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Quantum entanglement plays significant roles in quantum information processing. Estimating
quantum entanglement is an essential and difficult problem in the theory of quantum entanglement.
We study two main measures of quantum entanglement: concurrence and convex-roof extended
negativity. Based on the improved separability criterion from the Bloch representation of density
matrices, we derive analytical lower bounds of the concurrence and the convex-roof extended nega-
tivity for arbitrary dimensional bipartite quantum systems. We show that these bounds are better
than the existing ones by detailed examples.

PACS numbers: 03.67.-a, 02.20.Hj, 03.65.-w

As a striking feature of quantum systems [1], quantum entanglement plays an essential role in many quantum
information processing [2–4] such as quantum computation [5], quantum teleportation[6, 7], dense coding [8], quantum
cryptographic schemes [9, 10], entanglement swapping [11–13], remote states preparation [14, 15], and in many
pioneering experiments. To quantify entanglement, various measures have been proposed in recent years [16–18, 21,
22]. The concurrence and the convex-roof extended negativity (CREN) are two of the well defined entanglement
measures. However, due to the extremization involved in the computation of these entanglement measures, only a few
analytic formulas have been found for some very special quantum states. To estimate the concurrence and CREN for
general bipartite states, efforts have been made towards the analytical lower bounds of concurrence and CREN [23–
28]. In Ref. [17], Vicente provided analytical lower bounds of concurrence in terms of the local uncertainty relations
(LUR) and correlation matrix (CM) separability criteria. Recently, we presented a lower bound of concurrence for
four-partite systems in terms of the concurrences for M (2 ≤ M ≤ 3) partite sub-systems. And analytical lower
bounds for any tripartite quantum states [19] and for four-qubit mixed quantum sates have been derived [20].
Generally, one may expect to derive lower bounds of entanglement from separability criteria. Based on the Bloch

representation of a quantum state, a series of separability criteria have been presented recently [17, 18, 24]. In Ref.
[18], we presented an improved separability criterion based on Bloch representation of density matrices, which is
shown to be more effective in detecting entanglement.
In this paper, we provide analytical lower bounds for both concurrence and CREN based on the improved separa-

bility criterion based on Bloch representation. Detailed examples are given to show that these bounds are better than
the ones derived in [17] and in [29].

LOWER BOUNDS OF CONCURRENCE

For a bipartite pure state |φ⟩ ∈ HAB = HA ⊗HB , where HA (HB) denotes the M (N)-dimensional vector space
associated with the subsystem A (B) such that M ≤ N , the concurrence is defined by C (|φ⟩) =

√
2 (1− Trρ2A),

with the reduced matrix ρA obtained by tracing over the subsystem B. The concurrence is then extended to mixed
states ρ by the convex roof:

C (ρ) ≡ min
{pi,|φi⟩}

∑
i

piC (|φi⟩), (1)

where the minimum is taken over all possible ensemble decompositions of ρ =
∑
i

pi |φi⟩ ⟨φi|, pi ≥ 0 and
∑
i

pi = 1.

Under suitable local coordinates, a bipartite pure state |φ⟩ can be written in Schmidt form,

|φ⟩ =
M−1∑
j=0

√
uj |jAjB , ⟩ (2)

where
√
uj , j = 1, ...,M , are the Schmidt coefficients, |jA⟩ and |jB⟩ are the orthonormal bases in HA and HB ,
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respectively. It has been shown that [16],

C2 (|φ⟩) = 2

(
1−

∑
i

ui
2

)
= 4

∑
i<j

uiuj ≥
8

M (M − 1)

∑
i<j

√
uiuj

2

. (3)

For a mixed state ρ, its Bloch representation has the form,

ρ = 1/MN
(
I ⊗ I +

∑
i
riλi

A ⊗ I +
∑

j
sjI ⊗ λj

B +
∑

i,j
tijλi

A ⊗ λj
B
)
, (4)

where ri = M
2 Tr

(
ρλi

A ⊗ IN

)
, sj = N

2 Tr
(
ρIM ⊗ λj

B
)
, and tij = MN

4 Tr
(
ρλi

A ⊗ λj
B
)
,
{
λi
A
}M2−1

i=1
and{

λi
B
}N2−1

i=1
are the traceless Hermitian generators of SU (M) and SU (N), respectively. Particularly,

{
λi
A
}

can be given by {ωl, ujk, vjk} with ωl =
√

2
(l+1)(l+2)

(
l∑
i=0

|i⟩ ⟨i| − (l + 1) |l + 1⟩ ⟨l + 1|
)
, ujk = |j⟩ ⟨k| + |k⟩ ⟨j|,

vjk = −i (|j⟩ ⟨k| − |k⟩ ⟨j|), 0 ≤ l ≤ M − 2 and 0 ≤ j < k ≤ M − 1. The matrix T with entries tij is called the
CM.
In [17], Vicente et al presented a lower bound for concurrence as following,

C (ρ) ≥

√
8

M3N2 (M − 1)
(∥T∥tr −KMN ) , (5)

where ∥·∥tr stands for the trace norm, KMN =
√
MN (M − 1) (N − 1)

/
2.

In [18] we constructed the following matrix:

Smα,β (ρ) =

[
αβEm×m βωm(s)

t

αωm (r) T

]
, (6)

where α and β are nonnegative real numbers, m is a given natural number, t stands for transpose, s (r) denotes the
column vector with components given by si (ri) in (4), and for any column vector x, ωm (x) = (x, ..., x) .︸ ︷︷ ︸

m columns

We have

shown that if a state ρ is separable, then [18]∥∥Smα,β (ρ)∥∥tr ≤ 1

2

√
(2mβ2 +M2 −M) (2mα2 +N2 −N) ≡ K ′

MN . (7)

Before presenting our main result, we investigate the trace norm of Smα,β by considering the following two types of
pure states.

For a general 3 × 3 pure state |φ⟩ in Schmidt form, |φ⟩ =
2∑
j=0

√
uj |jAjB⟩, the density matrix ρ =

2∑
j=0

2∑
k=0

√
ujuk |jAjB⟩ ⟨kAkB | has the form,

ρ =



u0 0 0 0
√
u0u1 0 0 0

√
u0u2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0√
u0u1 0 0 0 u1 0 0 0

√
u1u2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0√
u0u2 0 0 0

√
u1u2 0 0 0 u2


.
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The corresponding CM matrix and Smα,β (ρ) are given by (we choose m = 1 for simplicity), T (ρ) =

[
P 02×6

06×2 D1

]
and

Smα,β (ρ) =

[
A1 03×6

06×3 D1

]
, where

P =

[
9(u0+u1)

4
3
√
3(u0−u1)

4
3
√
3(u0−u1)

4
3(u0+u1+4u2)

4

]
,

A1 =

 αβ 3β(u0−u1)
2

√
3β(u0+u1−2u2)

2
3α(u0−u1)

2
9(u0+u1)

4
3
√
3(u0−u1)

4√
3α(u0+u1−2u2)

2
3
√
3(u0−u1)

4
3(u0+u1+4u2)

4

 ,
and

D1 = diag

(
9
√
u0u1
2

,
9
√
u0u2
2

,
9
√
u1u2
2

,
9
√
u0u1
2

,−
9
√
u0u2
2

,−
9
√
u1u2
2

)
.

While for a separable pure state, ρsep =
2∑
j=0

uj |jAjB⟩⟨jAjB |, we get ρsep = diag (u0, 0, 0, 0, u1, 0, 0, 0, u2), T (ρsep) =[
A2 02×6

06×2 06×6

]
, and Smα,β (ρ

sep) =

[
A1 03×6

06×3 06×6

]
, where

A2 =

[
9(u0+u1)

4
3
√
3(u0−u1)

4
3
√
3(u0−u1)

4
3(u0+u1+4u2)

4

]
,

0m×n denotes an m× n zero matrix.
Noticing that both the matrices T (ρ) and Smα,β (ρ) are block-diagonal, we have the following relations,

∥T∥tr = ∥T sep∥tr + 9 (
√
u0u1 +

√
u0u2 +

√
u1u2) (8)

and ∥∥Smα,β (ρ)∥∥tr = ∥∥Smα,β (ρsep)∥∥tr + 9 (
√
u0u1 +

√
u0u2 +

√
u1u2) . (9)

Similar relations hold for higher dimensional case. For 4× 4 pure states, one has

∥T (ρ)∥tr = ∥T sep∥tr + 16
∑
j<k

√
ujuk (10)

and ∥∥Smα,β (ρ)∥∥tr = ∥∥Smα,β (ρsep)∥∥tr + 16
∑
j<k

√
ujuk . (11)

With the above analysis, we have the following theorem.
Theorem 1: For any quantum state ρ ∈ HAB , and any α, β,m defined in (6), we have

C (ρ) ≥

√
8

M3N2 (M − 1)

(∥∥Smα,β (ρ)∥∥tr −K ′
MN

)
. (12)

Proof. From the Schmidt form (2) of a pure state |ϕ⟩ ∈ HAB , we have ρφ = |φ⟩ ⟨φ| = ρsep + ε = ρsep +
1
2

∑
j<k

√
ujuk (ujk ⊗ ujk − vjk ⊗ vjk), where ρ

sep =
∑
j uj |jAjB⟩ ⟨jAjB | and ε =

∑
j ̸=k |jAjB⟩ ⟨jAjB |. Since ρsep is

diagonal, its Bloch representation is just given by the ωl’s. Therefore, the matrix Smα,β (ρ) is block-diagonal. Thus we
get ∥∥Smα,β (ρ)∥∥tr = ∥∥Smα,β (ρsep)∥∥tr +MN

∑
j<k

√
ujuk ≤ K ′

MN +MN
∑

j<k

√
ujuk. (13)
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From (3) we obtain

C (|ψ⟩) ≥

√
8

M (M − 1)

∑
i<j

√
uiuj


≥

√
8

M3N2 (M − 1)

(∥∥Smα,β (ρ)∥∥tr −K ′
MN

)
. (14)

Assume ρ =
∑
n pn |φn⟩ ⟨φn|,

∑
pn = 1, be the optimal ensemble decomposition such that C (ρφ) =

∑
n pnC (ρφn).

We have

C (ρ) =
∑
n

pnC (ρφn)

≥

√
8

M3N2 (M − 1)

∑
n

pn

(∥∥Smα,β (ρϕn)
∥∥
tr
−K ′

MN

)
.

≥

√
8

M3N2 (M − 1)

(∥∥Smα,β (ρ)∥∥tr −K ′
MN

)
, (15)

which ends the proof.
The following two examples show that the lower bound in Theorem 1 is more effective in entanglement detection.
Example 1: Consider the following 2× 4 state,

ρx = x |ξ⟩ ⟨ξ|+ (1− x) ρ,

where ρ is the bound entangled state considered in [18]:

ρ =



b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0
0 0 b 0 0 0 0 b
0 0 0 b 0 0 0 0

0 0 0 0 1+b
2 0 0

√
1−b2
2

b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0

0 0 b 0
√
1−b2
2 0 0 1+b

2


, (16)

with 0 < b < 1, |ξ⟩ = 1√
2
(|00⟩+ |11⟩) is the singlet state. By choosing m = 1, α =

√
2

M(M−1) and β =
√

2
N(N−1) , we

can directly show that the lower bound given by Theorem 1 is better than that in [17], see Fig. 1.

Example 2: Consider the 3× 3 PPT entangled state constructed in [16]: ρ = 1
4

(
I −

∑
i

|φi⟩ ⟨φi|
)
, where |φ0⟩ =

|0⟩(|0⟩−|1⟩)√
2

, |φ1⟩ = (|0⟩−|1⟩)|2⟩√
2

, |φ2⟩ = |2⟩(|1⟩−|2⟩)√
2

, |φ3⟩ = (|1⟩−|2⟩)|0⟩√
2

, |φ4⟩ = (|0⟩+|1⟩+|2⟩)(|0⟩+|1⟩+|2⟩)
3 . By using the

Theorem 1 in [17] one gets C (ρ) ≥ 0.052. From our Theorem 1 we have C (ρ) ≥ 0.116, which improves the bound in
[17].

LOWER BOUND FOR CONVEX-ROOF EXTENDED NEGATIVITY

In this section we consider the convex-roof extended negativity. For a pure state |ψ⟩ ∈ HAB , the CREN is defined
to be the negativity [30]:

N(|ψ⟩) =
∥∥(|ψ⟩⟨ψ|)TB

∥∥
tr
− 1

M − 1
, (17)

where (|ψ⟩⟨ψ|)TB is the partial transpose of |ψ⟩⟨ψ|.
For a mixed state, the CREN is defined by the convex-roof extension of the negativity [21]. The CREN gives a perfect

discrimination between PPT bound entangled states and separable states. It is a good entanglement measure with
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FIG. 1: Lower bounds of concurrence for state ρx. The blue solid line is for the bound given by Theorem 1, while the red
dashed line for the bound given by CM criterion in [17]

.

the property of entanglement monotone: CREN does not increase under local operations and classical communication
[21].
For a mixed bipartite quantum state ρ the CREN is defined by

N (ρ) = min
ρ=

∑
k pk|ψk⟩⟨ψk|

∑
k

pkN (|ψk⟩). (18)

N (ρ) is zero if and only if ρ is separable. Similar to concurrence, the computation of N (ρ) is also formidably hard.
Based on the improved separability criterion in terms of Bloch representation, we have the following lower bound

of the N (ρ).
Theorem 2: For any quantum state ρ ∈ HAB , we have

N (ρ) ≥ 2

MN (M − 1)

(∥∥Smα,β (ρ)∥∥tr −K ′
MN

)
. (19)

Proof. First for a pure state |φ⟩ with Schmidt form |φ⟩ =
M−1∑
j=0

√
uj |jAjB⟩, one has

N (|φ⟩) = 2

∑
j<k

√
ujuk

/(M − 1). (20)

By (13) we have

∑
j<k

√
ujuk ≥

∥∥∥Smα,β(|φ⟩)∥∥∥
tr
−K ′

MN

MN
. (21)

Let
∑
α
pα |φα⟩ ⟨φα| be the optimal decomposition for ρ such that N (ρ) =

∑
α
pαN (|φα⟩). We obtain

N (ρ) =
∑
α

pαN (|φα⟩) ≥
∑
α

pα
2
(∥∥∥Smα,β(|φα⟩)∥∥∥

tr
−K ′

MN

)
MN(M − 1)

≥ 2

MN (M − 1)

(∥∥Smα,β (ρ)∥∥tr −K ′
MN

)
, (22)
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which ends the proof of Theorem 2.
Example 3: Let us consider the isotropic states [32],

ρx =
1− x

d2
Id ⊗ Id + x |φ+⟩ ⟨φ+| , (23)

where d = M = N , |φ+⟩ = 1√
d

d−1∑
i=1

|ii⟩. In the case of d = 3, we choose m = α = β = 1 for simplicity. Our lower

bound (19) shows that Nm (ρ) ≥ 4
3x− 1

9 , which is better than the result in [29], see Fig. 2.
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FIG. 2: Lower bounds of CREN for the state ρx. The blue solid line is the bound given by our Theorem 2, while the red dashed
line is for the bound given by [29]

.

CONCLUSIONS AND DISCUSSIONS

It is an essential problem in quantum entanglement theory to estimate the concurrence and the CREN. We have
derived analytical lower bounds for both concurrence and CREN by using the extended correlation matrices. The
lower bounds are shown to be greater than the ones given in [17] and [29]. In fact, by adjusting the parameters α,
β and m in our lower bounds, better optimal lower bounds can be obtained. Moreover, by using the generalized
correlation matrices for multipartite quantum systems, our approach can be also applied to the study of entanglement
lower bounds for multipartite quantum systems.
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