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Abstract

We study quantum information masking of arbitrary dimensional states. We present the con-
dition that the linear combination of fixed reducing states has the same marginal states as the
fixed reducing ones. We define so called Hardmard set of quantum states whose Gram-Schmidt
matrix can be diagonalized by Hardmard unitary matrices. We show that any Hardmard set can
be deterministically masked by a unitary operation. Accounting to that a linear combination of
fixed reducing states may have the same marginal states as the fixed reducing ones, we analyze the
states which can be masked together with the given Hardmard set. Detailed examples are given

to illustrate our results.
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I. INTRODUCTION

Due to the linearity of quantum evolution, there are many distinguished features in
quantum physics such as non-cloning [1-3], non-broadcasting [4] and non-deleting [5]. These
phenomena are closely related to quantum information processing like key distribution [6, 7],
quantum teleportation [8, 9] and communication security protocols [10, 11]. They are also
connected to the conversation of information and the second law of thermodynamics [12, 13].

Recently, Kavan Modi et. al. investigated the problem of quantum information masking
[14]. They obtained the so-called no-masking theorem, saying that it is impossible to mask
all arbitrary pure states by the same unitary operator. The masking schemes in multipartite
scenario [15, 16], probabilistic quantum information masking [17], and a complete charac-
terization of qubit masking [18], and probabilistic and approximate masking of quantum
information based on completely positive and trace decreasing (invertible) linear transfor-
mations [19] have been presented.

Quantum information masking has potential applications in secret sharing [20-22]. A
maskable set may have uncountably many elements that are not orthogonal to each other.
The main problem in quantum information masking is to ascertain which set of quantum
states can be masked. In this paper, we study the quantum masking of arbitrary dimensional

systems based on unitary operations and Hardmard matrices.

II. QUANTUM INFORMATION MASKING AND HARDMARD SETS

We denote H x the d—dimensional Hilbert space associated with the system X. A unitary
operator U masks the quantum information contained in a set of states {|ax)a € Halt_,,
if it maps |ax)a to |Vi)ap € Ha @ Hp, k= 1,2,--- ,n such that all the reduced states of

|Wy)ap are identical,
Trp|Vi) ag(Ve| = pa, Tra|Uk)ap(¥Yi| = pp, Vk=1,2,--- n. (1)

The reduced states ps and pp contain no information about the value of k. The set
{lar) a}7_; is said to be maskable with respect to the masker U.
A set of bipartite pure states {|Wy)ap € Ha ® Hp}p_, is called a set of fixed reducing

states if they have identical marginal states, namely, the relations (1) are satisfied. Given a



bipartite pure state |¥o) 45, with Schmidt decomposition:
[Wo)as = > Aild)a @ |v) s,
7j=1

>0 N5l alej| and 375 A3[;) (1| are the spectral decompositions of pa = Trp|¥) ap(¥|
and pp = Tra|¥)ap(¥|, respectively. Conversely, if pa = > N[§)(E] and pp =
> A3lsi) (| are the spectral decompositions of pa and pg, respectively, the following pure

bipartite state
U) =Y \lE) @)
J
has the same reducing states as |Ug)4p. If the Schmidt coefficients of |Wy)p are all not
equal, then |¢;) and |§;) (]1;) and |g;)) only differ by a phase.
It has been shown in [17] that a set of fixed reducing states {|Vy)ap}7_; can always be

written in the following form:
We)an =Y Mloa@ s, k=12, ,n, (2)
=1

where {\;}i_, are nonzero Schmidt coefficients of [Wy), 7 is their Schmidt rank. ps =

> Mbi)aldsl (pB = pB =2, 2~|¢§k)>3(1/1j(~k)|) is a certain spectral decomposition of pa
(pB)? k= L2, ,n
We first consider that, for a given set of n fixed reducing states {|Ux)ap}}_;, how to add

a new state to {|VUx)ap}r_; so as to get a set of n + 1 fixed reducing states. Denote

ZMH‘I’k )AB = Zﬂkz)\ 65) @ 1)
= Z%I% Zukw(k ZA |65) @ [ (i), (3)

where
|77ZJ] Zy’k’hzj ) j:1a27"'7r' (4>

|9;(fZ)) is some linear combination of the eigenvectors of pp corresponding to eigenvalue A;.
The problem is to find the conditions for ji such that |¥(i)) has the same reduced density

matrices as {| W) }.
Theorem 1. Let {|¥;)}7_, and |V (7)) be the states given in (2) and (3), respectively. Then

{Wi) o, UL ()} constitute a set of fized reducing states if and only if

8i = Wy (D () =3 i (W10, 5,5 = 1,2, (5)

k,k'



Proof: Without loss of generality, assume that

w =A== Fwr =A== A, F Wy F W = A= = A

Then, for any |¥(f)) given in (3) we have

pB(f) = Tra|W(ji i) = sz i (6)

For |W}) given in (2), the reduced states have the form,

pp = Tra| Vi) (k| = sz i (7)
where P, =30 . ) |1/1j><wj] is the orthogonal projector onto the eigensubspace H; corre-
sponding to w;, and P;(fi) = > 5L, . [¥;(f1)){¥;(ji)| is an projector onto the same subspace

as P;.
From the basic acknowledge of algebra, pg = pp(fi) if and only if P, = P,(ji) for ¢ =

1,2,---,m. Furthermore, {|¢;)}”

Joji,+1 1S an orthonormal bases for H,;. Denote

o= () - [0
and
i) = (@) - (@) ) -
Then P, = WU, Py(j7) = U()U' (7). We have

[ = UM = Uty = Uy (7)) Ut (@)
= UH(@) Ui (g) = U(@) W (@) v (7))

= (UM w(i)”,

where the fourth equality is due to that WTW(ji) is a square matrix. Hence, (‘IJT\IJ(,J))*I =

\IJT(_’)\IJ. Since WT(f)¥(ji) is positive, we have WT(7)W(fi) = I. Therefore, we obtain that
{|w; (D))} i 11 is also an orthonormal bases for H;, i.e., 055 = (Y (fi)[;(f7)) for j,j" =
Ji—1+1,---, ;. Noting that the eigenvectors corresponding different eigenvalues are always
orthogonal, we conclude that “only if” part of the theorem is true.

Now suppose d;;; = (¢ (ii)|¢;(f)) for 7,7 = 1,2,--- ,r. Then certainly pa(ii) = pa.
Because {|¢);) ;:i:ﬁ 41 and {|; (i )}}]_JZ _+1 are two orthonormal bases for H;, it is easy to
prove that P, = P;(fi), i = 1,2,--- ,;m. Then we have pg(ii) = pp, which completes the

proof. [ |



As applications, let us consider the following two cases:
i). {\;j}7-; are all different. In this case, with respect to the eigenvalue \;, the eigenvec-

tors |@/J](k)> and |@/J§k/)> differ only by a phase. Assume
W) = D Mlés) @ ), k=12 m, (®)
j=1

then [U(7)) = > Aldy) © (g me™)ly) and [¢;()) = (3, pre®*)[i;).  One
has (@Z)J(fc,)|¢3(k)> = 0 for different j,j’ and arbitrary k,k’. The condition (5) becomes
| > et =1, 5 =1,2,--+ ,n.

ii). {)\;}j=; are all equal. In this case {]wj(k))};:l can be any orthonormal bases in the

support of pp in Hp. |Wg) can be written as,

j=1

One has [U(ji)) = &= 37, 16;) @ (X melvf?)) and [¢;(ji)) = Yo ultof"). The condition
that |¥(f)) has the same marginal states as |Uy) is equivalent to that (v (@)|v;(f)) = &5,
Vi, g, Le., fif A = 875, where Ay = (57 [ ) k-

We now consider the quantum masking of a special set of Hardmard states. We call
a unitary matrix U = (u;) € C™" a Hardmard one if all the entries w;, have the same
modular \/Lﬁ, ie., uj, = \/Lﬁeioj’@.

Give a set of states {|ax)a € Ha}y_;, the so-called Gram-Schmidt matrix of the set is
given by G = ({ag|a;))nxn- It is well known that Gram-Schmidt matrix of a set of states is a
positive Hermitian matrix. It can be diagonalized by unitary transformations. We consider
special sets of states {|ax)a € Halp_;. We call {|ag)a € Ha}}P_, a Hardmard set if the
corresponding Gram-Schmidt matrix can be diagonalized by Hardmard unitary matrix, i.e.,

there exits a Hardmard unitary matrix U, such that
G = (<Gk|(ll>) = Ulea’g(Ah A27 e 7)\TL)U (1())

Obviously, any orthonormal basis of a quantum system is a Hardmard set because the

related Gram-Schmidt matrix is the unit matrix.

Theorem 2. A Hardmard set {|ax)a € Hali_y, n < d, can be deterministically masked by

a unitary operation.



Proof: Suppose G = ({ax|aw)) = Uldiag(A2,\3,--- , \2)U, U = L(eief'k). Let {|of) 1,

and {[¢)F)}?_, be arbitrary orthonormal sets in H 4 and Hp, respectively. Set
|,) = Z/\ oM @ [P, k=12, ,n. (11)
Then
Tra W) (W] = ZAQW Uil = po, (12)
Trp W) (W] = ZW)A )(o7] = pa. (13)

This means that {|U)} is a fixed reducing set. Furthermore, we have:

1 : 9, :
(V| W) = - > Nelliwe 0k = (Uldiag(A], A3, -+ A2)U) . -
J

Hence
(e Wp)) = Uldiag(A], A3, -+, ADU = ((axlaw)).
Let |¢o) € Hp. Denote |ax) = |ag) ® |po), k = 1,2,--- ,n. Then ((Vy|Vy)) = ({(ax|ar)).
Since two sets of states {|ax)}7_; and {|¥y)}7_; have the same Gram-Schmidt matrices,
there exists a unitary operator V such that V|ag) = |Wy) for k = 1,2,---  n. Namely, the
Hardmard set {|ax)a € Halp_q, n < d, can be deterministically masked. ®
We have shown that a Hardmard set {|ax)}}_; can be deterministically masked by a

unitary operation. Consider |a(f)) =, uk|ak>. Then V' changes |a(f)) to

Zukm NG ZA 61 @ (Y e )[bF). (14)
k

From Theorem 1, V' can mask the set of states {|ax)}7_, and |a(jZ)) together if and only if

0z = Wy (I)Y;(f0)), 4. 5" = 1,2, ,n, (15)

where [¢;(i0)) = \/iﬁ(zkukewjk)hbf). Because (¢7|¢F) = 67, (15) is equivalent to

L3, ure®*)[? = 1. From the above analysis, we have the following result.

Theorem 3. Suppose {|ax)a € Haly_, is a Hardmard set such that its Gram-Schmidt ma-
triz is diagonalized by Hardmard unitary matriz U. Then |a(i)) = >, twlax) and {|ax) }p_;
together can be masked by some masker V' if and only iof |(UfL);| =1, j=1,2,--- ,n, where

=, pas = 5 )



We now present some examples to illustrate our results.
Ezample 1. Suppose that {|ag)}¢_, is just an orthonormal bases of H,4. For any
Harmard matrix U = \/Lg(eiejk), and orthonormal bases {|¢x)a}¢_,, {|¢x)B}¢_, in Ha and

H g, respectively, the fixed reducing states can be chosen to be
1 ,
Ui)ap = —= Y €04 ® ), k=12, .d.
Vd %

The masker which transforms |ax) ®|0) g to |Vg)ap, k = 1,2, -+ ,d, can be constructed in
the following way. We expand {|ay) ® [0)p}¢_, and {|¥x)ap}¢_, to two orthonormal bases
of Ha®@Hp as {|ar) @ [l = 1)p},=y and {|¥i)ap}i_y U {[dr)a ® 1) p}{zs, respectively.
Then using {|ax) @ |l — 1)p}{ ,_; as columns, we obtain a unitary matrix #4; with the first
n columns given by {|ay) ® [0)}{_,. Similarly, we have Uy with the first d columns given by
|Wi)ap, k=1,2,--- ,d, and the other columns given by {|¢x) 4 ® |¢1)5}{,—;- Then UU] is
the masker which transforms |ax) ® |0)p to |Wi)ap for k=1,2,--- ,d.

FExample 2. Consider the qubit case d = 2. Given an arbitrary linear independent set

{|a1), |as) }, the GS-matrix can be written as

1 —i6
G =

re 1

The two eigenvalues of G are equal if and only if r = 0. If » = 0, the unitary matrix to
diagonalize G' can be selected arbitrary. If r # 0, simple calculation gives rise to that the
elements of the eigenvectors of G have the same modulus. Then |a), |a2) is a Hardmard set.

All the related Hardmard matrices can be written as:

1 eiwl 67:“)2 B U \V/
E eZ(wl+0) _ez(w2+9) = (w17w2)7 CUl,(,(]Q.

I+r 0
that is, UT(wy,ws) G U (w1, ws) = . Then the corresponding fixed reducing

0 1—r
set is of the form,

[01) = J5le™dr) @ i) + Do) @ [¢2)],
|s) = 5[e™2]¢n) @ |t1) — €2+ ) @ [4hs)].

1
0
Set Vi = (|a1) ® |0) Jag) @ [0))U (wy,ws) | V" . We have V]V = I,. Expanding

1
0 i




V1 to an unitary matrix V = (V} V5) on Hy ® Ha, we get

I+r 0
A= 0 0 Vi-r
Vi(la1) ® [0) |az) @ [0))U (wr,wo) | VI | = (16)
- 0 0
0 0
1 0
Similarly, set Wy = (|U,) |Wo))U(wy,ws) [ V" ) . We get another unitary matrix
0
1-r
W = (W1 W),
I+r 0
A= 0 0 Vi-r
W) [C))U (wr,002) | VI = : (17)
0 L 0 0
0 0

From (16) and (17), we have
Vi(la) ®10) laz) @ [0)) = WH(|21) [T2)).

Therefore,

WV(la1) ® [0) |az) @ [0)) = (|91) [T2)).

Then, WV is a corresponding masker.
Furthermore, any qubit pure state can be expressed as |a(ui,uz)) = uilay) + us|az).

From Theorem 3, we have that the states |a1), |az), |a(u1,us2)) can be masked if and only if

u
there exists some w;, i = 1,2, such that U(w;,ws) " | has unimodular elements. This
Uz

is certainly true for every |a(ui,us)). Therefore, we can conclude that for qubit systems,
any three states can be masked by a unitary masker, which is accordance with the results

in [18].

III. CONCLUSION

The so-called no-go theories are of great significance in information processing like key
distribution and quantum teleportation. No-masking theory is a new no-go theory intro-

duced by Modi et al. [23]. We have studied the masking problem based on Hardmard

8



matrices. We have derived the condition that the linear combination of fixed reducing states
has the same marginal states as the fixed reducing ones. We have shown that any set of
quantum states whose Gram-Schmidt matrix can be diagonalized by Hardmard unitary ma-
trices can be deterministically masked by a unitary operation. The states which can be
masked together with a given Hardmard set have been also investigated. Our approach may

highlight further researches on quantum information masking.
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