i<j

√
λiλj = (Tr

√
ρA)2 − 1,

where λi are the eigenvalues for the reduced density ma-
trix ρA of |ψ〉AB . For a mixed state ρAB , the square
of convex-roof extended negativity (SCREN) is defined
by Nsc(ρAB) = [min

∑
i piN(|ψi〉AB)]2, where the min-

imum is taken over all possible pure state decomposi-
tions {pi, |ψi〉AB} of ρAB . The SCRENoA is defined
by Na

sc(ρAB) = [max
∑
i piN(|ψi〉AB)]2, where the max-

imum is taken over all possible pure state decomposi-
tions {pi, |ψi〉AB} of ρAB . For convenience, we de-
note NaABi = Na

sc(ρABi) the SCRENoA of ρABi and
NaAB0,B1··· ,BN−1

= Na
sc(|ψ〉AB0···BN−1

).

In [22] it has been shown that NaA|B1···BN−1
≤∑N−1

j=1 NaABj . It is further improved that for 0 ≤ β ≤ 1
[12],

Na
β
A|B1···BN−1

≤
N−1∑
j=1

(2β − 1)jNa
β
ABj

. (21)

For SCRENoA, one has 0 ≤ δ ≤ 1, using the Theorem
3 directly, we have

[Corollary 3]. Suppose that k is a real number satis-
fying k ≥ 1. Then, for any 2⊗ 2⊗ 2N−2 tripartite mixed
state:
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FIG. 3: The axis z is the SCRENoA of the state |W 〉AB1B2

and its upper bound, which are functions of β, δ. The red
surface represents the SCRENoA of the state |W 〉AB1B2 , blue
surface represents the upper bound from inequality (24).

(1) if Na
δ
AC ≥ kNa

δ
AB , the SCRENoA satisfies

Na
β
A|BC ≤ Na

β
AB +

(1 + k)
β
δ − 1

k
β
δ

Na
β
AC (22)

for β ≥ δ and 0 ≤ δ ≤ 1.
(2) if Na

δ
AB ≥ kNa

δ
AC , the SCRENoA satisfies

Na
β
A|BC ≤ Na

β
AC +

(1 + k)
β
δ − 1

k
β
δ

Na
β
AB (23)

for β ≥ δ and 0 ≤ δ ≤ 1.
For multiqubit quantum state ρAB1B2···BN−1

, we have
[Corollary 4]. Suppose that k is a real number

satisfying k ≥ 1. Then, for N -qubit quantum state
ρAB1B2···BN−1

such that kNa
δ
ABi ≤ Na

δ
A|Bi+1···BN−1

for

i = 1, 2, · · · ,m, and Na
δ
ABj ≥ kNa

δ
A|Bj+1···BN−1

for
j = m + 1, · · · , N − 2, ∀ 1 ≤ m ≤ N − 3, N ≥ 4, we
have

Na
β
A|B1B2···BN−1

≤ NaβAB1

+
(1 + k)

β
δ − 1

k
β
δ

Na
β
AB2

+ · · ·+

(
(1 + k)

β
δ − 1

k
β
δ

)m−1
Na

β
ABm

+

(
(1 + k)

β
δ − 1

k
β
δ

)m+1

(Na
β
ABm+1

+ · · ·+Na
β
ABN−2

)

+

(
(1 + k)

β
δ − 1

k
β
δ

)m
Na

β
ABN−1

(24)

for β ≥ δ and 0 ≤ δ ≤ 1.
One can see that Corollary 4 reduces to the monogamy

inequality (21), if k = 1 and 0 ≤ β = δ ≤ 1. Example 3.
Let us consider the three-qubit generlized W -class states,

|W 〉AB1B2 =
1

2
(|100〉+ |010〉) +

√
2

2
|001〉. (25)

We have NaA|B1B2
= 3

4 , NaAB1
= 1

4 , NaAB2
= 1

2 . Then

Nβ
a A|B1B2

= ( 3
4 )β , Nβ

a AB1
+ (1+k)

β
δ −1

k
β
δ

Nβ
a AB2

= ( 1
4 )β +

(1+k)
β
δ −1

k
β
δ

( 1
2 )β , see Fig. 3.

CONCLUSION

Entanglement monogamy is a fundamental property
of multipartite entangled states. We investigate in this
work the monogamy and polygamy relations related to
quantum correlations for multipartite quantum systems.
General monogamy relations are obtained for the αth
(0 ≤ α ≤ γ, γ ≥ 2) power of quantum correlations, as well
as the polygamy relations of the βth (β ≥ δ, 0 ≤ δ ≤ 1)
power. These novel monogamy and polygamy inequali-
ties are complementary to the existing ones with differ-
ent regions of α and β. Applying the general quantum
correlations to specific quantum correlations, the corre-
sponding new class of monogamy and polygamy relations
are obtained, which include the existing ones as special
cases. To be noted that our approach is applicable to the
study of the monogamy and polygamy relations of high
dimensional quantum system.
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