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Abstract

We study quantum information masking of arbitrary dimensional states. We present the con-

dition that the linear combination of fixed reducing states has the same marginal states as the

fixed reducing ones. We define so called Hardmard set of quantum states whose Gram-Schmidt

matrix can be diagonalized by Hardmard unitary matrices. We show that any Hardmard set can

be deterministically masked by a unitary operation. Accounting to that a linear combination of

fixed reducing states may have the same marginal states as the fixed reducing ones, we analyze the

states which can be masked together with the given Hardmard set. Detailed examples are given

to illustrate our results.
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I. INTRODUCTION

Due to the linearity of quantum evolution, there are many distinguished features in

quantum physics such as non-cloning [1–3], non-broadcasting [4] and non-deleting [5]. These

phenomena are closely related to quantum information processing like key distribution [6, 7],

quantum teleportation [8, 9] and communication security protocols [10, 11]. They are also

connected to the conversation of information and the second law of thermodynamics [12, 13].

Recently, Kavan Modi et. al. investigated the problem of quantum information masking

[14]. They obtained the so-called no-masking theorem, saying that it is impossible to mask

all arbitrary pure states by the same unitary operator. The masking schemes in multipartite

scenario [15, 16], probabilistic quantum information masking [17], and a complete charac-

terization of qubit masking [18], and probabilistic and approximate masking of quantum

information based on completely positive and trace decreasing (invertible) linear transfor-

mations [19] have been presented.

Quantum information masking has potential applications in secret sharing [20–22]. A

maskable set may have uncountably many elements that are not orthogonal to each other.

The main problem in quantum information masking is to ascertain which set of quantum

states can be masked. In this paper, we study the quantum masking of arbitrary dimensional

systems based on unitary operations and Hardmard matrices.

II. QUANTUM INFORMATION MASKING AND HARDMARD SETS

We denote HX the d−dimensional Hilbert space associated with the system X. A unitary

operator U masks the quantum information contained in a set of states {|ak⟩A ∈ HA}nk=1,

if it maps |ak⟩A to |Ψk⟩AB ∈ HA ⊗HB, k = 1, 2, · · · , n such that all the reduced states of

|Ψk⟩AB are identical,

TrB|Ψk⟩AB⟨Ψk| = ρA, TrA|Ψk⟩AB⟨Ψk| = ρB, ∀k = 1, 2, · · · , n. (1)

The reduced states ρA and ρB contain no information about the value of k. The set

{|ak⟩A}nk=1 is said to be maskable with respect to the masker U .

A set of bipartite pure states {|Ψk⟩AB ∈ HA ⊗ HB}nk=1 is called a set of fixed reducing

states if they have identical marginal states, namely, the relations (1) are satisfied. Given a
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bipartite pure state |Ψ0⟩AB, with Schmidt decomposition:

|Ψ0⟩AB =
r∑

j=1

λj|ϕj⟩A ⊗ |ψj⟩B.∑
j λ

2
j |ϕj⟩A⟨ϕj| and

∑
j λ

2
j |ψj⟩B⟨ψj| are the spectral decompositions of ρA = TrB|Ψ⟩AB⟨Ψ|

and ρB = TrA|Ψ⟩AB⟨Ψ|, respectively. Conversely, if ρA =
∑

j λ
2
j |ξj⟩⟨ξj| and ρB =∑

j λ
2
j |ςj⟩⟨ςj| are the spectral decompositions of ρA and ρB, respectively, the following pure

bipartite state

|Ψ⟩ =
∑
j

λj|ξj⟩ ⊗ |ςj⟩

has the same reducing states as |Ψ0⟩AB. If the Schmidt coefficients of |Ψ0⟩AB are all not

equal, then |ϕj⟩ and |ξj⟩ (|ψj⟩ and |ςj⟩) only differ by a phase.

It has been shown in [17] that a set of fixed reducing states {|Ψk⟩AB}nk=1 can always be

written in the following form:

|Ψk⟩AB =
r∑

j=1

λj|ϕj⟩A ⊗ |ψ(k)
j ⟩B, k = 1, 2, · · · , n, (2)

where {λj}rj=1 are nonzero Schmidt coefficients of |Ψk⟩, r is their Schmidt rank. ρA =∑
j λ

2
j |ϕj⟩A⟨ϕj| (ρB = ρ

(k)
B =

∑
j λ

2
j |ψ

(k)
j ⟩B⟨ψ(k)

j |) is a certain spectral decomposition of ρA

(ρB), k = 1, 2, · · · , n.

We first consider that, for a given set of n fixed reducing states {|Ψk⟩AB}nk=1, how to add

a new state to {|Ψk⟩AB}nk=1 so as to get a set of n+ 1 fixed reducing states. Denote

|Ψ(µ⃗)⟩ =
∑
k

µk|Ψk⟩AB =
∑
k

µk

∑
j

λj|ϕj⟩ ⊗ |ψ(k)
j ⟩

=
∑
j

λj|ϕj⟩ ⊗ (
∑
k

µk|ψ(k)
j ⟩) =

∑
j

λj|ϕj⟩ ⊗ |ψj(µ⃗)⟩, (3)

where

|ψj(µ⃗)⟩ =
∑
k

µk|ψ(k)
j ⟩, j = 1, 2, . . . , r. (4)

|ψj(µ⃗)⟩ is some linear combination of the eigenvectors of ρB corresponding to eigenvalue λj.

The problem is to find the conditions for µ⃗ such that |Ψ(µ⃗)⟩ has the same reduced density

matrices as {|Ψk⟩}.

Theorem 1. Let {|Ψk⟩}nk=1 and |Ψ(µ⃗)⟩ be the states given in (2) and (3), respectively. Then

{|Ψk⟩}nk=1 ∪ {|Ψ(µ⃗)⟩} constitute a set of fixed reducing states if and only if

δjj′ = ⟨ψj′(µ⃗)|ψj(µ⃗)⟩ =
∑
k,k′

µkµ
∗
k′⟨ψ

(k′)
j′ |ψ(k)

j ⟩, j, j′ = 1, 2, · · · , r. (5)

3



Proof: Without loss of generality, assume that

ω1 = λ1 = · · · = λj1 ̸= ω2 = λj1+1 = · · · = λj2 ̸= ω3 · · · ≠ ωm = λjm−1+1 = · · · = λr.

Then, for any |Ψ(µ⃗)⟩ given in (3) we have

ρB(µ⃗) = TrA|Ψ(µ⃗)⟩⟨Ψ(µ⃗)| =
m∑
i=1

ωiPi(µ⃗). (6)

For |Ψk⟩ given in (2), the reduced states have the form,

ρB = TrA|Ψk⟩⟨Ψk| =
m∑
i=1

ωiPi, (7)

where Pi =
∑ji

j=ji−1+1 |ψj⟩⟨ψj| is the orthogonal projector onto the eigensubspace Hi corre-

sponding to ωi, and Pi(µ⃗) =
∑ji

j=ji−1+1 |ψj(µ⃗)⟩⟨ψj(µ⃗)| is an projector onto the same subspace

as Pi.

From the basic acknowledge of algebra, ρB = ρB(µ⃗) if and only if Pi = Pi(µ⃗) for i =

1, 2, · · · ,m. Furthermore, {|ψj⟩}jij=ji−1+1 is an orthonormal bases for Hi. Denote

Ψi =
(
|ψji−1+1⟩ · · · |ψji⟩

)
and

Ψi(µ⃗) =
(
|ψji−1+1(µ⃗)⟩ · · · |ψji(µ⃗)⟩

)
.

Then Pi = ΨΨ†, Pi(µ⃗) = Ψ(µ⃗)Ψ†(µ⃗). We have

I = Ψ†Ψ = Ψ†ΨΨ†Ψ = Ψ†Ψ(µ⃗)Ψ†(µ⃗)Ψ

= Ψ†(µ⃗)ΨΨ†Ψ(µ⃗) = Ψ†(µ⃗)Ψ(µ⃗)Ψ†(µ⃗)Ψ(µ⃗)

=
(
Ψ†(µ⃗)Ψ(µ⃗)

)2
,

where the fourth equality is due to that Ψ†Ψ(µ⃗) is a square matrix. Hence,
(
Ψ†Ψ(µ⃗)

)−1
=

Ψ†(µ⃗)Ψ. Since Ψ†(µ⃗)Ψ(µ⃗) is positive, we have Ψ†(µ⃗)Ψ(µ⃗) = I. Therefore, we obtain that

{|ψj(µ⃗)⟩}jij=ji−1+1 is also an orthonormal bases for Hi, i.e., δjj′ = ⟨ψj′(µ⃗)|ψj(µ⃗)⟩ for j, j′ =

ji−1 +1, · · · , ji. Noting that the eigenvectors corresponding different eigenvalues are always

orthogonal, we conclude that “only if” part of the theorem is true.

Now suppose δjj′ = ⟨ψj′(µ⃗)|ψj(µ⃗)⟩ for j, j′ = 1, 2, · · · , r. Then certainly ρA(µ⃗) = ρA.

Because {|ψj⟩}jij=ji−1+1 and {|ψj(µ⃗)⟩}jij=ji−1+1 are two orthonormal bases for Hi, it is easy to

prove that Pi = Pi(µ⃗), i = 1, 2, · · · ,m. Then we have ρB(µ⃗) = ρB, which completes the

proof.
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As applications, let us consider the following two cases:

i). {λj}rj=1 are all different. In this case, with respect to the eigenvalue λj, the eigenvec-

tors |ψ(k)
j ⟩ and |ψ(k′)

j ⟩ differ only by a phase. Assume

|Ψk⟩ =
r∑

j=1

λj|ϕj⟩ ⊗ eiθjk |ψj⟩, k = 1, 2, · · · , n, (8)

then |Ψ(µ⃗)⟩ =
∑

j λj|ϕj⟩ ⊗ (
∑

k µke
iθjk)|ψj⟩ and |ψj(µ⃗)⟩ = (

∑
k µke

iθjk)|ψj⟩. One

has ⟨ψ(k′)
j′ |ψ(k)

j ⟩ = 0 for different j, j′ and arbitrary k, k′. The condition (5) becomes

|
∑

k µke
iθjk | = 1, j = 1, 2, · · · , n.

ii). {λj}rj=1 are all equal. In this case {|ψ(k)
j ⟩}rj=1 can be any orthonormal bases in the

support of ρB in HB. |Ψk⟩ can be written as,

|Ψk⟩ =
1√
r

r∑
j=1

|ϕj⟩ ⊗ |ψ(k)
j ⟩, k = 1, 2, · · · , n (9)

One has |Ψ(µ⃗)⟩ = 1√
r

∑
j |ϕj⟩ ⊗ (

∑
k µk|ψ(k)

j ⟩) and |ψj(µ⃗)⟩ =
∑

k µk|ψ(k)
j ⟩. The condition

that |Ψ(µ⃗)⟩ has the same marginal states as |Ψk⟩ is equivalent to that ⟨ψj′(µ⃗)|ψj(µ⃗)⟩ = δj′j,

∀j′, j, i.e., µ⃗†Aj′jµ⃗ = δj′j, where Aj′j = (⟨ψ(k′)
j′ |ψ(k)

j ⟩)k′,k.

We now consider the quantum masking of a special set of Hardmard states. We call

a unitary matrix U = (ujk) ∈ Cn×n a Hardmard one if all the entries ujk have the same

modular 1√
n
, i.e., ujk =

1√
n
eiθjk .

Give a set of states {|ak⟩A ∈ HA}nk=1, the so-called Gram-Schmidt matrix of the set is

given by G = (⟨ak|al⟩)n×n. It is well known that Gram-Schmidt matrix of a set of states is a

positive Hermitian matrix. It can be diagonalized by unitary transformations. We consider

special sets of states {|ak⟩A ∈ HA}nk=1. We call {|ak⟩A ∈ HA}nk=1 a Hardmard set if the

corresponding Gram-Schmidt matrix can be diagonalized by Hardmard unitary matrix, i.e.,

there exits a Hardmard unitary matrix U , such that

G = (⟨ak|al⟩) = U †diag(λ1, λ2, · · · , λn)U. (10)

Obviously, any orthonormal basis of a quantum system is a Hardmard set because the

related Gram-Schmidt matrix is the unit matrix.

Theorem 2. A Hardmard set {|ak⟩A ∈ HA}nk=1, n ≤ d, can be deterministically masked by

a unitary operation.
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Proof: Suppose G = (⟨ak|ak′⟩) = U †diag(λ21, λ
2
2, · · · , λ2n)U , U = 1√

n
(eiθjk). Let {|ϕA

j ⟩}nj=1

and {|ψB
j ⟩}nj=1 be arbitrary orthonormal sets in HA and HB, respectively. Set

|Ψk⟩ =
1√
n

n∑
j=1

λje
iθjk |ϕA

j ⟩ ⊗ |ψB
j ⟩, k = 1, 2, · · · , n. (11)

Then

TrA|Ψk⟩⟨Ψk| =
1

n

n∑
j=1

λ2j |ψB
j ⟩⟨ψB

j | = ρB, (12)

TrB|Ψk⟩⟨Ψk| =
1

n

n∑
j=1

λ2j |ϕA
j ⟩⟨ϕA

j | = ρA. (13)

This means that {|Ψk⟩} is a fixed reducing set. Furthermore, we have:

⟨Ψk|Ψk′⟩ =
1

n

∑
j

λ2je
iθjk′e−iθjk =

(
U †diag(λ21, λ

2
2, · · · , λ2n)U

)
kk′
.

Hence

(⟨Ψk|Ψk′⟩) = U †diag(λ21, λ
2
2, · · · , λ2n)U = (⟨ak|ak′⟩).

Let |ϕ0⟩ ∈ HB. Denote |ãk⟩ = |ak⟩ ⊗ |ϕ0⟩, k = 1, 2, · · · , n. Then (⟨Ψk|Ψk′⟩) = (⟨ãk|ãk′⟩).

Since two sets of states {|ãk⟩}nk=1 and {|Ψk⟩}nk=1 have the same Gram-Schmidt matrices,

there exists a unitary operator V such that V |ãk⟩ = |Ψk⟩ for k = 1, 2, · · · , n. Namely, the

Hardmard set {|ak⟩A ∈ HA}nk=1, n ≤ d, can be deterministically masked.

We have shown that a Hardmard set {|ak⟩}nk=1 can be deterministically masked by a

unitary operation. Consider |a(µ⃗)⟩ =
∑

k µk|ak⟩. Then V changes |a(µ⃗)⟩ to

|Ψ(µ⃗)⟩ =
∑
k

µk|Ψk⟩ =
1√
n

∑
j

λj|ϕA
j ⟩ ⊗ (

∑
k

µke
iθjk)|ψB

j ⟩. (14)

From Theorem 1, V can mask the set of states {|ak⟩}nk=1 and |a(µ⃗)⟩ together if and only if

δjj′ = ⟨ψj′(µ⃗)|ψj(µ⃗)⟩, j, j′ = 1, 2, · · · , n, (15)

where |ψj(µ⃗)⟩ = 1√
n
(
∑

k µke
iθjk)|ψB

j ⟩. Because ⟨ψB
j |ψB

j′ ⟩ = δjj′ , (15) is equivalent to

1
n
|(
∑

k µke
iθjk)|2 = 1. From the above analysis, we have the following result.

Theorem 3. Suppose {|ak⟩A ∈ HA}nk=1 is a Hardmard set such that its Gram-Schmidt ma-

trix is diagonalized by Hardmard unitary matrix U . Then |a(µ⃗)⟩ =
∑

k µk|ak⟩ and {|ak⟩}nk=1

together can be masked by some masker V if and only if |(Uµ⃗)j| = 1, j = 1, 2, · · · , n, where

µ⃗ = (µ1, µ2, · · · , µn)
t.
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We now present some examples to illustrate our results.

Example 1. Suppose that {|ak⟩}dk=1 is just an orthonormal bases of HA. For any

Harmard matrix U = 1√
d
(eiθjk), and orthonormal bases {|ϕk⟩A}dk=1, {|ψk⟩B}dk=1 in HA and

HB, respectively, the fixed reducing states can be chosen to be

|Ψk⟩AB =
1√
d

∑
j

eiθjk |ϕj⟩A ⊗ |ψj⟩B, k = 1, 2, · · · , d.

The masker which transforms |ak⟩⊗|0⟩B to |Ψk⟩AB, k = 1, 2, · · · , d, can be constructed in

the following way. We expand {|ak⟩ ⊗ |0⟩B}dk=1 and {|Ψk⟩AB}dk=1 to two orthonormal bases

of HA ⊗HB as {|ak⟩ ⊗ |l − 1⟩B}dk,l=1 and {|Ψk⟩AB}dk=1 ∪ {|ϕk⟩A ⊗ |ψl⟩B}dk ̸=l=1, respectively.

Then using {|ak⟩ ⊗ |l − 1⟩B}dk,l=1 as columns, we obtain a unitary matrix U1 with the first

n columns given by {|ak⟩ ⊗ |0⟩}dk=1. Similarly, we have U2 with the first d columns given by

|Ψk⟩AB, k = 1, 2, · · · , d, and the other columns given by {|ϕk⟩A ⊗ |ψl⟩B}dk ̸=l=1. Then U2U †
1 is

the masker which transforms |ak⟩ ⊗ |0⟩B to |Ψk⟩AB for k = 1, 2, · · · , d.

Example 2. Consider the qubit case d = 2. Given an arbitrary linear independent set

{|a1⟩, |a2⟩}, the GS-matrix can be written as

G =

 1 re−iθ

reiθ 1

 .

The two eigenvalues of G are equal if and only if r = 0. If r = 0, the unitary matrix to

diagonalize G can be selected arbitrary. If r ̸= 0, simple calculation gives rise to that the

elements of the eigenvectors of G have the same modulus. Then |a1⟩, |a2⟩ is a Hardmard set.

All the related Hardmard matrices can be written as:

1√
2

 eiω1 eiω2

ei(ω1+θ) −ei(ω2+θ)

 ≡ U(ω1, ω2), ∀ω1, ω2.

that is, U †(ω1, ω2)GU(ω1, ω2) =

 1 + r 0

0 1− r

. Then the corresponding fixed reducing

set is of the form,

|Ψ1⟩ = 1√
2
[eiω1 |ϕ1⟩ ⊗ |ψ1⟩+ ei(ω1+θ)|ϕ2⟩ ⊗ |ψ2⟩],

|Ψ2⟩ = 1√
2
[eiω2 |ϕ1⟩ ⊗ |ψ1⟩ − ei(ω2+θ)|ϕ2⟩ ⊗ |ψ2⟩].

Set V1 = (|a1⟩ ⊗ |0⟩ |a2⟩ ⊗ |0⟩)U(ω1, ω2)

 1√
1+r

0

0 1√
1−r

. We have V †
1 V1 = I2. Expanding
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V1 to an unitary matrix V = (V1 V2) on H2 ⊗H2, we get

V †(|a1⟩ ⊗ |0⟩ |a2⟩ ⊗ |0⟩)U(ω1, ω2)

 1√
1+r

0

0 1√
1−r

 =


√
1 + r 0

0
√
1− r

0 0

0 0

 . (16)

Similarly, setW1 = (|Ψ1⟩ |Ψ2⟩)U(ω1, ω2)

 1√
1+r

0

0 1√
1−r

. We get another unitary matrix

W = (W1 W2),

W †(|Ψ1⟩ |Ψ2⟩)U(ω1, ω2)

 1√
1+r

0

0 1√
1−r

 =


√
1 + r 0

0
√
1− r

0 0

0 0

 . (17)

From (16) and (17), we have

V †(|a1⟩ ⊗ |0⟩ |a2⟩ ⊗ |0⟩) =W †(|Ψ1⟩ |Ψ2⟩).

Therefore,

WV †(|a1⟩ ⊗ |0⟩ |a2⟩ ⊗ |0⟩) = (|Ψ1⟩ |Ψ2⟩).

Then, WV † is a corresponding masker.

Furthermore, any qubit pure state can be expressed as |a(u1, u2)⟩ = u1|a1⟩ + u2|a2⟩.

From Theorem 3, we have that the states |a1⟩, |a2⟩, |a(u1, u2)⟩ can be masked if and only if

there exists some ωi, i = 1, 2, such that U(ω1, ω2)

 u1

u2

 has unimodular elements. This

is certainly true for every |a(u1, u2)⟩. Therefore, we can conclude that for qubit systems,

any three states can be masked by a unitary masker, which is accordance with the results

in [18].

III. CONCLUSION

The so-called no-go theories are of great significance in information processing like key

distribution and quantum teleportation. No-masking theory is a new no-go theory intro-

duced by Modi et al. [23]. We have studied the masking problem based on Hardmard
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matrices. We have derived the condition that the linear combination of fixed reducing states

has the same marginal states as the fixed reducing ones. We have shown that any set of

quantum states whose Gram-Schmidt matrix can be diagonalized by Hardmard unitary ma-

trices can be deterministically masked by a unitary operation. The states which can be

masked together with a given Hardmard set have been also investigated. Our approach may

highlight further researches on quantum information masking.
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