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Abstract We study the properties of coherence concurrence and present a physical

explanation analogous to the coherence of assistance. We give an optimal pure state decom-

position which attains the coherence concurrence for qubit states. We prove the additivity

of coherence concurrence under direct sum operations in another way. Based on these, we

calculate analytically the coherence concurrence for X states and show its optimal decom-

positions. Moreover, we show that the coherence concurrence is exactly twice the convex

roof extended negativity of the Schmidt correlated states, thus establishing a direct relation

between coherence concurrence and quantum entanglement.

Keywords Quantum coherence·Coherence concurrence·X states

I. INTRODUCTION

Quantum coherence is an important feature in quantum physics and is of practical sig-

nificance in quantum computation and quantum communication [1–3]. The formulation of
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the resource theory of coherence was initiated in Ref. [4], in which some intuitive and com-

putable measures of coherence are identified, for example, the l1-norm coherence and the

relative entropy coherence. These coherence measures quantify coherence by using the min-

imal distance between the quantum state and the set of incoherent states. Operationally,

distillable coherence and coherence cost are two quantum measures quantifying the opti-

mal rate in transformation between quantum states and maximally coherent states under

incoherent operations in the asymptotic limit [5]. Robustness of coherence is a coherence

monotone which quantifies the minimal mixing required to make a state incoherent [6],

from which the witness observable has been demonstrated [7]. The skew information based

coherence has been proposed as a characterization of the uncertainty of the system being

measured [8].

If a coherence measure is defined for all pure states, it can be extended to all mixed states

using the convex roof construction. For instance, the intrinsic randomness of coherence and

coherence of information are convex roof extended coherence measures based on the relative

entropy coherence [5, 9], while the coherence concurrence is based on l1-norm coherence [10].

The coherence number is also a convex roof extended discrete coherence monotone based on

the Schmidt numbers [11], as is the fidelity-based measure of coherence [12].

Although the convex roof extended coherence quantifiers are valid coherence measures

provided they are valid for pure states, they are not easy to calculate in general since these

calculation involves minimizations. For single qubit states, many convex roof extended

coherence measures including intrinsic randomness, coherence concurrence, fidelity-based

measure of coherence have analytical expressions [9, 10, 12]. But the situation becomes

much more complicated for three or higher dimensional systems.

In this paper, we focus on the coherence concurrence which is the convex roof extension of

the l1-norm coherence on pure states. We first analyze the optimal pure state decomposition

for single qubit states. Then we show the additivity of coherence concurrence under the

direct sum operations in another way. Based on the additivity we calculate analytically the

coherence concurrence for X states and show its optimal pure states decomposition. Finally,

we present the relation between the coherence concurrence and entanglement.
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II. THE COHERENCE CONCURRENCE FOR X STATES

Under a fixed reference basis {|i⟩}, a quantum state ρ is said to be incoherent if the state

is diagonal in this basis, i.e. ρ =
∑
ρi|i⟩⟨i|. Otherwise the quantum state is said to be

coherent. One commonly used coherence measure is called the l1-norm coherence.

Definition 1. The l1-norm coherence of a quantum state ρ =
∑
ρij|i⟩⟨j| is the sum of the

magnitudes of all off-diagonal entries, Cl1(ρ) =
∑

i̸=j |ρij|.

Based on the l1-norm coherence, the coherence concurrence of ρ is proposed in the convex

roof construction [10].

Definition 2. The coherence concurrence Cc
l1
of ρ is

Cc
l1
(ρ) = min

∑
i

piCl1(|ψi⟩⟨ψi|), (1)

where the minimization is taken over all pure state decompositions of ρ =
∑

i pi|ψi⟩⟨ψi|.

Dual to the definition of coherence concurrence, the l1-norm coherence of assistance is

the maximal average l1-norm coherence Ca
l1
(ρ) = max

∑
k pkCl1(|ψk⟩⟨ψk|), where the maxi-

mization is taken over all pure state decompositions of ρ =
∑

k pk|ψk⟩⟨ψk| [13]. Employing

the physical illustration of the coherence of assistance, the coherence concurrence Cc
l1
has

the following operational interpretation. Suppose Alice holds a state ρA. Bob holds another

part of the purified state of ρA. Bob performs local measurements and informs Alice of the

measurement outcomes by classical communication. Alice’s quantum state will be in one

pure state ensemble {pk, |ψk⟩⟨ψk|} with average l1-norm coherence
∑

k pkCl1(|ψk⟩⟨ψk|). As

l1-norm coherence is a convex function, the l1-norm coherence can be increased minimally

to Cc
l1
(ρA) by such process.

For a two dimensional quantum state ρ =

 ρ11 ρ12

ρ∗12 ρ22

, the coherence concurrence is

shown to be the l1-norm coherence Cc
l1
(ρ) = Cl1(ρ) = 2|ρ12| [9, 10]. We first present an

optimal pure state decomposition attaining the minimum average l1-norm coherence for the

qubit state ρ. We assume 0 < ρ11 ≤ ρ22 < 1. Let |ψ1⟩⟨ψ1| = 1
p1

 ρ11 ρ12

ρ∗12 |ρ12|2/ρ11

 and

|ψ2⟩⟨ψ2| = |1⟩⟨1| with p1 = ρ11 + |ρ12|2/ρ11 and p2 = ρ22 − |ρ12|2/ρ11. Then {pi, |ψi⟩⟨ψi|}2i=1
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is a pure state decomposition with the average l1-norm coherence being the same as the

l1-norm coherence 2|ρ12|.

However, the coherence concurrence and l1-norm coherence are not necessarily equal in

higher dimensional systems. For example, consider the three dimensional quantum state

ρx = 1
3


1 0 1

0 1 x

1 x 1

 with 0< |x| ≤ 1. For any pure states decomposition {pk, |ψk⟩⟨ψk|} of

ρx, one can check directly that there are at least two pure states |ψk1⟩ and |ψk2⟩ in the

ensemble with three nonzero coefficients, |ψk1⟩ =
∑3

i=1 a
(k1)
i |i⟩ and |ψk2⟩ =

∑3
i=1 a

(k2)
i |i⟩

with a
(k1)
i , a

(k2)
i ̸= 0 for i = 1, 2, 3. By the convexity of the l1-norm coherence, it is easy

to get the average l1-norm coherence is strictly larger than the l1-norm coherence, namely,

Cc
l1
(ρx) > Cl1(ρx).

Before calculating the coherence concurrence for X states, we show the additivity for co-

herence concurrence under direct sum operation first. The strong monotonicity and convex-

ity of a coherence measure are in fact equivalent to the additivity of coherence for subspace

independent states [14]. The coherence concurrence as a valid coherence measure should sat-

isfy the additivity under direct sum operation. Here we prove this additivity alternatively

and explore its optimal pure states decompositions.

Lemma 1. Suppose ρ =
∑n

l=1 λl|ψl⟩⟨ψl| and ρ =
∑m

k=1 pk|ϕk⟩⟨ϕk| are two arbitrary pure

state decompositions of given quantum state ρ with
∑n

l=1 λl =
∑m

k=1 pk = 1, 0 ≤ λl ≤ 1, 0 ≤

pk ≤ 1 for l = 1, · · · , n, k = 1, · · · ,m, m ≥ n. Then these two pure states decompositions

are related by a transformation:

√
pk|ϕk⟩ =

n∑
l=1

Ulk

√
λl|ψl⟩, k = 1, · · · ,m, (2)

where U = (Ulk) satisfying UU
† = In×n [15].

Here the transformation matrix U is not necessarily square. It may have more columns

than rows. It should be also noted that the normalizer of a quantum state is not essential

for the l1-norm coherence as the l1-norm is potentially homogenous. Hence we refer to the

l1-norm coherence of unnormalized density matrix sometimes for simplicity.

Definition 3. The direct sum of quantum states ρi with probability σi, where
∑K

i=1 σi = 1,

σi > 0 for i = 1, 2, · · · , K, is the quantum state ρ with density matrix in block diagonal form
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such as

ρ = σ1ρ1 ⊕ σ2ρ2 ⊕ · · · ⊕ σKρK =


σ1ρ1 0 · · · 0

0 σ2ρ2 · · · 0

· · · · · · · · · · · ·

0 0 · · · σKρK

 .

Theorem 1. If a quantum state ρ is the direct sum of some states ρi with probability σi,

ρ = σ1ρ1 ⊕ σ2ρ2 ⊕ · · · ⊕ σKρK, where
∑K

i=1 σi = 1, σi > 0 for i = 1, 2, · · · , K, then the

coherence concurrence of ρ is

Cc
l1
(ρ) = σ1C

c
l1
(ρ1) + σ2C

c
l1
(ρ2) + · · ·+ σKC

c
l1
(ρK). (3)

The optimal pure states decomposition for ρ attaining Cc
l1
(ρ) is the union of the optimal pure

states decompositions of σiρi attaining C
c
l1
(ρi), i = 1, 2, · · · , K.

Note that when we say {ps, |ψs⟩⟨ψs|} is a pure states decomposition of an unnormalized

quantum state ρ, we mean that {|ψs⟩} are normalized states and
∑

s ps = Tr(ρ).

Proof. Here we only need to prove the case that Cc
l1
(ρ) = σ1C

c
l1
(ρ1) + σ2C

c
l1
(ρ2) for ρ =

σ1ρ1 ⊕ σ2ρ2. Suppose {ps, |ψs⟩⟨ψs|}s=1,··· ,W is one pure states decomposition attaining the

minimum average l1-norm coherence of σ1ρ1,

σ1C
c
l1
(ρ1) = Cc

l1
(σ1ρ1) =

W∑
s=1

psCl1(|ψs⟩⟨ψs|), (4)

with normalized pure state |ψs⟩ =
∑r

i=1 a
(s)
i |i⟩, s = 1, · · · ,W , and

∑W
s=1 ps = σ1; and

{ps, |ψs⟩⟨ψs|}s=W+1,··· ,X is a pure states decomposition attaining the minimum average l1-

norm coherence of σ2ρ2,

σ2C
c
l1
(ρ2) = Cc

l1
(σ2ρ2) =

X∑
s=W+1

psCl1(|ψs⟩⟨ψs|), (5)

with normalized pure state |ψs⟩ =
∑n

i=r+1 a
(s)
i |i⟩, s = W+1, · · · , X, X > W , and

∑W
s=1 ps =

σ2. Then {ps, |ψs⟩⟨ψs|}s=1,··· ,W
∪
{ps, |ψs⟩⟨ψs|}s=W+1,··· ,X = {ps, |ψs⟩⟨ψs|}s=1,··· ,X is a pure

states decomposition for ρ. By definition, the minimum average l1-norm coherence of ρ

satisfies

Cc
l1
(ρ) ≤

∑W
s=1 psCl1(|ψs⟩⟨ψs|) +

∑X
s=W+1 psCl1(|ψs⟩⟨ψs|)

= σ1C
c
l1
(ρ1) + σ2C

c
l1
(ρ2).

(6)
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From Eq. (2), any other pure states decomposition {qt, |ϕt⟩⟨ϕt|}t=1,··· ,Y of ρ can be

written as
√
qt|ϕt⟩ =

∑X
s=1 Ust

√
ps|ψs⟩, t = 1, · · · , Y . We can partition each matrix qt|ϕt⟩⟨ϕt|

into four blocks, one diagonal block with the first W rows and the first W columns, A
(t)
1 =∑W

s=1

∑W
s′=1 UstU

†
s′t

√
ps
√
ps′|ψs⟩⟨ψs′ |; one off diagonal block with the firstW rows and the last

X −W columns, A
(t)
2 =

∑W
s=1

∑X
s′=W+1 UstU

†
s′t

√
ps
√
ps′|ψs⟩⟨ψs′|; one off diagonal block with

the lastX−W rows and the firstW columns, A
(t)
3 =

∑X
s=W+1

∑W
s′=1 UstU

†
s′t

√
ps
√
ps′ |ψs⟩⟨ψs′|;

and the last diagonal block with the last X −W rows and the last X −W columns, A
(t)
4 =∑X

s=W+1

∑X
s′=W+1 UstU

†
s′t

√
ps
√
ps′|ψs⟩⟨ψs′|, t = 1, 2, · · · , Y . That is

qt|ϕt⟩⟨ϕt| =

 A
(t)
1 A

(t)
2

A
(t)
3 A

(t)
4

 , t = 1, 2, · · · , Y.

The l1-norm coherence of ρ comes from all off diagonal entries of the diagonal blocks A
(t)
1

and A
(t)
4 and all entries of the off diagonal blocks A

(t)
2 and A

(t)
3 , t = 1, 2, · · · , Y . Therefore,∑Y

t=1 qtCl1(|ϕt⟩⟨ϕt|) =
∑Y

t=1Cl1(
∑X

s=1

∑X
s′=1 Ust

√
psU

†
s′t

√
ps′|ψs⟩⟨ψs′|)

≥
∑Y

t=1Cl1(
∑W

s=1

∑W
s′=1 Ust

√
psU

†
s′t

√
ps′|ψs⟩⟨ψs′|)

+
∑Y

t=1Cl1(
∑X

s=W+1

∑X
s′=W+1 Ust

√
psU

†
s′t

√
ps′|ψs⟩⟨ψs′|),

(7)

where we have gotten rid of the magnitudes of all entries of the off diagonal blocks A
(t)
2 and

A
(t)
3 in the above inequality.

Similarly, we partition the matrix U = (Ust) into two blocks, one block with the

first W rows and the other block with the last X − W rows as U =

 U (1)

U (2)

 with

U (1)U (1)† = IW×W and U (2)U (2)† = I(X−W )×(X−W ). We can obtain a pure states decom-

position {q′t, |ϕ′
t⟩⟨ϕ′

t|}t=1,··· ,Y for ρ1 with
√
q′t|ϕ′

t⟩ =
∑W

s=1 Ust
√
ps|ψs⟩, and a pure states

decomposition {q′′t , |ϕ′′
t ⟩⟨ϕ′′

t |}t=1,··· ,Y for ρ2 with
√
q′′t |ϕ′′

t ⟩ =
∑X

s=W+1 Ust
√
ps|ψs⟩. Since

{ps, |ψs⟩⟨ψs|}s=1,··· ,W and {ps, |ψs⟩⟨ψs|}s=W+1,··· ,X are optimal pure states decompositions

attaining the minimum of average l1-norm coherence of ρ1 and ρ2, respectively, we have∑Y
t=1 qtCl1(|ϕt⟩⟨ϕt|) ≥

∑Y
t=1Cl1(

∑W
s=1

∑W
s′=1 UstU

†
s′t

√
ps
√
ps′|ψs⟩⟨ψs′ |)

+
∑Y

t=1Cl1(
∑X

s=W+1

∑X
s′=W+1 UstU

†
s′t

√
ps
√
ps′|ψs⟩⟨ψs′ |)

=
∑Y

t=1 q
′
tCl1(|ϕ′

t⟩⟨ϕ′
t|) +

∑Y
t=1 q

′′
tCl1(|ϕ′′

t ⟩⟨ϕ′′
t |)

≥
∑W

s=1 psCl1(|ψs⟩⟨ψs|) +
∑X

s=W+1 psCl1(|ψs⟩⟨ψs|)

= σ1C
c
l1
(ρ1) + σ2C

c
l1
(ρ2).

(8)
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Combining Eqs. (6) and (8), we obtain the relation Cc
l1
(ρ) = σ1C

c
l1
(ρ1)+σ2C

c
l1
(ρ2). Further-

more, the union of the optimal pure states decompositions of σ1ρ1 and σ2ρ2 is the optimal

pure states decomposition of ρ. The general result in Eq. (3) can be shown in an analogous

manner.

Now we are ready to calculate the coherence concurrence for X states.

Definition 4. The n dimensional X states are quantum states with density matrices in X

shape,

ρ =



ρ11 0 0 · · · 0 0 ρ1,n

0 ρ22 0 · · · 0 ρ2,n−1 0

0 0 ρ33 · · · ρ3,n−2 0 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 ρn−2,3 · · · ρn−2,n−2 0 0

0 ρn−1,2 0 · · · 0 ρn−1,n−1 0

ρn,1 0 0 · · · 0 0 ρnn


. (9)

Without loss of generality, we suppose the diagonal entries are in nonincreasing order,

ρ11 ≤ ρ22 ≤ · · · ≤ ρnn.

Theorem 2. The coherence concurrence of the n dimensional X state ρ given in (9), is

Cc
l1
(ρ) = 2

[n/2]∑
i=1

|ρi,n+1−i|.

If n is even, the optimal decomposition of ρ is {pi, |ψi⟩⟨ψi|}ni=1 with |ψi⟩⟨ψi| =

1
pi

 ρi,i ρi,n+1−i

ρ∗i,n+1−i |ρi,n+1−i|2/ρi,i

 with pi = ρi,i + |ρi,n+1−i|2/ρi,i for 1 ≤ i ≤ [n/2]; and

|ψi⟩⟨ψi| = |i⟩⟨i| with pi = ρn+1−i,n+1−i−|ρi,n+1−i|2/ρi,i for [n/2]+1 ≤ i ≤ n. If n is odd, the

optimal decomposition of ρ is {pi, |ψi⟩⟨ψi|}ni=1 with |ψi⟩⟨ψi| = 1
pi

 ρi,i ρi,n+1−i

ρ∗i,n+1−i |ρi,n+1−i|2/ρi,i


with pi = ρi,i + |ρi,n+1−i|2/ρi,i for 1 ≤ i ≤ [n/2]; |ψi⟩⟨ψi| = |i⟩⟨i| with pi = ρn+1−i,n+1−i −

|ρi,n+1−i|2/ρi,i for [n/2]+1 < i ≤ n; |ψ[n/2]+1⟩⟨ψ[n/2]+1| = |[n/2]+1⟩⟨[n/2]+1| with probability

p[n/2]+1 = ρ[n/2]+1,[n/2]+1.

Proof. First, if n is even, the X state can be decomposed as the direct sum of n/2 quantum

states ρ = ρ1 ⊕ ρ2 ⊕ · · · ρn/2 up to some permutations, with ρ1 =

 ρ11 ρ1,n

ρ∗1,n ρnn

, ρ2 =

7



 ρ22 ρ2,n−1

ρ∗n−1,2 ρn−1,n−1

, · · · , ρn/2 =

 ρn/2,n/2+1 ρn/2,n/2+1

ρ∗n/2,n/2+1 ρn/2+1,n/2+1

. If n is odd, the X state can be

decomposed as the direct sum of [n/2] quantum states plus an additional one dimensional

matrix up to some permutations, with [n/2] denoting the integer part of the number n/2.

The permutations of the matrices neither change the l1 norm coherence nor the coherence

concurrence. In any case, the coherence concurrence of an X state ρ is the sum of the

coherence concurrence of ρ1, ρ2, · · · , ρ[n/2] by Theorem 1. Since ρi is a two dimensional state

and its coherence concurrence is Cc
l1
(ρi) = 2|ρi,n+1−i| for i = 1, · · · , [n/2], then it is obvious

that Cc
l1
(ρ) = 2

∑[n/2]
i=1 |ρi,n+1−i|. The optimal pure states decomposition follows from the

two dimensional case.

III. RELATION BETWEEN COHERENCE CONCURRENCE AND ENTANGLE-

MENT

The coherence of a quantum state ρ =
∑
ρij|i⟩⟨j| is closely related to the entanglement

of the Schmidt correlated state ρmc =
∑
ρij|ii⟩⟨jj| [5, 16]. For example, the coincidence of

coherent cost and coherence of formation is identified with the coincidence of entanglement

cost and entanglement of formation [5]. The relative entropy of coherence of assistance of ρ

is equal to the entanglement of assistance of ρmc [17]. Here we focus on the entanglement

measure called negativity for bipartite quantum states [18] and build a relation between

coherence concurrence and entanglement.

Definition 5. The negativity of quantum state ρ is N(ρ) = ∥ρT1∥−1
2

, which corresponds to

the absolute value of the sum of negative eigenvalues of ρPT , the superscript PT means the

partial transposition.

Based on negativity, the convex roof extended negativity is proposed by Ref. [19], which

is also an entanglement measure.

Definition 6. The convex roof extended negativity Nc(ρ) is defined as Nc(ρ) =

min
∑

i piN(|ψi⟩⟨ψi|), where the minimization is taken over all pure states decompositions

of ρ =
∑

i pi|ψi⟩⟨ψi|.

The l1-norm coherence itself corresponds to the negativity by Cl1(ρ) = 2N(ρmc) [20, 21].
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Next we show the relation between the coherence concurrence and the convex roof extended

negativity.

Theorem 3. The coherence concurrence of ρ =
∑
ρij|i⟩⟨j| is twice the convex roof extended

negativity of ρmc,

Cc
l1
(ρ) = 2Nc(ρmc). (10)

Proof. Note that for the maximally correlated state ρmc, the pure states decompositions are

all in Schmidt form |ψ⟩ =
∑

i ai|ii⟩ [22]. For pure state |ψ⟩ =
∑

i ai|ii⟩, the l1-norm coherence

is Cl1(|ψ⟩⟨ψ|) =
∑

i ̸=j |a∗i aj| and the negativity is N(|ψ⟩⟨ψ|) = 1
2

∑
i̸=j |a∗i aj| by definitions.

Hence the l1-norm coherence is twice the negativity, 2N(|ψ⟩⟨ψ|) = Cl1(|ψ⟩⟨ψ|). Therefore,

if {pk, |ψ′
k⟩⟨ψ′

k|} is the optimal pure states decomposition for ρmc such that Nc(ρmc) =∑
k pkN(|ψ′

k⟩⟨ψ′
k|) with |ψ′

k⟩ =
∑

i a
(k)
i |ii⟩, then {pk, |ψk⟩⟨ψk|} with |ψk⟩ =

∑
i a

(k)
i |i⟩ is the

optimal pure states decomposition for ρ such that Cc
l1
(ρ) =

∑
k pkCl1(|ψk⟩⟨ψk|).

IV. CONCLUSIONS

We have studied the properties of coherence concurrence. Analogous to the coherence

of assistance we have given a physical explanation for coherence concurrence. The optimal

pure states decomposition attaining the coherence concurrence has been presented for qubit

states. The additivity of coherence concurrence under the direct sum operation has been

proved alternatively. Since the X state is the direct sum of qubit states, the coherence

concurrence for the X states has been proved to be equal to the l1-norm coherence and

the optimal pure states decompositions are provided. Moreover, it has been shown that the

coherence concurrence is just twice the convex roof extended negativity of the Schmidt corre-

lated states. Originating from the superposition principle in quantum mechanics, coherence

is a fundamental phenomena of quantum world. Our results may highlight further investi-

gations on quantum coherence, for example, the relations among coherence concurrence, the

l1 norm coherence of assistance and the l1 norm coherence.
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