Max-Planck-Institut
fiir Mathematik
in den Naturwissenschaften
Leipzig

Tighter constraints of multiqubit
entanglement in terms of Rényi-a
entropy

by

Meng-Li Guo, Bo Li, Zhi-Xi Wang, and Shao-Ming Fei

Preprint no.: 50 2020







Tighter constraints of multiqubit entanglement in terms of Rényi-a entropy

Meng-Li Guo!, Bo-Li?,* Zhi-Xi Wang?®, and Shao-Ming Fei®*

! Department of Mathematics, East China University of Technology, Nanchang 330013, China
2School of Mathematics and Computer science, Shangrao Normal University, Shangrao 334001, China
3School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
4 Maz-Planck-Institute for Mathematics in the Sciences, 04103, Leipzig, Germany

Quantum entanglement plays essential roles in quantum information processing. The monogamy
and polygamy relations characterize the entanglement distributions in the multipartite systems. We
present a class of monogamy inequalities related to the uth power of the entanglement measure
based on Rényi-a entropy, as well as polygamy relations in terms of the uth powered of Rényi-a
entanglement of assistance. These monogamy and polygamy relations are shown to be tighter than
the existing ones.

PACS numbers:

I. INTRODUCTION

Quantum entanglement is one of the most quintessential features of quantum mechanics [1-3], revealing the basic
understanding of the nature of quantum correlations. One distinct property of quantum entanglement is that a
quantum system entangled with another system limits its sharing with other systems, known as the monogamy of
entanglement [4, 5]. The monogamy of entanglement can be used as a resource to distribute a secret key which is
secure against unauthorized parties [6, 7]. It also plays a significant role in many field of physics such as foundations
of quantum mechanics [8, 9], condensed matter physics [10, 11], statistical mechanics [8], and even black-hole physics
[12, 13].

The monogamy inequality was first established by Coffman-Kundu-Wootters (CKW), using tangle as a bipartite
entanglement measure in three-qubit systems [14], and then generalized to multiqubit systems based on various en-
tanglement measure [15]. The assisted entanglement is a dual concept to bipartite entanglement measure, which
shows polygamy relations in multiparty quantum systems. For a three-qubit state papc, a polygamy inequality was
introduced as [16] 7%(pajpc) < 7%(pajB) + T*(pajc), where 7%(paipc) = max ), piT(|1i) a|p) is the tangle of assis-
tance [16, 17], with the maximum taking over all possible pure state decompositions of pap = >, pi [1i) o5 (¥i]. This
tangle-based polygamy inequality was extended to multiqubit systems and also high-dimensional quantum systems
in terms of various entropic entanglement measures [18, 19]. General polygamy inequalities of entanglement is also
established in arbitrary dimensional multipartite quantum systems [20-25].

In this paper, we investigate the monogamy and polygamy constraints based on the uth power of entanglement
measures in terms of the Rényi-« entropy for multiqubit systems. By using the Hamming weight of binary vectors we
present a class of monogamy inequalities for multiqubit entanglement based on the uth power of Rényi-a entanglement
(RaE) [26] for > 1. For 0 < p < 1, we establish a class of tight polygamy inequalities based on the uth power of the
Rényi-a entanglement of assistance (RaEoA). Then, we show that both the monogamy inequalities with ¢ > 1 and the
polygamy inequalities with 0 < p < 1 can be further improved to be tighter under certain conditions. These monogamy
and polygamy relations are shown to be tighter than the existing ones. Moreover, our monogamy inequality is shown
to be more effective for the counterexamples of the CKW monogamy inequality in higher-dimensional systems.

II. PRELIMINARIES

We first recall the conceptions of Rényi-a entropy, Rényi-a entanglement, and multiqubit monogamy and polygamy
inequalities. For any a > 0, a # 1, the Rényi-a entropy of a quantum state p is defined as [27]

1
Sa(p) = 77— log(trp®).
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Sa(p) reduces to the von Neumann entropy when « tends to 1.
The Rényi-a entanglement (RaE) E,, ([¢)) ap) of a bipartite pure state 1)) 45 is defined as

E, (ld’)AB) = Sa(PA)a

where p4 = Trp|t) ap (1] is the reduced state of system A. For a mixed state p4p, the Rényi-a entanglement is given
by

Eo (pas) = manpl ([¥3) aiB),

where the minimum is taken over all possible pure state decompositions of pap = >, pi|¢i) A {(¥4].
As a dual concept to RaE, the Rényi-a entanglement of assistance (RaEoA) is introduced as

B (pajp) = mapr, ([9i) a1B), (1)

where the maximum is taken over all possible pure state decompositions of pap [28].
For any multiqubit state pap,...By_,, @ monogamous inequality has been presented in Ref. [28] for oo > 2,

N—-1
Eo (paiBo-By-1) = D Ea (paB,) (2)
=0

where Eo(pa|B,-..By_,) 18 the RaE of pap,...py—1 with respect to the bipartition between A and By--- By_1, and
E, (pA‘Bi) is the RaE of the reduced density matrix pap,, ¢ =0,--- ,N — 1.
In addition, a class of polygamy inequalities of has been obtained for multiqubit systems,

N-1

ES (paiBy--nx_1) < Y B2 (pajs,) 3)
=0

for 0 < a <2, a# 1, where Ey(papy.--By_,) 18 the RaEoA of pap,...py—1 With respect to the bipartition between A
and By ---Bn_1, and ES (pA|Bz.) is the RaEoA of the reduced density matrix pap,, i =0,--- , N — 1.

In Ref. [29], Kim established a class of tight monogamy inequalities of multiqubit entanglement in terms of Hamming
weight. For any nonnegative integer j with binary expansion j = Z?:_ol 4i2¢, where log, j < n and j; € {0,1} for
i =0,---,n — 1, one can always define a unique binary vector associated with j, j = (jo, 41, - ,Jn—1). The

— —
Hamming weight wg ( J ) of the binary vector j is defined to be the number of 1’s in its coordinates [30]. Moreover,

%
the Hamming weight wg ( J ) is bounded above by log, 7,

wir (7) < logaj <. (4)

Kim proposed the tight constraints of multiqubit entanglement based on Hamming weights [29],

N-1
[Ea (pAlBOBl-nBN—l)]M > /J'WH(j)[Ea(pMB]‘ )}M (5)
=0
for p > 1, and
N-1
[E2(paBomr.my N < S 1on D [EL(pa),))" (6)
=0

for 0 < p < 1. Inequalities (5) and (6) are then further written as

N—
[Ea(pA|BoB;...BN 1) Z PA|B,)]
j=0



for u > 1, and

N—
[Ea(PAIBoBy..BN 1) Z alpaiB;)]"
j=0

for0<pu<1.
In the following we show that these inequalities above can be further improved to be much tighter under certain
conditions, which provide tighter constraints on the multiqubit entanglement distribution.

III. TIGHTER CONSTRAINTS OF MULTIQUBIT ENTANGLEMENT IN TERMS OF RoE

We first present a class of tighter monogamy and polygamy inequalities of multiqubit entanglement in terms of
the pth power of RaE. We need the following results [33]. Suppose k is a real number, 0 < k < 1. Then for any
0 <x <k, we have

(Lthp -1

for p > 1, and
1 -1
(1+{L‘)H S 1+%xu (8)

for 0 < p < 1. Based on the inequality (7), we have the following theorem for RaE.

Theorem 1 For any multiqubit state pap,..By_, and o > 2, we have

N-1 =
(1+ k o — 1\wu ()
Ealoazmm V> 3 (L g (i (9)
7=0
where u > 1, 5 = (jo, -+ ,jn-1) 1S the vector from the binary representation of j, and wy (] ) 1s the Hamming
weight of 7
[Proof] We first prove that
N-1 = N-1 (1+k)“ 1 wir ()
2 Eolpas;)| = _Z(:) (T) [Ea(pas,)] (10)
j= j=

Without loss of generality, we assume that the qubit subsystems By, ..., By_1 are so labeled such that

kEo(paiB;) = Ealpai, ) =0 (11)

for 7=0,1,...,N —2 and some 0 < k < 1.
We first show that the inequality (10) holds for the case of N = 2". For n =1, let pap, and pap, be the two-qubit
reduced density matrices of a three-qubit pure state pap,p,. We obtain

Eutaine) + Euloain)* = [Ealonn (1 o225 (12)
Combining (7) and (11), we have
Ealpap )\, 00" =1 ( Ealpais) )"
(1 N Ea(pA\Bo)) =1 ke (Ea(pABo)> ' 13)
From (12) and (13), we get
(1+k)»—1

[Ea(paiB,) + Ealpas,)]" > [Ea(pas,)] + [Ea(paj,)]"

k+



Therefore, the inequality (10) holds for n = 1.
We assume that the inequality (10) holds for N = 2"~! with n > 2, and prove the case of N = 2". For an

< k‘znilEa(pMBj) from (11). Therefore,

j+2n71 ) —

(N + 1)-qubit pure state pap,B,...Bx_,, We have Ey(pap

2" —1

Z] =2n— 1E (pA‘BJ)
on—1_1

Zj:o Ea(pA|Bj)

0< <k <k,

and

1 . on—l 1 g Z?n_nl 1 Eo( J) g
(Z;V:o Ea(pA|Bj)> = <Zj=0 Ea(pA|Bj)> (1—1—22,L21 L PAIB )

=0 a(PA|B,-)

Thus, we have

(Z;\[__Ol Ea(pA|Bj)> > <Zji01—1 Ea(pABj)> + (1—‘_2# <Zj_;_l Ea(PABj)> .

According to the induction hypothesis, we get

(Zém_l Ea(mej)) Z Z%H_l (w)wH(j)il[Ea(pA'Bj)]u'

j=0 =0 kr

By relabeling the subsystems, the induction hypothesis leads to

271 2"—1 (14 k)* — 1\wn(@)-1
(Zj_inE PA|B; ) > Zj - (7]& ) [Ea(pais;)]

Thus, we have

(Zji;l EQ(PABj)> > Zj:;l (WZ#)WHU)[EQ@A‘BJ)]#.

Now consider a (2" + 1)-qubit state
I'4ByB1...Byn 1 = PABoB1..Bxy—1 @ OBx...Bon_1> (14)
which is the tensor product of pap,s,..By_, and an arbitrary (2" — N)-qubit state op, .. g,n_,. We have
21 (14 k)* — 1\wn ()
[Ea(TABoBy...Bon )" 2 Z (T) [Ea(Tas,)l",

where FA|BJ. is the two-qubit reduced density matrix of I'ap,B,...Bon_,> J = 0,1,...,2" — 1. Therefore,

[Ea(paiBoBy..Bx- )" =[Ea(lA1ByB;...Bsn )"

zz;‘:l (%)Wm[%(mm]“

_Zy 0 (w) ()[Ea(PAmj)]“,

m

where I'g|ByB,..B;n_, 15 separable with respect to the bipartitionn ABy...By_1 and Bpy...Ban_q,
Ea (FAlBoB1---an71) = Ea (pAlBOBl"'BN—l)’ Ea (FA|Bj) = 0 for ] = N, s ,2" — 1, and FABj = pABj for each
j=0,---,N—1. O]

w (7) -
Since ((HZ#) > p<n () for > 1, for any multiqubit state pap,p,...5y_, we have the following relation,

N—=1 /(14 k) — 1\wu (@) N-1 =
[Ea(paiBoB..Bx )" > ZFO (%) [Ea(pais,)" > Zj:o 1" D Ea(pais,)".



FIG. 1: Rényi-a entanglement with respect to p: the solid line is for y1 and the dashed line for y» from the result in [29].

Therefore, our inequality (9) in Theorem 1 is always tighter than the inequality (5).

In fact, the tighter monogamy inequality (9) holds not only for multiqubit systems, but also for some multipartite
higher-dimensional quantum systems, which can be proved in a similar way as in [29]. Here, we show that (9) is
also more efficient than (5) for such higher-dimensional quantum systems. Let us consider the counterexample of the
CKW inequality in tripartite quantum systems [31],

V) aBc = %(|123> — [132) 4 |231) — |213) + |312) — |321)). (15)

One has Eq(|1) aBc) = Sa(p). Taking a = 3, we have E,(|1)) 4pc) = log3 and the RaE of the two-qubit reduced
density matrices are

1
Eo(paiB) = Ea(pajc) = —5 log tro%y = 1.

In this case k =1, for u > 1, we have

(1+k)H—1
kH

Lk =1 _

m
k# 2

Y1 = [EQ(PA\B)]# + [E(X(pA‘C)]M =1+

and

Y2 = [Ea(PAIB)}M + N[Ea(pA\C)]M =1+p.
Therefore, one gets
(I+k)H -1
kH

where p > 1, see Fig. 1. In other words, our new monogamy inequality is indeed tighter than the previous one given
in [29].
Under certain conditions, the inequality (9) can even be improved further to become a much tighter inequality.

[Ea(paB)]" + [Ea(pajc)]" > [Ea(pap)” + plEa(pajo)]”.

Theorem 2 For pn > 1, o > 2 and real number 0 < k < 1, any multiqubit state pap,..By_, Satisfies

1 (L k)R — 1N
Ealpaime s P = Y0 (Y (B (o, (16)
if
N—-1
kEo(paiB,) = ZMH Eo(paB;) (17)
fori=0,1,...,N —2.
[Proof] We need to show
N-1 A VA
1+ k)» -1\’
Ea(pan) | = X () (B lain) (18)



For any multiqubit state pap,..By_,, it is easy to show that

N-1 K N-1 p
2:1 E, (pA\B‘)
E, V] = (E, i :
> uoan) | = (6 Gan)” 1+ 200
and
- p - 0
14 Z;‘V:ll Eo (pajB;) 14 ((1 + k)F — 1> Zé\’:f Eo (pais,)
o (PA|Bo) - ot Ea (pajs,)
Thus,
N-1 a N-1 "
. (I+k)H -1
E, (/)A|Bj) > (Ea (pA\Bo))l + (k“ Z E, pA|B
j=0 j=1
N—1 i
(L+ k) —1Y’
(ku (Ea (pa15,))"
j=0
where the second inequality is due to the induction hypothesis. O

In fact, according to (4), for any p > 1, one has

[Ea(pa|Bo...By )" = Z ( b= 1) (Ea (pais,))"

= Zj:_o (WZJ#)WHU) [Ea(pA\Bj ).

For the case of 1 < 0, we can also derive a tighter upper bound of EX(pa|B,B,..By_,)-

Theorem 3 For any multiqubit state pap,..Bx_, With Eo(pap,) #0,1=0,1,...,N — 1, we have
. 1 N-1
[Ea(paiBoB..By )" < o1 2ico [Ealpas,)]"s (19)
forall p <0 and o > 2.

roo imilar to the proof in , for arbitrary three-qubit states we have
Proof] Simil h fin [32], f bi h bi h
[Ba(paipos))* <[Ea(pajs,) + Ex(pas,)]?

) ., EZ(paiB,)
=[Ea(pajB,)] (1 * EiTuBo))

<[Ealpaiz,)", (20)

=3
2

Eé(pain,)
EZ(pa|By)

[Ea(pajBos,)" < [Ea(pas,)] (21)

"
where the first inequality is from p < 0, the second inequality is due to (1 + ) < 1. Moreover, we have

Combining (20) and (21), we get

(Balpaipos ) < 5 {1Eapaipo)l + [Balpaip, ).

Thus, we obtain

[Ea (pA|BoB1.‘.BN71)}'u

<;{ [Ea(pA|Bo)} gt [Ea(PABl...BN_l)]#}

<% |:Ea(PA|BO):|# + (%)2 [Ea(PA|Bl)r + (%)2 [Ea(pA‘BQ.“BNfl)}M

<...

<%[Ea(PA|BO)r+ (%)2[Ea(PA|Bl)r+ + (%)N 2{E (PA|By 2)}M+ (%)N 2{]5 (PA|By 1)] (22)



One can get a set of inequalities through the cyclic permutation of the pair indices By, By, ..., By—_1 in (22). Summing
up these inequalities, we get (19). O

IV. TIGHTER CONSTRAINTS OF MULTIQUBIT ENTANGLEMENT IN TERMS OF RaEOA

We consider now the Rényi-a entanglement of assistance (RaEoA) defined in (1), and provide a class of polygamy
inequalities satisfied by the multiqubit entanglement in terms of RaEoA.

Theorem 4 For any multiqubit state pap,..By_, and 0 < pu <1, 0 < a <2, a # 1, we have

N—-1

# (1+kl‘—1)w}1(3) a

[Eg(pA\BoBL..BN 1 Ea(pA‘Bj)]u' (23)

7=0
[Proof] Similar to proof in Ref. [29], we just need to prove

N— " 1

N [ wi (F
Z alpas,)| < (%) ( )[EZ(PA|BJ)]“- (24)
j=0 =0

Firstly, assume that the qubit subsystems By, ..., By_1 satisfies
kEq(paiB,) = Eq(paiB,,,) >0, (25)

where j = 0,1,...,N —2 and 0 < k < 1. Similar to the proof of Theorem 1, we first show that the inequality (24)
holds for a three-qubit pure state pap,p,. We have

[Ea(paipo) + Ealpas)l" :[EZ(/J’A\BO)]“(l + %AIBI)V

E&(paiB,)
. ooasre—1(Epas))”
e R <Eg<pABO>H
~ (o + Y e g1

where the inequality is due to (8).
Then we assume that the inequality (24) holds for N = 2"~! with n > 2. Consider the case of N = 2". For an
(N +1)-qubit pure state pap,B,...By_, With its two-qubit reduced density matrices pap,, j = 0,1,..., N —1, we have

EZ(PAlBHgnﬂ) < k2n71E§(pA‘Bj) due to the ordering of subsystems in the inequality (25). Then, we get

on_q "
Zj:2"*1 Eg (pA\BJ )

0< == <k <k<1,
Ej:O Egz(pA|Bj)
and
u I 2" 1 H
N-1 N . 2o Balpars,)
(Z.O Eammn) =<Z.O Ea@A'B],)) <1+ 5
J= = ijo E&(pas;)
Hence,

(Zj.v_olE;mBj)) S<ZjiollEa(pABj>> +“+,’jff”<Zin§IEz(pAB,->> -

According to the induction hypothesis, we get

n—1_ n-1 BV — 1\ wu()-1
(Zj_o 1E PA|B> <Zj o 1(%) ’ [Eq(paiB,)]"



By relabeling the subsystems, the induction hypothesis leads to

2" —1

2" -1 (14 k)" — 1\wn(@)-1
(ZFWE (P, ) <Y L ()T e
Therefore,
2"-1 2"—1 (L + K — 1\wn(@) p
(Z]—_O Ea(pais, > <Zj o <7M) [Ea(pais,)]"-

Consider the (2" + 1)-qubit state (14). We have
[Eg(pA|BoB1-~BN—1)]M :[EG(FA|BoBl .Ban _ 1)]M

" k) — 1\wn()
< (Y g, )

(Y g

[
Since (14'2# < for 0 < p <1, it is easily seen that (23) is tighter than (6).
As an example, let us consider the three-qubit W-state [34],
1
W)apc = —=(|211) + [121) + [112)). (26)

V3
We have E4(|1)) ajpc) = Sa(p) =1log3 — 2 and

1 2
Eq(pais) = Eq(pajc) = —3 log tro?y = 3
In the case of k =1 and 0 < i < 1, we have

LR S T L L

= [E° " -
ys = [Eq(pap)]" + 3 i 3

and
a a 2
ys = [Eq(pap)]" + ulES (pajo)]t = (g)”(l + ).
Therefore, we get

(1+ k-1

[Eq(pap)]" + o
where 0 < p < 1, see Fig. 2.
Similar to the improvement from the inequality (9) to the inequality (16), we can also improve the polygamy

inequality in Theorem 4. The proof is similar to the Theorem 2.

[Eq(pajc)" < [Ealpap)) + plEa(pajc)]”

Theorem 5 For 0 < pu<1,0<a <2, a#1 and 0 <k <1, we have for any multiqubit state pap,..By_1;

B2 paime e P <30 (Y B o, (21)

if
alpaip,) > Z] iy Balpayn;) (28)

fori=0,1,...,N — 2.
Since wH(;) < j, for 0 < p <1 we obtain

N
(Ea(paiBo..By )" <
=0

= Zj‘\:ol (@iﬁ#)‘w(i) [EG(paB;)]"

Therefore, for any multiqubit state pap,..pBy_, satisfying the condition (28), the inequality (27) of Theorem 5 is
tighter than the inequality (23) of Theorem 4.

1<u+mﬂ—1f

L > ‘ (Ea (PAIBj))N
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FIG. 2: Rényi-a entanglement y with respect to p: the solid line is for y3 and the dashed line for ys4 from the result in [29].

V. CONCLUSION

Quantum entanglement is the essential resource in quantum information. The monogamy and polygamy relations
characterize the entanglement distributions in the multipartite systems. Tighter monogamy and polygamy inequalities
give finer characterization of the entanglement distribution. In this article, by using the Hamming weights of binary
vectors we have proposed a class of monogamy inequalities related to the uth power of the entanglement measure
based on Rényi-a entropy, polygamy relations in terms of the puth powered of of RaEoA for 0 < u < 1. These new
monogamy and polygamy relations are shown to be tighter than the existing ones. Moreover, it has been shown that
our monogamy inequality is effective for the counterexamples of the CKW monogamy inequality in higher-dimensional
systems. Our results may highlight further investigations on the entanglement distribution in multipartite systems.
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