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VERONESE AND SEGRE MORPHISMS BETWEEN NON-COMMUTATIVE

PROJECTIVE SPACES

FRANCESCA ARICI, FRANCESCO GALUPPI, AND TATIANA GATEVA-IVANOVA

Abstract. We study Veronese and Segre morphisms between non-commutative projective spaces. We

compute finite, reduced Gröbner bases for their kernels, and we compare them with their analogues in

the commutative case.

1. Introduction

In this work, we describe Veronese and Segre morphisms for a class of non-commutative quadratic

algebras which have permeated the literature under different names. They appeared as quantum affine

spaces in [29, Section 1 and Section 4], and more recently as non-commutative projective spaces in the

work [5] on mirror symmetry, as well as in the study of deformations of toric varieties [11, 12].

Motivated by the interpretation of morphisms between non-commutative algebras as ”maps between

non-commutative spaces”, we consider here non-commutative analogues of the Veronese and Segre em-

beddings, two fundamental maps that play pivotal roles not only in classical algebraic geometry, but also

in applications to other fields of mathematics.

The d-Veronese map is the non-degenerate embedding of the projective space Pn via the very ample

line bundle O(d). Its image, called the Veronese variety, has a capital importance in algebraic geometry.

Just to mention an example, every projective variety is isomorphic to the intersection of a Veronese

variety and a linear space (see [24, Exercise 2.9]). The Segre map is the embedding of Pm × Pn via the

very ample line bundle O(1, 1). It is used in projective geometry to endow the Cartesian product of

two projective spaces with the structure of a projective variety. In quantum mechanics and quantum

information theory, it is a natural mapping for describing non-entangled states (see [7, Section 4.3]).

Both are studied for the theory of tensor decomposition [27, Section 4.3], as the image of the Segre

morphism is the locus of rank 1 tensors, while the image of the Veronese morphism plays a similar

role for symmetric tensors. Moreover, these constructions are central in the field of algebraic statistics:

the variety of moments of a Gaussian random variable is a Veronese variety (see [1, Section 6]), while

independence models are encoded by Segre varieties (see [14]).

The natural problem of finding non-commutative counterparts of those fundamental constructions has

been addressed from different perspectives, for instance in [37] and [36].

In this work, we study the properties of these maps and of the corresponding algebras from the point of

view of the theory of Gröbner bases. In classical algebraic geometry, a variety V is completely determined

by its defining ideal. When V is the image of a variety morphism f , the ideal of V is the kernel of the

algebra morphism corresponding to f . Computing a Gröbner basis for the defining ideal can provide

valuable information about the properties of V . With this motivation in mind, we are interested in

computing Gröbner bases for the kernels of the non-commutative Veronese and Segre morphisms.

The paper is structured as follows. In Section 2 we recall some basics of the theory of Gröbner bases

for ideals in the free associative algebra. Our Lemma 2.7 gives a criterion for quadratic Gröbner bases,

which is crucial for the proof of our main results, Theorems 5.5 and 6.10. In Section 3 we present
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the quadratic algebras A = An
q, called quantum spaces, or non-commutative projective spaces, and we

recall some of their basic properties. In Section 4 we analyse their d-Veronese subalgebras. The main

result of the section is Theorem 4.5, which gives a presentation of the d-Veronese subalgebra in terms

of generators and quadratic relations. In Section 5 we introduce and study non-commutative analogues

of the Veronese maps for non-commutative projective spaces. We present a modification of the theory

of Gröbner bases for ideals in a quantum space and find explicitly a Gröbner basis for the kernel of

the Veronese map in Theorem 5.5. Using a similar approach and methods, in Section 6 we introduce

and study non-commutative analogues of Segre maps and Segre products. Theorem 6.10 describes the

reduced Gröbner basis for the kernel of the Segre map. Finally, in Section 7 we present various examples

that illustrate our results.

Acknowledgements. FA and FG would like to thank the Max Planck Institute for Mathematics in

Bonn for their hospitality during a visit to TGI in May 2019. We would also like to thank Bernd Sturm-

fels for encouraging this line of research and Giovanni Landi for discussions on toric non-commutative

manifolds.

2. Preliminaries

We start with notation, conventions, and facts which will be used throughout the paper, and recall

some basics on Gröbner bases for ideals in the free associative algebra. Lemma 2.7 gives a criterion for

quadratic Gröbner bases which is particularly useful in our settings.

2.1. Basic notations and conventions. Throughout the paper Xn = {x0, . . . , xn} denotes a non-

empty set of indeterminates. To simplify notation, we shall often write X instead of Xn. We denote

by C⟨x0, . . . , xn⟩ the complex free associative algebra with unit generated by Xn, while C[Xn] denotes

the commutative polynomial ring in the variables x0, . . . , xn. ⟨Xn⟩ is the free monoid generated by Xn,

where the unit is the empty word, denoted by 1.

We fix the degree-lexicographic order < on ⟨Xn⟩, where we set x0 < x1 < · · · < xn. As usual, N
denotes the set of all positive integers, and N0 is the set of all non-negative integers. Given a non-empty

set F ⊂ C⟨Xn⟩, we write (F ) for the two-sided ideal of C⟨Xn⟩ generated by F .

In more general settings, we shall also consider associative algebras over a field k. Suppose A =⊕
m∈N0

Am is a graded k-algebra such that A0 = k, and such that A is finitely generated by elements of

positive degree. Recall that its Hilbert function is hA(m) = dimAm and its Hilbert series is the formal

series HA(t) =
∑

m∈N0
hA(m)tm. In particular, the algebra C[Xn] of commutative polynomials satisfies

hC[Xn](d) =

(
n+ d

n

)
and HC[Xn] =

1

(1− t)n+1
. (2.1)

We shall use two well-known gradings on the free associative algebra C⟨Xn⟩: the natural grading by

length and the Nn+1
0 -grading.

Let Xm be the set of all words of length m in ⟨X⟩. Then

⟨X⟩ =
⊔

m∈N0

Xm, X0 = {1}, and XkXm ⊆ Xk+m,

so the free monoid ⟨X⟩ is naturally graded by length.

Similarly, the free associative algebra C⟨X⟩ is also graded by length:

C⟨X⟩ =
⊕
m∈N0

C⟨X⟩m, where C⟨X⟩m = CXm.

A polynomial f ∈ C⟨X⟩ is homogeneous of degree m if f ∈ CXm. We denote by

T n = T (Xn) := {xα0
0 · · ·xαn

n ∈ ⟨Xn⟩ | αi ∈ N0, i ∈ {0, . . . , n}}

the set of ordered monomials (terms) in ⟨Xn⟩ and by

T n
d = Td(Xn) :=

{
xα0
0 · · ·xαn

n ∈ T n |
n∑

i=0

αi = d

}
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the set of ordered monomials of length d. It is well known that the cardinality |Td(Xn)| is given by the

Hilbert function (Hilbert polynomial) hC[Xn](d) of the polynomial ring in the variables Xn:

|Td(Xn)| =
(
n+ d

n

)
= hC[Xn](d). (2.2)

Definition 2.1. A monomial w ∈ ⟨X⟩ has multi-degree α = (α0, . . . , αn) ∈ Nn+1
0 , if w, considered as

a commutative term, can be written as w = xα0
0 xα1

1 · · ·xαn
n . In this case we write deg(w) = α. Clearly,

w has length |w| = α0 + · · · + αn. In particular, the unit 1 ∈ ⟨X⟩ has multi-degree 0 = (0, . . . , 0), and

deg(x0) = (1, 0, . . . , 0), . . . , deg(xn) = (0, 0, . . . , 1). For each α = (α0, α1, . . . , αn) ∈ Nn+1
0 we define

Tα := xα0
0 xα1

1 · · ·xαn
n ∈ T (Xn) and Xα := {w ∈ ⟨X⟩ | deg(w) = α}. (2.3)

The free monoid ⟨Xn⟩ is naturally Nn+1
0 -graded:

⟨Xn⟩ =
⊔

α∈Nn+1
0

Xα, where X0 = {1}, and XαXβ ⊆ Xα+β .

In a similar way, the free associative algebra C⟨Xn⟩ is also canonically Nn+1
0 -graded:

C⟨Xn⟩ =
⊕

α∈Nn+1
0

C⟨Xn⟩α, where C⟨Xn⟩α = CXα.

It follows straightforwardly from (2.3) that Xα∩T (Xn) = {Tα}, for every α ∈ Nn+1
0 . Moreover, every

u ∈ Xα \ {Tα} satisfies u > Tα, i.e., Tα is the minimal element of Xα with respect to the ordering <.

2.2. Gröbner bases for ideals in the free associative algebra. In this subsection k is an arbitrary

field and X = Xn = {x0, . . . , xn}. Suppose f ∈ k⟨X⟩ is a nonzero polynomial. Its leading monomial

with respect to < will be denoted by LM(f). One has LM(f) = u if f = cu +
∑

1≤i≤m ciui, where

c, ci ∈ k, c ̸= 0 and u > ui ∈ ⟨X⟩, for every i ∈ {1, . . . ,m}.
Given a set F ⊆ k⟨X⟩ of non-commutative polynomials, LM(F ) denotes the set

LM(F ) = {LM(f) | f ∈ F}.

A monomial u ∈ ⟨X⟩ is normal modulo F if it does not contain any of the monomials LM(f) as a

subword. The set of all normal monomials modulo F is denoted by N(F ).

Let I be a two sided graded ideal in K⟨X⟩ and let Im = I ∩ kXm. We shall consider graded

algebras with a minimal presentation. Without loss of generality, we may assume that I is generated by

homogeneous polynomials of degree ≥ 2 and I =
⊕

m≥2 Im. Then the quotient algebra A = k⟨X⟩/I is

finitely generated and inherits its grading A =
⊕

m∈N0
Am from k⟨Xn⟩. We shall work with the so-called

normal k-basis of A.

We say that a monomial u ∈ ⟨Xn⟩ is normal modulo I if it is normal modulo LM(I). We set

N(I) := N(LM(I)). In particular, the free monoid ⟨X⟩ splits as a disjoint union

⟨X⟩ = N(I) ⊔ LM(I). (2.4)

The free associative algebra k⟨X⟩ splits as a direct sum of k-vector subspaces k⟨X⟩ ≃ SpankN(I) ⊕ I,

and there is an isomorphism of vector spaces

A ≃ SpankN(I). (2.5)

We define

N(I)m = {u ∈ N(I) | u has length m}.
Then Am ≃ SpankN(I)m for every m ∈ N0.

Definition 2.2. Let I ⊂ k⟨Xn⟩ be a two-sided ideal.

(1) A subset G ⊆ I of monic polynomials is a Gröbner basis of I (with respect to the ordering <) if

(a) G generates I as a two-sided ideal, and

(b) for every f ∈ I there exists g ∈ G such that LM(g) is a subword of LM(f), that is

LM(f) = aLM(g)b, for some a, b ∈ ⟨X⟩.
(2) A Gröbner basis G is minimal if the set G \ {f} is not a Gröbner basis of I, whenever f ∈ G.
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(3) A minimal Gröbner basis G of I is reduced if each f ∈ G is a linear combination of normal

monomials modulo G \ {f}. In this case we say that f is reduced modulo G \ {f}.
(4) If I has a finite Gröbner basis G, then the algebra A = k⟨X⟩/(G) is called a standard finitely

presented algebra, or shortly an s.f.p. algebra.

It is well-known that every ideal I of k⟨X⟩ has a unique reduced Gröbner basis G0 = G0(I) with

respect to <. However, G0 may be infinite. For more details, we refer the reader to [28, 31].

Definition 2.3. Let h1, . . . , hs ∈ k⟨X⟩ (hi = 0 is also possible). For every i ∈ {1, . . . , s}, let wi ∈ ⟨X⟩
be a monomial of degree at least 2, such that wi > LM(hi), whenever hi ̸= 0, and let gi = wi − hi.

Each gi is a monic polynomial with LM(gi) = wi. Let G = {g1 . . . , gs} ⊂ k⟨X⟩ and let I = (G) be the

two-sided ideal of k⟨X⟩ generated by G. For u, v ∈ ⟨X⟩ and for i ∈ {1, . . . , s}, we consider the k-linear

operators ruiv : k⟨Xn⟩ → k⟨Xn⟩ called reductions, defined on the basis elements c ∈ ⟨Xn⟩ by

ruiv(c) =

{
uhiv if c = uwiv

c otherwise.

Then the following conditions hold:

(1) c− ruiv(ω) ∈ I.

(2) LM(ruiv(c)) ≤ c.

(3) More precisely, LM(ruiv(c)) < c if and only if c = uwiv.

More generally, for f ∈ k⟨X⟩ and for any finite sequence of reductions r = ru1i1v1 ◦ · · · ◦ rutitvt one has

f ≡ r(f)(modI) and LM(f) ≥ LM(r(f)).

A polynomial f ∈ k⟨Xn⟩ is in normal form (mod G) if none of its monomials contains as a subword any

of the wi’s. (In particular, the 0 element is in normal form.)

The degree-lexicographic ordering < on ⟨Xn⟩ satisfies the decreasing chain condition, and therefore for

every f ∈ k⟨X⟩ one can find a normal form of f by means of a finite sequence of reductions defined via

G. In general, f may have more than one normal forms (mod G). It follows from Bergman’s Diamond

Lemma (see [8, Theorem 1.2]) that G is a Gröbner basis of I if and only if every f ∈ k⟨X⟩ has a unique

normal form (mod G), which will be denoted by Nor(f). In this case f ∈ I if and only if f can be

reduced to 0 via a finite sequence of reductions.

Definition 2.4. Let G = {gi = wi − hi | i ∈ {1, . . . , s}} ⊂ k⟨Xn⟩ as in Definition 2.3 and let I = (G).

Let u = wi and v = wj for some i, j ∈ {1, . . . , s} and let a, b, t ∈ ⟨X⟩ \ {1}.
(1) Suppose that u = ab, v = bt and let ω = abt = ut = av. The difference

(u, v)ω = git− agj = ahj − hit

is called a composition of overlap. Note that (u, v)ω ∈ I and LM(git) = ω = LM(agj), so

LM((u, v)ω) = LM(shj − hit) < ω.

The composition of overlap (u, v)ω is solvable if it can be reduced to 0 by means of a finite

sequence of reductions defined via G.

(2) Suppose that ω = wj = awib. The composition of inclusion corresponding to the pair (u, ω) is

(u, ω)ω := (agib)− gj = hj − ahib.

One has (u, ω)ω ∈ I and LM(u, ω)ω = LM(hj−ahib) < ω. The composition of inclusion (u, ω)ω
is solvable if it can be reduced to 0 by means of a finite sequence of reductions defined via G.

The lemma below is a modification of the Diamond Lemma and follows easily from Bergman’s result

[8, Theorem 1.2].

Lemma 2.5. Let G = {wi − hi | i ∈ {1, . . . , s}} ⊂ k⟨Xn⟩ as in Definition 2.3. Let I = (G) and let

A = k⟨Xn⟩/I. Then the following conditions are equivalent.

(1) The set G is a Gröbner basis of I.

(2) All compositions of overlap and all compositions of inclusion are solvable.
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(3) Every element f ∈ k⟨Xn⟩ has a unique normal form modulo G, denoted by NorG(f).

(4) There is an equality N(G) = N(I), so there is an isomorphism of vector spaces

k⟨Xn⟩ ≃ I ⊕ kN(G).

(5) The image of N(G) in A is a k-basis of A. In this case A can be identified with the k-vector

space kN(G), made a k-algebra by the multiplication a • b := Nor(ab).

Suppose furthermore that G consists of homogeneous polynomials. Then A is graded by length and each

of the above conditions is equivalent to

(6) dimAm = dim(kN(G)m) = |N(G)m| for every m ∈ N0.

Corollary 2.6. Let G = {wi − hi | i ∈ {1, . . . , s}} ⊂ k⟨Xn⟩ as above and let I = (G). Let N(G) and

N(I) be the corresponding sets of normal monomials in k⟨Xn⟩. Then N(G) ⊇ N(I), where an equality

holds if and only if G is a Gröbner basis of I.

It is shown in [25, Corollary 6.3] that there exist ideals in the free associative algebra k⟨x0, . . . , xn⟩
for which the existence of a finite Gröbner basis is an undecidable problem.

In this paper, we focus on a class of quadratic standard finitely presented algebras A known as non-

commutative projective spaces or quantum spaces. Each such algebra A is strictly ordered in the sense of

[15, Definition 1.9], so there is a well-defined notion of Gröbner basis of a two-sided ideal in A (cf. [15,

Definition 1.2]). Moreover, every two-sided ideal in A has a finite reduced Gröbner basis.

2.3. Quadratic algebras and quadratic Gröbner bases. As usual, let X = Xn = {x0, . . . , xn}. Let
M be a non-empty proper subset of {0, . . . , n}2. For every (j, i) ∈ M , let hji ∈ k⟨X⟩ be either 0 or a

homogeneous polynomial of degree 2 with LM(hji) < xjxi. Let

R = {fji = xjxi − hji | (j, i) ∈ M} ⊂ k⟨X⟩. (2.6)

Define I = (R) and consider the quadratic algebra A = k⟨Xn⟩/I. As in Subsection 2.2, let N(I)m =

N(I)∩ (Xn)
m and N(R)m = N(R)∩ (Xn)

m be the corresponding subsets of normal words of length m.

By construction, R is a k-basis for I2, so

dim I2 = |R| = |M | and N(I)2 = N(R)2 = X2
n \ LM(R).

As vector spaces,

k⟨X⟩ = I ⊕ kN(I) and A ∼= kN(I).

Moreover, for the canonical grading by length one has

(k⟨X⟩)m = (I)m ⊕ kN(I)m and Am
∼= kN(I)m,

for every m ∈ N.
The following Lemma is crucial for the proofs of several results in the paper.

Lemma 2.7. Let R be defined as in (2.6). The following conditions are equivalent.

(1) The set R is a (quadratic) Gröbner basis of the ideal I = (R).

(2) dimA3 = |N(R)3|.
(3) All ambiguities of overlap determined by LM(R) = {xjxi | (j, i) ∈ M} are R-solvable.

In this case A is a PBW algebra in the sense of [34, Section 5].

Proof. First note that there are no compositions of inclusions. By Corollary 2.6,

N(I)m ⊆ N(R)m and dimAm = |N(I)m| ≤ |N(R)m|

for every m ≥ 2. The implications (1) ⇐⇒ (3) and (1) ⇒ (2) follow from Lemma 2.5.

(2) ⇒ (3) A composition of overlap is either 0, or it produces only homogeneous polynomials of degree

three. Suppose ω = xkxjxi, where (k, j), (j, i) ∈ M , so fkj = xkxj − hkj ∈ R and fji = xjxi − hji ∈ R.

Then the corresponding composition of overlap is

(xkxj , xjxi)ω = (fkj)xi − xk(fji) = −hkjxi + xkhji ∈ I.
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By Definition 2.4, a composition is solvable if and only if it can be reduced to 0. Assume by contradiction

that the composition (xkxj , xjxi)ω is not solvable. Then (xkxj , xjxi)ω ̸= 0 and we can reduce it by means

of a finite sequence of reductions to a (not necessarily unique) normal form

F := Nor((xkxj , xjxi)ω) = cu+

t∑
s=1

csus ∈ kN(R),

where u > us and c ̸= 0. In particular, xkxjxi > LM(F ) = u ∈ N(R). However, the polynomial F is in

the ideal I, hence LM(F ) ∈ LM(I3) and LM(F ) is not in N(I)3. Therefore

N(I)3 $ N(R)3.

Note that we have an isomorphism of vector spaces

A3
∼= kN(I)3,

hence dimA3 = |N(I)3| < |N(R)3|, a contradiction. �

Remark 2.8. Lemma 2.7 is very useful for the case when we want to show that an algebra A with

explicitly given quadratic defining relations R ⊂ k⟨Xn⟩ is PBW (that is R is a Gröbner basis of the

ideal I = (R)) and we have precise information about the dimension dimA3 = d3. In this case, instead

of following the standard procedure (algorithm) of checking whether all compositions are solvable, we

suggest a new simpler procedure:

(1) find the set N(R)3 and its order |N(R)3|, and
(2) compare the order |N(R)3| with dimA3 = d3.

One has |N(R)3| ≥ dimA3 and an equality holds if and only if R is a Gröbner basis of the ideal I = (R).

This method is particularly useful when we work in general settings–general n and general quadratic

relations R. It implies a similar procedure for ideals in the quantum space AN
g .

We use this result in Section 5, see the proof of Theorem 5.2. In Subsection 3.2 we give some basics

on Gröbner bases for ideals in a quantum space AN
g . Lemma 3.14 is an important analogue of Lemma

2.7 designed for quadratic Gröbner bases of ideals in a quantum space.

3. Quantum spaces

In this section we introduce a class of quadratic algebras which are central for the paper. We shall refer

to them as quantum spaces. They form a special case of the non-commutative deformation of projective

spaces defined by Auroux, Katzarkov, and Orlov in the context of mirror symmetry [5]. These algebras

are a particular case of the skew-polynomial rings with binomial relations studied in [17, 18]. We point

out that these objects appear with different names in the literature: they are sometimes referred to as

non-commutative projective spaces and quantum affine spaces. We shall now recall their definition and

main properties.

3.1. Basic definitions and results.

Definition 3.1. A square matrix q = ∥qij∥ over the complex numbers is multiplicatively anti-symmetric

if qij ∈ C×, qji = q−1
ij and qii = 1 for all i, j. We shall sometimes refer to q as a deformation matrix.

Definition 3.2. Let q be an (n+1)× (n+1) multiplicatively anti-symmetric matrix. We denote by An
q

the complex quadratic algebra with n+ 1 generators x0, . . . , xn subject to the
(
n+1
2

)
quadratic binomial

relations

R = Rq := {xjxi − qjixixj | 0 ≤ i < j ≤ n}. (3.1)

In other words An
q = C⟨Xn⟩/(R). We refer to An

q as the quantum space defined by the multiplicatively

anti-symmetric matrix q.

Clearly, the algebra An
q is commutative if and only if all entries of q are 1. In this case An

q is isomorphic

the algebra of commutative polynomials C[x0, . . . , xn]. Although An
q is non-commutative whenever q

has at least one entry different from 1, it preserves all ‘good properties’ of the commutative polynomial

ring C[x0, . . . , xn], see Facts 3.7.
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Example 3.3. For n = 2 and

q =

 1 q−2 1

q2 1 1

1 1 1


one obtains the non-commutative variety P2

q,}=0 defined in [26, Section 3.7]. The quantum space A2
q is

an Artin–Schelter regular algebra of global dimension three, see [2].

Remark 3.4. It is easy to prove that the set R defined in (3.3) is a reduced Gröbner basis for the ideal

I = (R) and this fact is well known, see for example [25, Proposition 5.5]. Therefore

N(I) = N(R) = T (Xn).

In other words the set T (Xn) of ordered monomials is the normal basis of the C-vector space An
q. The

free monoid ⟨Xn⟩ splits as a disjoint union

⟨Xn⟩ = T (Xn) ⊔ LM(I), (3.2)

and C⟨Xn⟩ ≃ SpanCT (Xn)⊕ I.

Remark 3.5. (1) Every element f ∈ C⟨Xn⟩ \ I has unique normal form Nor(f) = NorR(f) =

NorI(f), which satisfies

Nor(f) =
s∑

i=1

ciTi ∈ CT (Xn),

where ci ∈ C×, T1 < T2 < . . . < Ts ≤ LM(f), and the equality f = Nor(f) holds in the algebra

An
q. Moreover, Nor(f) = 0 if and only if f ∈ I.

(2) The normal form Nor(f) can be found effectively using a finite sequence of reductions defined

via R.

(3) There is an equality NorR(xjxi) = qjixixj , for every 0 ≤ i < j ≤ n.

When the ideal I, or its generating set R is understood from the context, we shall denote the normal

form of f by Nor(f).

More generally, recall that a quadratic algebra is an associative graded algebra A =
⊕

i≥0 Ai over

a ground field k determined by a vector space of generators V = A1 and a subspace of homogeneous

quadratic relations R = R(A) ⊂ V ⊗ V. We assume that A is finitely generated, so dimA1 < ∞. Thus

A = T (V )/(R) inherits its grading from the tensor algebra T (V ). The Koszul dual algebra of A, denoted

by A! is the quadratic algebra T (V ∗)/(R⊥), see [29, 30]. The algebra A! is also referred to as the quadratic

dual algebra to a quadratic algebra A, see [33], p.6.

Note that every quantum space A = An
q is a skew-polynomial ring with binomial relations in the

sense of [17, 18], and a quantum binomial algebra in the sense of [21]. Thus the next corollary follows

straightforwardly from [20, Theorem A], see also [21], Lemma 5.3, and Theorem 1.1.

Corollary 3.6. Let A = An
q be a quantum space defined by the multiplicatively anti-symmetric matrix

q. Then

(1) The Koszul dual A! has a presentation A! = C⟨ξ0, ξ1, · · · , ξn⟩/(R⊥), where R⊥ consists of
(
n+1
2

)
quadratic binomial relations and n+ 1 monomials

R⊥ = {ξjξi − q−1
ji ξiξj | 0 ≤ i < j ≤ n}

∪
{ξ2j | 0 ≤ j ≤ n}. (3.3)

(2) The set R⊥ is a Gröbner basis of the ideal (R⊥) in C⟨ξ0, ξ1, · · · , ξn⟩, so A! is a PBW algebra

with PBW generators ξ0, ξ1, · · · , ξn.
(3) A! is a quantum Grassmann algebra of dimension n+ 1.

The following result can be extracted from [18, 19], and [21, Theorem 1.1]. We use the well-known

equality
(
n+d
n

)
=

(
n+d
d

)
.

Facts 3.7. Let A = An
q be a quantum space.

(1) A is canonically graded by length, it is generated in degree one, and A0 = C.
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(2) A is a PBW -algebra in the sense of Priddy [34, Section 5], with a PBW basis T (Xn). For every

d ∈ N there is an isomorphism of vector spaces Ad ≃ SpanCT (Xn)d, so

dimAd = |T (Xn)d| =
(
n+ d

d

)
. (3.4)

(3) A is Koszul.

(4) A is a left and a right Noetherian domain.

(5) A is an Artin–Schelter regular algebra, that is

(a) A has polynomial growth of degree n+ 1 (equivalently, GKdimA = n+ 1);

(b) A has finite global dimension gl dimA = n+ 1;

(c) A is Gorenstein.

(6) The Hilbert series of A is HA(t) = 1/(1− t)n+1.

Remark 3.8. The algebra A = An
q is a quantum projective space in the sense of [35, Definition 2.1] and

it is solvable in the sense of Kandri-Rodi and Weispfenning [25, Section 1].

Suppose a monomial u ∈ ⟨Xn⟩ has multi-degree deg(u) = α = (α0, α1, . . . , αn) and let Tα =

xα0
0 xα1

1 · · ·xαn
n , as in Definition 2.1. Since all relations in R are binomials which preserve the multi-

grading, there exists a unique ζu ∈ C× such that

(1) ζu is a monomial in the entries of q,

(2) NorR(u) = ζuTα,

(3) u ≡ ζuTα modulo I, i.e., the equality u = ζuTα holds in An
q.

Convention 3.9. Following [8] (see also our Lemma 2.5), we consider the space CT n endowed with

multiplication defined by

f • g := NorR(fg),

for every f, g ∈ CT n. Then (CT n, •) has a well-defined structure of a graded algebra, and there is an

isomorphism of graded algebras

An
q
∼= (CT n, •). (3.5)

By convention we shall identify the algebra An
q with (CT n, •).

3.2. Some basics of Gröbner bases theory for ideals in quantum spaces. In Sections 5 and 6

we shall introduce analogues of the Veronese map vn,d and of the Segre map sn,m for quantum spaces.

A natural problem in this context is to describe the reduced Gröbner bases of ker(vn,d) and ker(sn,m).

Each of the kernels is an ideal of an appropriate quantum space AN
g , so we need a Gröbner bases theory

which is admissible for quantum spaces. Proposition 3.10 shows that each quantum space AN
g is a strictly

ordered algebra in the sense of [15, Definition 1.9], and the Gröbner bases theory for ideals in strictly

ordered algebras presented by the third author in [15] and [16] seems natural and convenient for our

quantum spaces. Here we follow the approach of these works. Note that the results of [15] and [16] are

independent from and agree with [25] and [31].

In the sequel we often work simultaneously with two distinct quantum spaces whose sets of generators

Xn = {x0, . . . , xn} and YN = {y0, . . . , yN} are disjoint and have different cardinalities, N > n. To avoid

ambiguity we denote by ≺ the degree-lexicographic ordering on ⟨YN ⟩ and by ≺0 the restriction ≺|T (YN )

of ≺ on the set of ordered monomials T (YN ) ⊂ ⟨YN ⟩.
Given an arbitrary multiplicatively anti-symmetric (N + 1) × (N + 1) matrix g = ∥gij∥, let AN

g =

C⟨YN ⟩/(Rg) be the associated quantum space, where

Rg := {yjyi − gjiyiyj | 0 ≤ i < j ≤ N}.

Following Convention 3.9, we identify the two algebras

AN
g

∼= (CT (YN ), •).

Let Jg = (Rg). We shall write Nor(f) for the normal form of f ∈ C⟨YN ⟩, keeping the ideal Jg fixed.

The operation • on CT (YN ) induces also an operation ⋆ on the set T (YN ) defined by

u ⋆ v := LM(Nor(uv)) = LM(u • v),
8



for every u, v ∈ T (YN ). It is not difficult to see that (T (YN ), ⋆) is a monoid.

Let u, v ∈ T (YN ), and let α = deg u+deg v. We know that u • v = ζ(u, v)T (u, v), where ζ = ζ(u, v) ∈
C× and T (u, v) ∈ T (Yn), with deg T (u, v) = α. Similarly, v • u = η(v, u)T (v, u), where η(v, u) ∈ C×

and deg T (v, u) = α = deg T (u, v). The unique ordered monomial in ⟨YN ⟩ with multi-degree α is Tα,

therefore

u ⋆ v = v ⋆ u = Tα.

It follows that there is an isomorphism of monoids (T (Yn), ⋆) ∼= [y0, . . . , yN ], the free abelian monoid

generated by YN . This agrees with [15, Theorem I and Theorem II].

Note that identifying AN
g with CT (YN ) we also have the degree-lexicographic well-ordering ≺0 on

the free abelian monoid (T (YN ), ⋆). For every f ∈ CT (YN ), its leading monomial with respect to ≺0 is

denoted by LM(f)≺0 . In fact LM≺0(f) = LM≺(f) and we shall simply write LM(f).

The proposition below follows straightforwardly from [15].

Proposition 3.10. (1) The quantum space AN
g = (CT (YN ), •) is a strictly ordered algebra in the

sense of [15, Definition 1.9], that is, each of the following two equivalent conditions is satisfied:

SO1: Let a, b, c ∈ T (YN ). If a ≺0 b, then a ⋆ c ≺0 b ⋆ c and c ⋆ a ≺0 c ⋆ b;

SO2: LM(f • h) = LM(LM(f) • LM(h)), for all f, h ∈ AN
g .

(2) Every two-sided (respectively, one-sided) ideal K of AN
g has a finite reduced Gröbner basis with

respect to the ordering ≺0 on (T (YN ), ⋆), see Definition 3.12.

The properties SO1 and SO2 allow to define Gröbner bases for ideals of a quantum space AN
g in a

natural way, and to use a standard Gröbner bases theory, analogous to the theory of non-commutative

Gröbner bases for ideals of the free associative algebra (Diamond Lemma) proposed by Bergman.

Definition 3.11. Let P ⊂ AN
g be an arbitrary subset, and let LM(P ) = {LM(f) | f ∈ P}. A monomial

T ∈ T (YN ) is normal modulo P if it does not contain as a subword any u ∈ LM(P ). We denote

N≺0(P ) = {T ∈ T (YN ) | T is normal mod P}. (3.6)

Definition 3.12. Suppose K is an ideal of AN
g = CT (YN ). A set F ⊂ K is a Gröbner basis of K if for

any h ∈ K there exists an f ∈ F , and monomials a, b ∈ T (YN ) such that LM(h) = a ⋆ LM(f) ⋆ b. Due

to the commutativity of the operation ⋆ this is equivalent to LM(h) = u ⋆ LM(f), for some u ∈ T .

An interested reader can find various equivalent definitions of a Gröbner basis in [31, 25], and numerous

papers which appeared later. Given an ideal K generated by a finite set F one can verify algorithmically

whether F is a Gröbner basis for the ideal K, see for example [31].

Lemma 3.13. Let K = (F ) be an ideal of AN
g generated by the set F ⊂ CT (YN ). Then F is a Gröbner

basis of K if and only if N(F ) = N≺0
(F ) = N≺0

(K). In this case the vector space AN
g splits as a direct

sum

AN
g = CT (YN ) = K⊕ CN≺0(F )

and the set N≺0(F ) ⊂ T (YN ) projects to a C-basis of the quotient algebra AN
g /K. Moreover, if F consists

of homogeneous polynomials, then

(AN
g )j = (CT (YN ))j = (K)j ⊕ (CN≺0(F ))j , (3.7)

for every j ≥ 2.

The following is an analogue of Lemma 2.7 for ideals of AN
g generated by quadratic polynomials.

Lemma 3.14. Let K = (F ) be an ideal of AN
g generated by a set of quadratic polynomials F ⊂ (CT (YN ))2

and let B = AN
g /K. We consider the canonical grading of B induced by the grading of AN

g . Then F is

a Gröbner basis of K if and only if

dimB3 = |(N≺0(F ))3|. (3.8)
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4. The d-Veronese subalgebra of An
q, its generators and relations

In this section we study the d-Veronese subalgebra A(d) of the quantum space A = An
q. This is an

algebraic construction which mirrors the Veronese embedding. First we recall some basic definitions and

facts about Veronese subalgebras of general graded algebras. Our main reference is [33, Section 3.2].

The main result of the section is Theorem 4.5 which presents the d-Veronese subalgebra A(d) in terms

of generators and explicit quadratic relations.

Definition 4.1. Let A =
⊕

k∈N0
Ak be a graded algebra. For d ∈ N, the d-Veronese subalgebra of A is

the graded algebra

A(d) =
⊕
k∈N0

Akd.

Remark 4.2. (1) By definition the algebra A(d) is a subalgebra of A. However, the embedding is

not a graded algebra morphism. The Hilbert function of A(d) satisfies

hA(d)(t) = dim(A(d))t = dim(Atd) = hA(td).

(2) Let A = An
q be the quadratic algebra with relations R introduced in Definition 3.2. It follows

from [33, Proposition 2.2], and Facts 3.7 that its d-Veronese subalgebra A(d) is one-generated,

quadratic and Koszul. Moreover, A(d) is left and right Noetherian.

We fix a multiplicatively anti-symmetric matrix q and set A = An
q. By Convention 3.9, A is identified

with the algebra (CT n, •) and
A =

⊕
k∈N0

Ak
∼=

⊕
k∈N0

C(T n)k.

Hence its d-Veronese subalgebra satisfies

A(d) =
⊕
k∈N0

Akd
∼=

⊕
k∈N0

C(T n)kd.

The ordered monomials w ∈ (T n)d of length d are degree one generators of A(d), hence

dimAd = |(T n)d| =
(
n+ d

d

)
.

We set N =
(
n+d
d

)
− 1 and we order the elements of (T n)d lexicographically, so

(T n)d = {w0 = xd
0 < w1 = (x0)

d−1x1 < · · · < wN = xd
n}. (4.1)

The d-Veronese A(d) is a quadratic algebra (one)-generated by w0, w1, . . . , wN . We shall find a minimal

set of its quadratic relations, each of which is a linear combination of products wiwj for some i, j ∈
{0, . . . , N}. The following notation will be used throughout the paper.

Notation 4.3. Let N =
(
n+d
d

)
− 1. For every integer j, 1 ≤ j ≤ N , we denote by αj the multi-degree

deg(wj), thus

αj = (αj0 , . . . , αjn) whenever wj = x
αj0
0 . . . x

αjn
n .

We define

m(j) = min{s ∈ {0, . . . , n} | αjs ≥ 1} and M(j) = max{s ∈ {0, . . . , n} | αjs ≥ 1}. (4.2)

In other words, if wj = x
αj1
j1

x
αj2
j2

. . . x
αjd
jd

for some 0 ≤ j1 ≤ j2 ≤ · · · ≤ jd and αj1 , . . . , αjd ≥ 1, then

m(j) = j1 and M(j) = jd. For example, if wj = x2x
3
4x

2
7, then m(j) = 2 and M(j) = 7. We further

define

P(n, d) = {(i, j) | 0 ≤ i ≤ j ≤ N};
C(n, 2, d) = {(i, j) ∈ P(n, d) | M(i) ≤ m(j)} = {(i, j) ∈ P(n, d) | wiwj ∈ (T n)2d};
C(n, 3, d) = {(i, j, k) | 0 ≤ i ≤ j ≤ k ≤ N, (i, j), (j, k) ∈ C(n, 2, d)};
MV(n, d) = {(i, j) ∈ P(n, d) | M(i) > m(j)} = {(i, j) ∈ P(n, d) | wiwj /∈ (T n)2d}.

Lemma 4.4. Let (T n)p = (T (Xn))p be the set of all ordered monomials w ∈ ⟨Xn⟩ of length |w| = p.
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(1) The maps

Φ : C(n, 2, d) → (T n)2d and Ψ : C(n, 3, d) → (T n)3d

(i, j) 7→ wiwj (i, j, k) 7→ wiwjwk

are bijective. Therefore

|C(n, 2, d)| = |(T n)2d| =
(
n+ 2d

n

)
and |C(n, 3, d)| = |(T n)3d| =

(
n+ 3d

n

)
. (4.3)

(2) The set P(n, d) is a disjoint union P(n, d) = C(n, 2, d) ⊔MV(n, d). Moreover

|P(n, d)| =
(
N + 2

2

)
and |MV(n, d)| =

(
N + 2

2

)
−

(
n+ 2d

n

)
. (4.4)

Proof. (1) Given wi, wj ∈ (T n)d, their product w = wiwj belongs to (T n)2d if and only if (i, j) ∈
C(n, 2, d), hence Φ is well-defined. Observe that every w ∈ (T n)2d can be written uniquely as

w = xi1 . . . xidxj1 . . . xjd , where 0 ≤ i1 ≤ · · · ≤ id ≤ j1 ≤ · · · ≤ jd. (4.5)

It follows that w has a unique presentation w = wiwj , where

wi = xi1 . . . xid ∈ (T n)d, wj = xj1 . . . xjd ∈ (T n)d,

M(i) = id ≤ m(j) = j1 and (i, j) ∈ C(n, 2, d).

This implies that Φ is a bijection.

Consider now the map Ψ. Given wi, wj , wk ∈ (T n)d, their product ω = wiwjwk (considered as

an element in ⟨Xn⟩) belongs to (T n)3d if and only if (i, j, k) ∈ C(n, 3, d), hence Ψ is well-defined.

The proof that Ψ is bijective is similar to the case of Φ.

(2) It is clear that

|P(n, d)| =
(
N + 1

2

)
+N + 1 =

(
N + 2

2

)
.

By definition P(n, d) = C(n, 2, d) ⊔MV(n, d) is a disjoint union of sets, hence

|MV(n, d)| = |P(n, d)| − |C(n, 2, d)| =
(
N + 2

2

)
−

(
n+ 2d

n

)
. �

The following result describes the d-Veronese subalgebra (An
q)

(d) of the quantum space An
q in terms

of generators and quadratic relations.

Theorem 4.5. Let q be an (n + 1) × (n + 1) multiplicatively anti-symmetric matrix and let A = An
q.

The d-Veronese subalgebra A(d) ⊆ A is a quadratic algebra with
(
n+d
d

)
generators, namely the elements

of (T n)d, subject to (N + 1)2 −
(
n+2d

n

)
independent quadratic relations which split into two disjoint sets

R1 and R2 given below.

(1) The set R1 contains exactly
(
N+1
2

)
relations

R1 = {fji = wjwi − φjiwi′wj′ | 0 ≤ i < j ≤ N, (i′, j′) ∈ C(n, 2, d), φji ∈ C×}, (4.6)

where for each pair j > i the product wjwi occurs exactly once in R1, and there is unique pair

(i′, j′) ∈ C(n, 2, d) such that Nor(wjwi) = φjiwi′wj′ = φjiTβ, with β = deg(wjwi) = deg(wi′wj′).

One has

LM(fji) = wjwi > wi′wj′ = Tβ ∈ (T n)2d.

Moreover, for every pair (i, j) ∈ C(n, 2, d) such that i < j, the product wiwj = Tβ ∈ (T n)2d
occurs in a relation wjwi − φjiwiwj ∈ R1. Each coefficient φji is a non-zero complex number,

uniquely determined by q.

(2) The set R2 consists of exactly
(
N+2
2

)
−
(
n+2d

n

)
relations

R2 = {fij = wiwj − φijwi′wj′ | (i, j) ∈ MV(n, d), (i′, j′) ∈ C(n, 2, d), φij ∈ C×}, (4.7)
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where for each pair (i, j) ∈ MV(n, d) the word wiwj occurs exactly once in R2, and determines

uniquely a pair (i′, j′) ∈ C(n, 2, d) with i′ < j′, and a nonzero complex number φij such that

Nor(wiwj) = φijwi′wj′ = φijTβ, with β = deg(wiwj) = deg(wi′wj′). In particular,

LM(fij) = wiwj > wi′wj′ = Tβ ∈ (T n)2d.

(3) The relations R1 ∪R2 imply a set R′
1 of

(
N+1
2

)
additional relations:

R′
1 = {wj · wi − gjiwi · wj | gji ∈ C×, 0 ≤ i < j ≤ N}, (4.8)

where for each i < j the coefficient gji =
φji

φij
is uniquely determined by the matrix q. We set

φij = 1 whenever (i, j) ∈ C(n, 2, d).

(4) Conversely, the relations R′ = R′
1 ∪R2 imply the relations R1. Moreover, R′ is also a complete

set of independent relations for the d-Veronese algebra A(d).

Proof. (1) Suppose that 0 ≤ i < j ≤ N . Then wj > wi, and it is not difficult to see that M(j) >

m(i), so wjwi is not in normal form. By Remark 3.5, its normal form has the shape Nor(wjwi) =

φjiTβ , where β = deg(wjwi) = αi+αj , and φji ∈ C× is uniquely determined by the entries of q.

By Lemma 4.4, Tβ = wi′wj′ for a unique pair (i′, j′) ∈ C(n, 2, d) of ordered monomials wi′ ≤ wj′

of length d. We claim that wi′ < wj′ .

Assume by contradiction that wi′ = wj′ = xi1xi2 . . . xid , where xi1 ≤ xi2 ≤ · · · ≤ xid . This

implies that wi′wj′ = w2
i′ = xi1xi2 . . . xidxi1xi2 . . . xid ∈ (T n)2d. But this is possible if and only

if xik = xi1 for every k ∈ {2, . . . , d}, that is wi′ = wj′ = (xp)
d, for some p ∈ {0, . . . , n}, so

Tβ = (xp)
2d. In other words β = (β0, . . . , βn), where βp = 2d and βi = 0 for every i ̸= p. One

has β = deg(wjwi) = deg(wj) + deg(wi) = αj + αi, which together with |wi| = |wj | = d imply

αi = αj and wi = wj = (xp)
d, which is impossible, since by assumption i < j. Hence wi′ < wj′

and i′ < j′. We know that the equality wjwi = Nor(wjwi) holds in A, hence it is an equality in

A(d). This implies that the equality (wjwi) = φjiwi′wj′ holds in A(d), for all 0 ≤ i < j ≤ N . It

follows that A(d) satisfies the relations fji = 0, for all fji ∈ R1, see (4.6). Moreover, the relations

satisfy the properties given in part (1). It is clear that the order of R1 is exactly
(
N+1
2

)
.

(2) Suppose that (i, j) ∈ MV(n, d). Then the following are equalities in A:

wiwj = Nor(wiwj) = φijTβ , where Tβ < wiwj , β = αi + αj ,

and φij ∈ C× is uniquely determined by the entries of q. By Lemma 4.4, Tβ = wi′wj′ for

a unique pair (i′, j′) ∈ C(n, 2, d). We claim that wi′ < wj′ . As in part (1), assuming that

wi′ = wj′ we obtain that wi = wj = (xp)
d, but then wiwj = (xd

p)(x
d
p) ∈ (T n), which contradicts

our assumption (i, j) ∈ MV(n, d). The equality wiwj = Nor(wiwj) holds in A, therefore it

is an equality in A(d). We have shown that for every pair (i, j) ∈ MV(n, d) there is unique

pair (i′, j′) ∈ C(n, 2, d) such that i′ < j′ and wjwi = φiiwi′wj′ holds in A(d). Therefore A(d)

satisfies the relations (4.7) from R2. It is clear that all properties listed in part (2) hold and

|R2| = |MV(n, d)| =
(
N+2
2

)
−

(
n+2d

n

)
. Note that

LM(R1) = {wjwi | wj > wi} and LM(R2) = {wiwj | wi ≤ wj , (i, j) ∈ MV(n, d)}.

It follows that LM(R1)∩LM(R2) = ∅ and therefore R1 ∩R2 = ∅. Hence the set of relations R
is a disjoint union R = R1 ⊔R2 and

|R| = |R1|+ |R2| =
(
N+1
2

)
+
(
N+2
2

)
−
(
n+2d

n

)
= (N + 1)2 −

(
n+2d

n

)
=

(
n+d
n

)2 − (
n+2d

n

)
.

(4.9)

(3) Assume now that 0 ≤ i < j ≤ N . Two cases are possible.

(a) (i, j) ∈ C(n, 2, d). In this case (i′, j′) = (i, j) and wjwi = φjiwiwj = φjiwi′wj′ , so

gji = φji.

(b) (i, j) ∈ MV(n, d). Then the two relations

wjwi = φjiwi′wj′ and wiwj = φijwi′wj′
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imply

(φji)
−1wj · wi = wi′wj′ = (φij)

−1wi · wj ,

and therefore wj ·wi =
φji

φij
wi ·wj . It follows that wjwi = gjiwiwj , where the nonzero coefficient

gji =
φji

φij
is uniquely determined by q.

(4) This is analogous to (3). �

Observe that Theorem 4.5 contains important numerical data about the d-Veronese (An
q)

(d), which

will be used in the sequel, and which we summarise below.

Notation 4.6. LetAn
q be the quantum space defined via a multiplicatively anti-symmetric (n+1)×(n+1)

matrix q. Let d ≥ 2 and N =
(
n+d
n

)
− 1. We associate to the d-Veronese (An

q)
(d) a list D(An

q)
(d) of

invariants uniquely determined by q and d.

Let F1 = {φji | 0 ≤ i < j ≤ N} be the set of coefficients occurring in R1 (see (4.6)) and let

F2 = {φij | (i, j) ∈ MV(n, d)} be the set of coefficients occurring in R2 (see (4.7)). Let g = ∥gij∥ be

the multiplicatively anti-symmetric (N + 1) × (N + 1) matrix whose entries gij , 0 ≤ i < j ≤ N are the

coefficients occurring in R′
1 see (4.8). We collect this information about (An

q)
(d) in the following data:

D(An
q)

(d) : q = ∥qij∥;
F1 = {φji | 0 ≤ i < j ≤ N}, the set of coefficients occurring in (4.6);

F2 = {φij | i ≤ j, (i, j) ∈ MV(n, d)}, the set of coefficients occurring in (4.7);

g = ∥gij∥, a multiplicatively anti-symmetric (N + 1)× (N + 1) matrix with

gji =


1 for i = j

(φji)/(φij) for (i, j) ∈ MV(n, d) and i < j

φji for (i, j) ∈ C(n, 2, d) and i < j.

5. Veronese maps

Let n, d ∈ N and let N =
(
n+d
d

)
− 1. In this section, we introduce and study non-commutative

analogues of the Veronese embeddings Vn,d : Pn → PN . The main result of the section is Theorem 5.2,

which describes explicitly the reduced Gröbner bases for the kernel of the non-commutative Veronese

map.

We keep the notation and conventions from the previous sections, so Xn = {x0, . . . , xn} and T n =

T (Xn) ⊂ ⟨Xn⟩ is the set of ordered monomials (terms) in the alphabet Xn. The set (T n)d of all degree

d terms is enumerated according the degree-lexicographic order in ⟨Xn⟩:

(T n)d = {w0 = xd
0 < w1 = (x0)

d−1x1 < · · · < wN = xd
n}. (5.1)

We introduce a second set of variables YN = {y0, . . . , yN}, and given an arbitrary multiplicatively

anti-symmetric (N + 1) × (N + 1) matrix g = ∥gij∥, we present the corresponding quantum space as

AN
g = C⟨YN ⟩/(Rg), where

Rg := {yjyi − gijyiyj | 0 ≤ i < j ≤ N}.

5.1. Definitions and first results.

Lemma 5.1. Let n, d ∈ N and let N =
(
n+d
d

)
− 1. Let (T n)d and YN be as above. For every

(n + 1) × (n + 1) multiplicatively anti-symmetric matrix q, there exists a unique (N + 1) × (N + 1)

multiplicatively anti-symmetric matrix g = ∥gij∥ such that the assignment

y0 7→ w0, y1 7→ w1, . . . , yN 7→ wN

extends to an algebra homomorphism

vn,d : AN
g → An

q.

The entries of g are given explicitly in terms of the data D((An
q)

(d)) of the d-Veronese (An
q)

(d), see (4.6).

The image of the map vn,d is the d-Veronese subalgebra (An
q)

(d).

We call vn,d the (n, d)-Veronese map.
13



Proof. Suppose q is an (n + 1) × (n + 1) multiplicatively anti-symmetric matrix, and let An
q be the

corresponding quantum space. Assume that there exists an (N + 1) × (N + 1) multiplicatively anti-

symmetric matrix g such that the map vn,d is a homomorphism of C-algebras. Then

wjwi = vn,d(yjyi) = vn,d(gjiyiyj) = gjiwiwj ,

for every 0 ≤ i ≤ j ≤ N . By Theorem 4.5,

wjwi = φjiTβ and wiwj = φijTβ ,

for every 0 ≤ i < j ≤ N , where Tβ ∈ (T n)2d is the unique ordered monomial of multi-degree β =

deg(wj) + deg(wi). In the particular cases when (i, j) ∈ C(n, 2, d), one has wiwj = Tβ , so φij = 1. The

nonzero coefficients φji and φij are uniquely determined by the matrix q, see (4.6). It follows that the

equalities

φjiTβ = wjwi = gjiwiwj = gjiφijTβ

hold in An
q, so (gjiφij − φji)Tβ = 0. But Tβ is in the C-basis of An

q, and therefore

gji =
φji

φij
∈ C×, (5.2)

for all 0 ≤ i ≤ j ≤ N , which agrees with (4.6). This determines a unique multiplicatively anti-symmetric

matrix g with the required properties, and therefore the quantum space AN
g is also uniquely determined.

The image of vn,d is the subalgebra of An
q generated by the ordered monomials Td, which by Theorem

4.5 is exactly the d-Veronese (An
q)

(d).

Conversely, if g = ∥gij∥ is an (N + 1) × (N + 1) matrix whose entries satisfy (5.2) then g is a

multiplicatively anti-symmetric matrix which determines a quantum space AN
g and the Veronese map

vn,d : AN
g → An

q, yi 7→ wi, 0 ≤ i ≤ N, is well-defined. �

We fix an (n+1)× (n+1) multiplicatively anti-symmetric matrix q defining the quantum space An
q.

Let AN
g be the quantum space defined via the (N +1)× (N +1) matrix g from Lemma 5.1. To simplify

notation, as in the previous subsection, we shall write A = An
q. We know that there is a standard finite

presentation AN
g = C⟨YN ⟩/(Rg), where

Rg := {yjyi − gjiyiyj | 0 ≤ i < j ≤ N} (5.3)

is the reduced Gröbner basis of the ideal J = (Rg) = ker ρ, where ρ is the canonical projection

ρ : C⟨YN ⟩ → C⟨YN ⟩/(Rg) = AN
g . (5.4)

We can lift the Veronese map vn,d : AN
g → A to a uniquely determined homomorphism V : C⟨YN ⟩ →

A(d) extending the assignment

y0 7→ w0, y1 7→ w1, . . . , yN 7→ wN .

It is clear that the map V is surjective, since the restriction V|YN
: YN → (T n)d is bijective, and the set

of ordered monomials (T n)d generates A(d).

Let K := kerV ⊂ C⟨YN ⟩. We want to find the reduced Gröbner basis R0 of the ideal K with respect

to the degree-lexicographic order ≺ on ⟨YN ⟩, where y0 ≺ · · · ≺ yn.

Heuristically, we use the explicit information on the d-Veronese subalgebra A(d) given in terms of

generators and relations in Theorem 4.5, (4.6), and (4.7). In each of these relations we replace wi with

yi, 0 ≤ i ≤ N, preserving the remaining data (the coefficients and the sets of indices), and obtain a

polynomial in C⟨YN ⟩. This yields two disjoint sets of linearly independent quadratic binomials ℜ1 and

ℜ2 in C⟨YN ⟩:
(1) the set ℜ1, corresponding to the set R1 defined in (4.6), consists of

(
N+1
2

)
quadratic relations:

ℜ1 = {Fji = yjyi − φjiyi′yj′ | 0 ≤ i < j ≤ N, i′ < j′, (i′, j′) ∈ C(n, 2, d), yjyi ≻ yi′yj′ , φji ∈ C×}; (5.5)

(2) the set ℜ2, corresponding to the set R2 defined in (4.7), has exactly
(
N+2
2

)
−
(
n+2d

n

)
relations:

ℜ2 = {Fij = yiyj − φijyi′yj′ | (i, j) ∈ MV(n, d), i′ < j′, (i′, j′) ∈ C(n, 2, d), yiyj ≻ yi′yj′ , φij ∈ C×}.
(5.6)
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There is one more set which is contained in K: the set Rg of defining relations for AN
g . Note that Rg

corresponds exactly to R′
1 from (4.8). We set ℜ = ℜ1 ∪ ℜ2 and ℜ′ = Rg ∪ ℜ2. It is not difficult to see

that there are equalities of ideals in C⟨YN ⟩:

(ℜ) = (ℜ1,ℜ2) = (ℜ′) = (Rg,ℜ2)

and that the set of relations ℜ and ℜ′ are equivalent.

It is clear that the set ℜ = ℜ1 ∪ ℜ2 of quadratic polynomials in C⟨YN ⟩ and the set R = R1 ∪ R2 of

relations of the d-Veronese subalgebra A(d) from Theorem 4.5 have the same cardinality. In fact

|ℜ′| = |ℜ| = |R| = (N + 1)2 −
(
n+ 2d

n

)
, (5.7)

as computed in (4.9). We shall prove that the set ℜ = ℜ1 ∪ℜ2 is the reduced Gröbner basis of K, while

ℜ′ is a minimal Gröbner basis of K.

Theorem 5.2. With notation as above, let V : C⟨YN ⟩ → A(d) be the algebra homomorphism extending

the assignment

y0 7→ w0, y1 7→ w1, . . . , yN 7→ wN ,

let K be the kernel of V . Let ℜ = ℜ1 ∪ ℜ2 be the set of quadratic polynomials given in (5.5) and (5.6),

and let ℜ′ = Rg ∪ ℜ2, where Rg is given in (5.3). Then

(1) ℜ is the reduced Gröbner basis of the ideal K.

(2) ℜ′ is a minimal Gröbner basis of the ideal K.

Proof. We start with a general observation. The quantum space A = An
q is a quadratic algebra, therefore

its d-Veronese A(d) ∼= C⟨YN ⟩/K is also quadratic, see Remark 4.2. Hence K is generated by quadratic

polynomials and it is graded by length.

Remark 5.3. It is clear that the sets of leading monomials and the sets of normal monomials satisfy

the following equalities in ⟨YN ⟩:

LM(Rg) = LM(ℜ1) = {yjyi | 0 ≤ i < j ≤ N}
LM(ℜ2) = {yiyj | (i, j) ∈ MV(n, d)}
LM(ℜ) = LM(ℜ1) ∪ LM(ℜ2) = LM(ℜ′)

N(ℜ) = N(ℜ′).

(5.8)

Therefore ℜ′ is a minimal Gröbner basis of the ideal K if and only if ℜ is a reduced Gröbner basis of K.

By Theorem 4.5, the quadratic polynomials Fji(Yn) in (5.5) and Fij(Yn) in (5.6) satisfy

V (Fji(y0, . . . , yN )) = fji(w0, . . . , wN ) = 0, for every 0 ≤ i < j ≤ N

and

V (Fij(y0, . . . , yN )) = fij(w0, . . . , wN ) = 0, for every (i, j) ∈ MV(n, d).

Thus ℜ ⊂ K and, in a similar way, ℜ′ ⊂ K. We shall show that ℜ is a reduced Gröbner basis of K.

As usual, N(K) ⊂ C⟨YN ⟩ denotes the set of normal monomials moduloK, and N(ℜ) ⊂ C⟨YN ⟩ denotes
the set of normal words modulo ℜ. In general,

N(K) ⊆ N(ℜ),

and by Corollary 2.6 equality holds if and only if ℜ is a Gröbner basis of K. Recall from Subsection 2.3

that there are isomorphisms of vector spaces

C⟨YN ⟩ = K ⊕ CN(K), and CN(K) ∼= C⟨YN ⟩/K ∼= A(d).

The ideal K is graded by length, i.e. K =
⊕

j≥0 Kj , with K0 = K1 = 0.

For j ≥ 0, let N(K)j be the set of normal words of length j, with the convention that N(K)0 = {1},
N(K)1 = Yn. As vector spaces,

(C⟨YN ⟩)j = Kj ⊕ CN(K)j , and CN(K)j ∼= A(d)
j = Ajd, for every j ≥ 2.

In particular, (C⟨YN ⟩)2 = K2 ⊕ CN(K)2, so

dim(C⟨YN ⟩)2 = dimK2 + dim(CN(K)2) = dimK2 + dimA2d.
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We know that

dimA2d =

(
n+ 2d

n

)
and dim(C⟨YN ⟩)2 = |(Yn)

2| = (N + 1)2,

where Y 2
n is the set of all words of length two in ⟨YN ⟩. This, together with (5.7), implies

dimK2 = (N + 1)2 −
(
n+ 2d

n

)
= |ℜ|.

Clearly, the set ℜ consists of linearly independent polynomials, therefore dimK2 = dimCℜ = |ℜ|. It

follows that Cℜ = K2, and since K is generated by quadratic polynomials, one has K = (ℜ).
We shall use the following remark.

Remark 5.4. The following are equivalent:

(1) yiyjyk ∈ N(ℜ)3;
(2) yiyj ∈ N(ℜ)2 and yjyk ∈ N(ℜ)2;
(3) (i, j, k) ∈ C(n, 3, d).

Moreover, there are equalities

|N(ℜ)3| = |C(n, 3, d)| =
(
n+ 3d

n

)
. (5.9)

We know that A(d)
3 = A3d, so dimA(d)

3 = dimA3d =
(
n+3d

n

)
, which together with (5.9) imply

|N(ℜ)3| = dimA3d.

It follows from Lemma 2.7 that the set ℜ is a Gröbner basis of the ideal K. The set of leading monomials

LM(ℜ) is an antichain of monomials, hence ℜ is a minimal Gröbner basis. For j > i, every Fji ∈ ℜ
defined in (5.5) is in normal form modulo ℜ \ {Fji}. Similarly, for (i, j) ∈ MV(n, d), every Fij ∈ ℜ
defined in (5.6) is in normal form modulo ℜ \ {Fij}. We have proven that ℜ is a reduced Gröbner basis

of the ideal K.

It follows from Remark 5.3 that ℜ′ is a minimal Gröbner basis of K. �

5.2. The Veronese map vn,d and the reduced Gröbner basis of its kernel.

Theorem 5.5. Let n, d ∈ N and N =
(
n+d
d

)
− 1. Let An

q be a quantum space defined by an (n + 1) ×
(n + 1) deformation matrix q and let AN

g be the quantum space whose multiplicatively anti-symmetric

(N + 1)× (N + 1) matrix g is determined by Lemma 5.1. Let

vn,d : AN
g → An

q

be the Veronese map extending the assignment

y0 7→ w0, y1 7→ w1, . . . , yN 7→ wN .

(1) The image of vn,d is the d-Veronese subalgebra (An
q)

(d) of An
q.

(2) The kernel K := ker(vn,d) of the Veronese map has a reduced Gröbner basis consisting of exactly(
N+2
2

)
−
(
n+2d

n

)
binomials:

Rv
q := {yiyj − φijyi′yj′ | (i, j) ∈ MV(n, d), (i′, j′) ∈ C(n, 2, d), φij ∈ C×}, (5.10)

where Nor(vn,d(yiyj)) = φijvn,d(yi′yj′), yiyj ≻ yi′yj′ , and φij ∈ C× are invariants of (An
q)

(d)

given in Notation 4.6.

Proof. Part (1) follows from Lemma 5.1. For part (2), we first prove that the set Rv
q generates K. The

proof is similar to the argument describing the kernel K = kerV in Theorem 5.2.

Note that Rv
q ⊂ K. Indeed, by direct computation, one shows that vn,d(Rv

q) = R2, the set of

relations of the d-Veronese (An
q)

(d) given in (4.7), so Rv
q ⊂ K. Moreover, it follows from (5.10) that

for each pair (i, j) ∈ MV(n, d) the set Rv
q contains exactly one element, namely yiyj − φijyi′yj′ , where

Nor(vn,d(yiyj)) = φijvn,d(yi′yj′). Here we consider the normal form Nor(vn,d(yiyj)) = Nor(wiwj) =

φijwi′wj′ , see Theorem 4.5(2). Hence

|Rv
q| = |MV(n, d)| =

(
N + 2

2

)
−

(
n+ 2d

n

)
, (5.11)
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where the last equality follows from Lemma 4.4. By Convention 3.9, we identify AN
g

∼= (CT (YN ), •).
Our goal is to show that the two set of normal words N(K) and N(Rv

q) coincide, where

N(K) = N≺0(K) ⊂ CT (YN ), and N(Rv
q) = N≺0(Rv

q) ⊂ CT (YN ),

as in Definition 3.11. There are obvious isomorphisms of vector spaces

AN
g = CT (YN ) = K⊕ CN(K).

For simplicity of notation, we set B = AN
g /K and consider the canonical grading of B induced by the

grading of AN
g . Then

B = AN
g / ker(vn,d) ∼= im(vn,d) = (An

q)
(d),

so there are equalities

(AN
g )m = (CT (YN ))m = (K)m ⊕ (CN(K))m and Bm

∼= (An
q)

(d)
m = (An

q)md, (5.12)

for every m ≥ 2. In particular, for m = 2 one has B2
∼= (An

q)
(d)
2 = (An

q)2d and

dim(AN
g )2 = dim(K)2 + dim(An

q)2d, hence

(
N + 2

2

)
= dim(K)2 +

(
n+ 2d

2

)
,

which implies

dim(K)2 =

(
N + 2

2

)
−

(
n+ 2d

2

)
= |Rv

q|.

It is clear that the set Rv
q is linearly independent, so it is a basis of the graded component K2, and

(K)2 = CRv
q. But the ideal K is generated by homogeneous polynomials of degree 2, therefore

K = K2 = (Rv
q), (5.13)

so Rv
q generates the kernel K.

We are now ready to prove that Rv
q is a Gröbner basis of K. We shall provide two proofs.

First proof. Here we use an analogue of Remark 5.4 in the settings of a quantum space.

Remark 5.6. The following are equivalent:

(1) yiyjyk ∈ N(Rv
q)3;

(2) yiyj ∈ N(Rv
q)2 and yjyk ∈ N(Rv

q)2;

(3) (i, j, k) ∈ C(n, 3, d).

Moreover there are equalities

|N(Rv
q)3| = |C(n, 3, d)| =

(
n+ 3d

n

)
. (5.14)

By (5.12), dimB3 = dimA3d =
(
n+3d

n

)
, which together with (5.14) implies

|N(Rv
q)3| = dimB3.

Now Lemma 3.14 implies that Rv
q is a Gröbner basis of the ideal K = ker(vn,d). It is clear that Rv

q is

the reduced Gröbner basis of K.

Second proof. We shall use Theorem 5.2 and ideas from [31]. By (5.13), we know that the set Rv
q

generates K. Consider now the ideal Nor−1(K) in C⟨YN ⟩. It is easy to see that

Nor−1(K) = Jg + (Rv
q) = (Rg) + (Rv

q) = K,

where K = kerV is the kernel of the epimorphism V : C⟨YN ⟩ → A(d) from Theorem 5.2. Indeed, the

polynomials in Rg and Rv
q, considered as elements of the free associative algebra C⟨YN ⟩, satisfy

Rg = ℜ′
1 and Rv

q = ℜ2,

where ℜ′
1 and ℜ2 are the relations given in Theorem 5.2, see (4.8) and (5.6). Hence by the same theorem,

the set ℜ′ = Rg ∪ Rv
q is a minimal Gröbner basis of the ideal K. Theorem 5.2 also implies that the

disjoint union of quadratic relations ℜ = ℜ1 ∪ℜ2 is the reduced Gröbner basis of K in C⟨YN ⟩. It follows
from [31, Proposition 9.3(3)] that the intersection

G = ℜ ∩ CN(Jg) = ℜ ∩ CN(Rg)
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is the reduced Gröbner basis of the ideal K = ker(vn,d). Moreover, we have N(Jg) = CT (YN ). Then the

obvious equalities

G = ℜ ∩ CN(Jg) = (ℜ1 ∪ ℜ2) ∩ CT (YN ) = ℜ2 = Rv
q

imply that Rv
q is the reduced Gröbner basis of K. �

We remark that [31, Proposition 9.3(4)] implies that the set Rg∪G = ℜ′
1∪ℜ2 is the reduced Gröbner

basis of the ideal K. This fact agrees with Part (3) of our Theorem 5.2, proven independently.

Corollary 5.7. The set of leading monomials for the Gröbner basis Rv
q does not depend on the defor-

mation matrix q and equals

LM(Rv
q) = {yiyj | (i, j) ∈ MV(n, d)}.

6. Segre products and Segre maps

In this section we introduce and investigate non-commutative analogues of the Segre embedding

Sn,m : Pn × Pm → P(n+1)(m+1)−1. The main result of the section is Theorem 6.10, which describes

explicitly the reduced Gröbner basis for the kernel of the non-commutative Segre map. We first recall

the notion of Segre product of graded algebras, following [33, Section 3.2].

Definition 6.1. Let

R =
⊕
k∈N0

Rk and S =
⊕
k∈N0

Sk

be graded algebras. The Segre product of R and S is the graded algebra

R ◦ S :=
⊕
k∈N0

Rk ⊗ Sk.

Clearly, the Segre product R ◦ S is a subalgebra of the tensor product algebra R ⊗ S. Note that

the embedding is not a graded algebra morphism, as it doubles grading. The Hilbert function of R ◦ S
satisfies

hR◦S(t) = dim(R ◦ S)t = dim(Rt ⊗ St) = dim(Rt) · dim(St) = hR(t) · hS(t).

Given n,m ∈ N, let
N := (n+ 1)(m+ 1)− 1.

Let q and q′ be two multiplicatively anti-symmetric matrices of sizes (n+1)×(n+1) and (m+1)×(m+1),

respectively, and let An
q and Am

q′ be the corresponding quantum spaces. We shall construct a quantum

space AN
g defined via N + 1 (double indexed) generators

Znm = {ziα | i ∈ {0, . . . , n}, α ∈ {0, . . . ,m}}

and an (N + 1)× (N + 1) multiplicatively anti-symmetric matrix g uniquely determined by q and q′.

Convention 6.2. We order the set Znm using the lexicographic ordering on the pairs of indices (i, α), 0 ≤
i ≤ n, 0 ≤ α ≤ m, that is, ziα ≺ zjβ if and only if either (a) i < j, or (b) i = j, and α < β. Thus

Znm = {z00 ≺ z01 ≺ · · · ≺ z0m ≺ z10 ≺ · · · ≺ znm−1 ≺ znm}. (6.1)

When no confusion arises, we write Z for Znm. As usual, we consider the free associative algebra C⟨Z⟩
and fix the degree-lexicographic ordering ≺ induced by (6.1) on the free monoid ⟨Z⟩.

In this section, we shall work simultaneously with three disjoint sets of variables, X = Xn, Y = Ym,

and Z = Znm. We shall use notation T (X) = T n, T (Y ) = T m and T (Z) for the corresponding sets

of ordered terms in variables X, respectively Y , respectively Z. In particular, the set T (Z) of ordered

monomials in Z with respect to the ordering (6.1) is

T (Z) = {zk00
00 zk01

01 . . . zk10
10 . . . zknm

nm | kiα ∈ N0, i ∈ {0, . . . , n}, α ∈ {0, . . . ,m}}.

As in Convention 3.9, we identify An
q with (CT (X), •) and Am

q′ with (CT (Y ), •).
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Remark 6.3. Consider the free associative algebra C⟨X;Y ⟩ = C⟨x0, . . . , xn, y0, . . . ym⟩, generated by

the disjoint union Xn ⊔ Ym, and the free monoid ⟨X;Y ⟩ = ⟨x0, . . . , xn, y0, . . . ym⟩ with the canonical

degree-lexicographic ordering ≺ extending x0 ≺ x1 ≺ . . . xn ≺ y0 ≺ y1 ≺ . . . ym. Let

R0 = R(An
q ⊗Am

q′) = Rq ∪Rq′ ∪ {yαxi − xiyα | i ∈ {0, . . . , n}, α ∈ {0, . . . ,m}}.

Then R0 is the reduced Gröbner basis of the two-sided ideal (R0) of C⟨X;Y ⟩ and there is an isomorphism

of algebras

C⟨X;Y ⟩/(R0) ∼= An
q ⊗Am

q′ .

Proposition 6.4. In notation as above, let An
q, and Am

q′ be quantum spaces and let N := (n+1)(m+1)−1.

Then there exists a unique (N + 1) × (N + 1) multiplicatively anti-symmetric matrix g = ∥giα,jβ∥ such

that the assignment

ziα 7→ xi ⊗ yα, for every i ∈ {0, . . . , n} and every α ∈ {0, . . . ,m},

extends to a well-defined C-algebra homomorphism

sn,m : AN
g → An

q ⊗Am
q′ . (6.2)

Moreover, the following conditions hold

(1) The quantum space AN
g is presented as

AN
g = C⟨Z⟩/(Rg),

where

Rg := {zjβziα − (gjβ,iα)ziαzjβ | zjβ ≻ ziα, zjβ , ziα ∈ Z} (6.3)

is a reduced Gröbner basis for the two-sided ideal (Rg) in C⟨Z⟩.
(2) There is an isomorphism of algebras AN

g
∼= (CT (Z), •), where the multiplication • is defined as

u • v := NorRg(uv).

(3) The image sn,m(AN
g ) is the Segre subalgebra An

q ◦ Am
q′ of An

q ⊗Am
q′ .

We call the homomorphism sn,m the (n,m)-Segre map.

Proof. Assume that there exists an (N + 1) × (N + 1) multiplicatively anti-symmetric matrix g such

that sn,m is a homomorphism of C-algebras. Let Z = Znm as above be the set of generators of AN
g . We

compute sn,m(ziαzjβ) in two different ways:

sn,m(ziαzjβ) = sn,m(ziα)sn,m(zjβ)

= (xi ⊗ yα)(xj ⊗ yβ) = (xixj)⊗ (yαyβ)

sn,m(ziαzjβ) = sn,m(giα,jβ(zjβziα)) = giα,jβsn,m(zjβziα)

= giα,jβsn,m(zjβ)sn,m(ziα) = giα,jβ(xjxi ⊗ yβyα)

= giα,jβqjiq
′
βα(xixj)⊗ (yαyβ).

Therefore,

(xixj)⊗ (yαyβ) = (giα,jβqjiq
′
βα)(xixj)⊗ (yαyβ)

for every i, j ∈ {0, . . . , n} and every α, β ∈ {0, . . . ,m}. It follows that g = ∥giα,jβ∥ is a multiplicatively

anti-symmetric matrix uniquely determined by the equalities

giα,jβ = (qjiq
′
βα)

−1 = qijq
′
αβ , (6.4)

We remark that the matrix g is equal to the the Kronecker product q⊗ q′ of the matrices q and q′.

Conversely, if g is the multiplicatively anti-symmetric matrix defined via (6.4), then the Segre map

(6.2) is a well-defined algebra homomorphism. Conditions (1) and (2) follow straightforwardly from the

discussion in Section 3, see Remarks 3.4 and Convention 3.9. The Segre subalgebra An
q ◦Am

q′ is generated

by the elements xi ⊗ yα for i ∈ {0, . . . , n} and α ∈ {0, . . . ,m}. By construction sn,m(ziα) = xi ⊗ yα,

hence the image sn,m(AN
g ) is the Segre subalgebra An

q ◦ Am
q′ , which proves (3). �

As usual, we identify the quantum space AN
g with (CT (Z), •), see Convention 3.9.
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Remark 6.5. Being a Segre product, the algebra An
q ◦Am

q′ = sn,m(AN
g ) inherits various properties from

the two algebras An
q and Am

q′ . In particular, since the latter are one-generated, quadratic, and Koszul,

it follows from [33, Proposition 3.2.1] that the algebra An
q ◦ Am

q′ is also one-generated, quadratic, and

Koszul. Clearly, the set {xi ⊗ yα | i ∈ {0, . . . , n}, α ∈ {0, . . . ,m}} of cardinality N + 1 = (n+ 1)(m+ 1)

is a generating set of An
q ◦ Am

q′ .

Lemma 6.6. The following equalities hold in the Segre product An
q ◦ Am

q′ , for all i, j, α, β, such that

0 ≤ i < j ≤ n and 0 ≤ α < β ≤ m:

(xi ◦ yα)(xj ◦ yβ) = (xixj) ◦ (yαyβ). (6.5)

(xj ◦ yβ)(xi ◦ yα) = qjiq
′
βα(xixj) ◦ (yαyβ) = qjiq

′
βα(xi ◦ yα)(xj ◦ yβ).

(xj ◦ yα)(xi ◦ yβ) = qjiq
′
αβ(xixj) ◦ (yβyα) = qjiq

′
αβ(xi ◦ yβ)(xj ◦ yα).

(6.6)

(xi ◦ yβ)(xj ◦ yα) = xixj ◦ yβyα = q′βα(xixj) ◦ (yαyβ) = q′βα(xi ◦ yα)(xj ◦ yβ) (6.7)

(xj ◦ yα)(xi ◦ yα) = qji(xixj) ◦ (yαyα) = qji(xi ◦ yα)(xj ◦ yα)
(xi ◦ yβ)(xi ◦ yα) = q′βα(xixi) ◦ (yαyβ) = q′βα(xi ◦ yα)(xi ◦ yβ)

(6.8)

Remark 6.7. (1) The equalities given in Lemma 6.6 imply the following explicit list of defining

relations Rg for the quantum space AN
g :

zjβziα − qjiq
′
βαziαzjβ ∈ Rg by (6.6)

zjαziβ − qjiq
′
αβziβzjα ∈ Rg by (6.6)

zjαziα − qjiziαzjα ∈ Rg by (6.8)

ziβziα − q′βαziαziβ ∈ Rg by (6.8)

, (6.9)

for every 0 ≤ i < j ≤ n and every 0 ≤ α < β ≤ m.

(2) The equalities (6.7) imply that the following quadratic binomials in AN
g are in the kernel of the

Segre map:

ziβzjα − q′βαziαzjβ ∈ ker s(n,m), (6.10)

for every 0 ≤ i < j ≤ n and every 0 ≤ α < β ≤ m.

Notation 6.8. We denote by MS(n,m) the following collection of quadruples:

MS(n,m) = {(i, j, β, α) | 0 ≤ i < j ≤ n, 0 ≤ α < β ≤ m}. (6.11)

Lemma 6.9. The cardinality of MS(n,m) is

|MS(n,m)| =
(
n+ 1

2

)(
m+ 1

2

)
. (6.12)

Proof. Clearly, |{(i, j) | 0 ≤ i < j ≤ n}| =
(
n+1
2

)
. Moreover, for each fixed pair (i, j), 0 ≤ i < j ≤ n, the

number of quadruples {(i, j, β, α) | 0 ≤ α < β ≤ m} is exactly
(
m+1
2

)
, which finishes the proof. �

We keep the notation and conventions of this section, in particular we identify the quantum space AN
g

with (CT (Z), •). Recall that if P ⊂ AN
g is an arbitrary set, then LM(P ) = LM≺0(P ) denotes the set

of leading monomials

LM(P ) = {LM≺0(f) | f ∈ P}.

A monomial T ∈ T (Z) is normal modulo P if it does not contain as a subword any u ∈ LM(P ). The

set of all normal mod P monomials in T (Z) is denoted by N≺0
(P ), so

N≺0(P ) = {T ∈ T (Z) | T is normal mod P}.

A criterion for a Gröbner basis F of an ideal K = (F ) in AN
g follows straightforwardly as an analogue of

Lemma 3.13, in which we only replace YN with the set of generators Z, and keep the remaining notation

and assumptions.
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Theorem 6.10. The set

Rs
q,q′ := {ziβzjα − q′

βαziαzjβ | 0 ≤ i < j ≤ n, 0 < α < β ≤ m} ⊂ AN
g

consisting of
(
n+1
2

)(
m+1
2

)
quadratic binomials is a reduced Gröbner basis for the kernel of the Segre map

sn,m : AN
g → An

q ⊗Am
q′ .

Proof. It is clear that
∣∣Rs

q,q′

∣∣ = |MS(n,m)| =
(
n+1
2

)(
m+1
2

)
. We set

K = ker sn,m, N(K) = N≺0(K),

R = Rs
q,q′ , N(R) = N≺0(R).

By Remark 6.7(2), R ⊂ K. We claim that R generates K as a two-sided ideal of AN
g .

The image sn,m(AN
g ) is the Segre product An

q ◦ Am
q′ , which is a quadratic algebra, see Remark 6.5.

Therefore the kernel K is generated by polynomials of degree two. Moreover, there is an isomorphism of

vector spaces

CN(K) ∼= An
q ◦ Am

q′ .

In particular,

dim(CN(K))2 = dim((An
q)2) dim((Am

q′)2) =

(
n+ 2

2

)(
m+ 2

2

)
. (6.13)

It is clear that (AN
g )2 = (CT (Z))2 = (K)2 ⊕ (CN(K))2, hence

dim(K)2 = dim(AN
g )2 − dim(CN(K))2 =

(
N + 2

2

)
−
(
n+ 2

2

)(
m+ 2

2

)
=

(
(n+ 1)(m+ 1) + 1

2

)
−
(
n+ 2

2

)(
m+ 2

2

)
=

(
n+ 1

2

)(
m+ 1

2

)
= |R| .

Now the equality |R| = dim(K)2, together with the obvious linear independence of the elements of R,

imply that R is a C-basis of (K)2, so it spans the space (K)2. But we know that the kernel K is generated

by polynomials of degree two, hence K = (R).

Next we shall prove that R is a Gröbner basis of the ideal K. Let B = AN/K. Then

B = AN/ ker(sn,m) ∼= sn,m(AN ) = An
q ◦ Am

q′ .

Hence

dimB3 = dim(An
q ◦ Am

q′)3 = dim(An
q)3· dim(Am

q′)3 =

(
n+ 3

3

)(
m+ 3

3

)
. (6.14)

We claim that dimB3 = |(N(R))3|. Indeed, by the identification AN
g ≃ (CT (Z), •) we have

(AN
g )3 = (CT (Z))3 = C{ziαzjβzkγ | (i, α) ≤ (j, β) ≤ (k, γ), 0 ≤ i, j, k ≤ n, 0 ≤ α, β, γ ≤ m}.

Clearly, a monomial ziαzjβzkγ ∈ (T (Z))3 is normal modulo R if and only if each of its subwords of

length 2, ziαzjβ and zjβzkγ , is normal modulo R. Moreover,

N(R)2 = {ziαzjβ | 0 ≤ i ≤ j ≤ n, 0 ≤ α ≤ β ≤ m},

therefore

N(R)3 = {ziαzjβzkγ | 0 ≤ i ≤ j ≤ k ≤ n, 0 ≤ α ≤ β ≤ γ ≤ m}. (6.15)

It follows from (6.15) that

|N(R)3| =
(
n+ 3

3

)(
m+ 3

3

)
,

which together with (6.14) give the desired equality dimB3 = |(N(R))3|. Now Lemma 3.14 implies that

R is a Gröbner basis of the ideal K. It is obvious that R is a reduced Gröbner basis of K. �
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7. Examples

We present here some example that illustrate the results of our paper.

Example 7.1 (The non-commutative twisted cubic curve). Let n = 1 and d = 3. Then

X = {x0, x1}, q =

(
1 q−1

q 1

)
, A1

q = C⟨x0, x1⟩/(x1x0 − qx0x1).

In this case N =
(
1+3
3

)
−1 = 3 and the corresponding quantum space A3

g is defined by the following data

Y = {y0, y1, y2, y3}, q =


1 q−3 q−6 q−9

q3 1 q−3 q−6

q6 q3 1 q−3

q9 q6 q3 1

 .

The kernel ker(v1,3) of the Veronese map v1,3 : A3
g → A1

q has a reduced Gröbner basis G given below

G = {y21 − q2y0y2, y1y2 − qy0y3, y
2
2 − q2y1y3}.

We have used the fact that in this case MV(1, 3) = {(1, 1), (1, 2), (2, 2)}.
Setting q = 1 we obtain that the defining ideal for the commutative Veronese is generated by the

three polynomials {y21 − y0y2, y1y2 − y0y3, y
2
2 − y1y3}. This is exactly the set of generators described and

discussed in [24, pp. 23, 51].

Example 7.2 (The non-commutative rational normal curves). Generalising the previous example, we

consider n = 1 and d arbitrary. In notation as above, we write

A1
q = C⟨x0, x1⟩/(x1x0 − qx0x1).

In this case, N =
(
d+1
d

)
− 1 = d and the corresponding quantum space Ad

g is determined by the data

Y = {y0, y1, . . . , yd}, q =



1 q−d q−2d . . . . . . . . . q−d2

qd 1 q−d q−d(d−1)

q2d qd 1
. . . q−d(d−2)

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

qd(d−1) . . . 1 q−d

qd
2

qd(d−1) qd(d−2) . . . . . . qd 1


. (7.1)

Observe that whenever q is a d-th root of unity, the derived (1, d)-quantum space is a commutative

algebra.

The kernel ker(v1,d) of the Veronese map v1,d : Ad
g → A1

q has a reduced Gröbner basis G given by
(
d
2

)
quadratic relations:

G = {yiyj − hij | 1 ≤ i ≤ j ≤ d− 1}, hij =

{
qi(d−j)y0yi+1 i+ j ≤ d

qi(d−j)yi+j−dyd i+ j > d
.

Once again, for q = 1 we obtain that a reduced Gröbner basis for the defining ideal of the commutative

rational normal curve (see [24, Example 1.16]).

Example 7.3 (The non-commutative Veronese surface). Let n = d = 2, that is,

X = {x0, x1, x2}, q =

 1 q−1
10 q−1

20

q10 1 q−1
21

q20 q21 1

 ,

A2
q = C⟨x0, x1, x2⟩/(x1x0 − q10x0x1, x2x0 − q20x0x2, x2x1 − q21x1x2).

22



In this case N = 5 and the corresponding (2, 2)-quantum space A5
g is completely determined by the data

Y = {y0, y1, y2, y3, y4, y5}, g :=



1 q−2
10 q−2

20 q−4
10 q−2

20 q
−2
10 q−4

20

q210 1 q−1
20 q

−1
21 q10 q−2

10 (q10q20q21)
−1 q−2

20 q
−2
21

q220 q20q21q
−1
10 1 q221q

−2
10 q21q

−1
10 q

−1
20 q−2

20

q410 q210 q−2
21 q

2
10 1 q−2

21 q−4
21

q220q
2
10 q10q20q21 q−1

21 q10q20 q221 1 q−2
21

q420 q220q
2
21 q220 q421 q221 1


Observe that inside the matrix g we find as submatrices three occurrences of the matrix in (7.1) for

d = 2 and q equal to one of the three commutation parameters, namely 1 q−2
10 q−4

10

q210 1 q−2
10

q410 q210 1

 ,

 1 q−2
20 q−4

20

q220 1 q−2
20

q420 q220 1

 , and

 1 q−2
21 q−4

21

q221 1 q−2
21

q421 q221 1

 .

The kernel of the Veronese map v2,2 : A5
g → A2

q has a reduced Gröbner basis consisting of six quadratic

polynomials

G = (y21 − q10y0y3, y1y2 − q10y0y4, y
2
2 − q20y0y5,

y2y3 − q221y1y4, y2y4 − q21y1y5, y
2
4 − q21y3y5).

Example 7.4 (The Segre quadric). Let n = m = 1. Following the above conventions, we write

A1
q = C⟨x0, x1⟩/(x1x0 − qx0x1) and A1

q′ = C⟨y0, y1⟩/(y1y0 − q′y0y1).

In this case, N = 3 and the quantum space A3
g is determined by the data

Z = {z00, z01, z10, z11}, g =


1 q′

−1
q−1 (q′q)−1

q′ 1 q−1q′ q−1

q q(q′)−1 1 (q′)−1

qq′ q q′ 1

 .

The kernel ker(s1,1) of the Segre map s1,1 : A3
g → A1

q ⊗A1
q′ has a reduced Gröbner basis consisting of a

single quadratic polynomial

G = {z01z10 − q′z00z11}.

Example 7.5 (The non-commutative Segre threefold). Let n = 2 and m = 1. We consider

A2
q = C⟨x0, x1, x2⟩/(x1x0 − q1,0x0x1, x2x0 − q2,0x0x2, x2x1 − q2,1x1x2)

and

A1
q′ = C⟨y0y1⟩/(y1y0 − q′y0y1).

Then N = 5 and the corresponding (2, 1)-derived quantum space is determined by the following data:

Z = {z00, z01, z10, z11, z20, z21}, g =



1 (q′)−1 q−1
10 (q10q

′)−1 q−1
20 (q20q

′)−1

q′ 1 q−1
10 q

′ q−1
10 q−1

20 q
′ q−1

20

q10 q10(q
′)−1 1 (q′)−1 q−1

21 (q21q
′)−1

q10q
′ q10 q′ 1 q−1

21 q
′ q−1

21

q20 q20(q
′)−1 q21 q21(q

′)−1 1 (q′)−1

q20q
′ q20 q21q

′ q21 q′ 1


.

The kernel ker(s2,1) of the Segre map s2,1 : A5
g → A2

q ⊗ A1
q′ has a reduced Gröbner basis consisting of

three quadratic polynomials

G = {z01z10 − q′z00z11, z01z20 − q′z00z21, z11z20 − q′z10z21}.
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