Max-Planck-Institut
 für Mathematik
 in den Naturwissenschaften Leipzig

The reduction of the number of incoherent Kraus operations for qutrit systems
by
Lingyun Sun, Jing Wang, Ming Li, Shu-Qian Shen, Lei Li, Shao-Ming Fei, and Jianhuan Qiao

The reduction of the number of incoherent Kraus operations for qutrit systems

Jiahuan Qiao ${ }^{1}$, Lingyun Sun ${ }^{1}$, Jing Wang ${ }^{1}$, Ming Li ${ }^{1}$, Shuqian Shen ${ }^{1}$, Lei Li^{1}, and Shaoming $\mathrm{Fei}^{2,3}$
${ }^{1}$ College of the Science, China University of Petroleum, 266580 Qingdao, China
${ }^{2}$ School of Mathematical Sciences, Capital Normal University, 100048 Beijing, China
${ }^{3}$ Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany

Abstract

Quantum coherence is a fundamental property that can emerge within any quantum system. Incoherent operations, defined in terms of the Kraus decomposition, take an important role in state transformation. The maximum number of incoherent Kraus operators has been present in [A. Streltsov, S. Rana, P. Boes, J. Eisert, Phys. Rev. Lett. 119. 140402 (2017)]. In this work, we show that the number of incoherent Kraus operators for a single qubit can be reduce from 5 to 4 by constructing a proper unitary matrix. For qutrit systems we further obtain 32 incoherent Kraus operators, while the upper bound in the research of Sterltsov gives 39 Kraus operators. Besides, we reduce the number of strictly incoherent Kraus operators from more than 15 to 13. And we consider the state transformation via single qutrit strictly incoherent operation and incoherent operation.

PACS numbers: 03.67.-a, 02.20.Hj, 03.65.-w

I.INTRODUCTION

Quantum resource theories [1, 2] offer a powerful framework for understanding the natural change of certain physical properties in a physical system and their applications for quantum technology. In recent years, a lot of works on the development of quantum resource theory in different physics fields have been done, such as the quantum resource theory of entanglement [3], the quantum resource theory of thermodynamics [4], the quantum resource theory of coherence [5] and so on. The general structure of quantum resource theory has three ingredients in common: free states, free operations and resource states. The basic requirement of resource theory is that free operations cannot generate a resource state from a free one. Free states can be created and performed at no cost, and any state outside of the set of free states is called a resource state.

As an important physical resource, quantum coherence [6] has found use in a variety of physical tasks in quantum information processing, such as quantum algorithm [7], quantum thermodynamics [8, 9], metrology [10], and quantum biology [11]. Let $\{|i\rangle\}(i=1, \ldots, d)$ be a paticular basis in a d-dimensional Hilbert space \mathcal{H}_{d}. A state is called incoherent state if it is diagonal in this basis and otherwise coherent. The structure of the incoherent states is as follows

$$
\begin{equation*}
\delta=\sum_{i=1}^{d} \delta_{i}|i\rangle\langle i|, \tag{1}
\end{equation*}
$$

where $\sum_{i=1}^{d} \delta_{i}=1$.
Depending on the different physical requirement, there exist different types of incoherent operations. The important free operations are known as incoherent operations(IO) [5] and strictly incoherent operations(SIO) [12]. We denote \mathcal{I} as the set of all incoherent states. A completely positive and trace-preserving map(CPTP) Φ is said to be an IO if Φ has a Kraus operator representation $\left\{K_{n}\right\}$ such that $K_{n} \rho K_{n}^{\dagger} / \operatorname{Tr}\left[K_{n} \rho K_{n}^{\dagger}\right] \in \mathcal{I}$ for all n and $\rho \in \mathcal{I}$, while SIO require further $\left\{K_{n}\right\}$ and $\left\{K_{n}^{\dagger}\right\}$ are incoherent.

Recently, A. Streltsov et al. in [13] have derived the upper bound of the number of incoherent Kraus operators in a general incoherent operation. For any single qubit IO, the canonical representation of the Kraus operator is given by the set

$$
\left\{\left(\begin{array}{cc}
a_{1} & b_{1} \tag{2}\\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
a_{2} & b_{2}
\end{array}\right),\left(\begin{array}{cc}
a_{3} & 0 \\
0 & b_{3}
\end{array}\right),\left(\begin{array}{cc}
0 & b_{4} \\
a_{4} & 0
\end{array}\right),\left(\begin{array}{cc}
a_{5} & 0 \\
0 & 0
\end{array}\right)\right\},
$$

where $a_{i} \in \mathbb{R}, b_{j} \in \mathbb{C}$. Moreover, a_{i} and b_{j} should satisfy the equalities $\sum_{i=1}^{5} a_{i}^{2}=\sum_{j=1}^{4}\left|b_{j}\right|^{2}=1$ and $a_{1} b_{1}+a_{2} b_{2}=0$. Later, some scholars have reduced the optimal number of incoherent Kraus operators on qubit systems to 4 by using the Choi-Jamiołkowski-

Sudarshan matrix [14], which is proved to be optimal. In this work, we reduce the number of qubit and qutrit incoherent Kraus operators by constructing proper unitary matrices. We show that the number of incoherent Kraus operators for a single qubit can be reduce from 5 to 4 . For qutrit systems we obtain 32 incoherent Kraus operators, while the upper bound in the research of Sterltsov gives 39 Kraus operators. Besides, we reduce the number of strictly incoherent Kraus operators from more than 15 to 13. Lastly, we consider the state transformation via SIO and IO in qutrit system. And we find the achievable region about the set of final states from a given initial qutrit state by all possible qutrit IOs.

II.THE UPPER BOUND OF (STRICTLY) INCOHERENT OPERATORS FOR QUTRIT SYSTEM

Recently, the structure of incoherent and strictly incoherent operations is studied in [13, 14]. As mentioned in [13], any single qubit IO can be decomposed into 5 incoherent Kraus operators using the structure of IO. Similarly, the number of incoherent Kraus operators can be reduced to 39 for any single qutrit incoherent operation. Besides, the upper bound of the number of strictly incoherent operator is less than 15. In the following, we first introduce an isometry about the two sets of Kraus decompositions which give rise to the same quantum operation.

Lemma 1. The two sets of Kraus operators $\left\{K_{j}\right\}$ and $\left\{L_{i}\right\}$ are Kraus decompositions of the same quantum operation if and only if there is a unitary matrix U such that [15]

$$
\begin{equation*}
L_{i}=\sum_{j} U_{i, j} K_{j} \tag{3}
\end{equation*}
$$

Therefore, according to the above result, the number of Kraus operators of a quantum operation is finite. There must be a set with the least number of Kraus operators. Firstly, let's study the qubit case. By using the properties of Lemma 1 and the qubit incoherent Kraus operator, we find the following conclusion

Proposition 1. Every qubit IO can be decomposed into four incoherent Kraus operators. The canonical representation of the Kraus operators is given by the set

$$
\left\{\left(\begin{array}{cc}
a_{1} & b_{1} \tag{4}\\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
a_{2} & b_{2}
\end{array}\right),\left(\begin{array}{cc}
a_{3} & 0 \\
0 & b_{3}
\end{array}\right),\left(\begin{array}{cc}
0 & b_{4} \\
a_{4} & 0
\end{array}\right)\right\},
$$

where $a_{i} \in \mathbb{R}, b_{j} \in \mathbb{C}$ satisfing the equalities $\sum_{i=1}^{4} a_{i}^{2}=\sum_{j=1}^{4}\left|b_{j}\right|^{2}=1$ and $a_{1} b_{1}+a_{2} b_{2}=0$.
Proof. Denote the incoherent Kraus operations in Eq.(2) as follows

$$
K_{1}=\left(\begin{array}{cc}
a_{1} & b_{1} \tag{5}\\
0 & 0
\end{array}\right), \quad K_{2}=\left(\begin{array}{cc}
0 & 0 \\
a_{2} & b_{2}
\end{array}\right), \quad K_{3}=\left(\begin{array}{cc}
a_{3} & 0 \\
0 & 0
\end{array}\right) \quad K_{4}=\left(\begin{array}{cc}
0 & b_{4} \\
a_{4} & 0
\end{array}\right), \quad K_{5}=\left(\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right),
$$

where $a_{i} \in \mathbb{R}, b_{j} \in \mathbb{C}, *$ denotes some complex number. Now, select the following 4×4 unitary matrix

$$
U=\left(\begin{array}{cccc}
k a_{1} & 0 & k a_{3} & 0 \tag{6}\\
-l a_{3}^{2} a_{4}\left|b_{1}\right|\left|b_{4}\right| & \frac{l a_{2}\left|b_{1}\right|\left|b_{4}\right|\left(a_{1}^{2}\left|b_{4}\right|^{2}+a_{3}^{2}\left|b_{1}\right|^{2}+a_{3}^{2}\left|b_{4}\right|^{2}\right)}{b_{1}^{2} b_{4}} & l a_{1} a_{3} a_{4}\left|b_{1}\right|\left|b_{4}\right| & l a_{3}^{2} a_{4}\left|b_{1}\right|^{2} \\
-\frac{m a_{2} a_{2} b_{1}\left|b_{1}\right|}{b_{1}} & -m a_{3} a_{4}\left|b_{1}\right| & \frac{m a_{1} a_{2} b_{4}\left|b_{1}\right|}{b_{1}} & m a_{2} a_{3}\left|b_{1}\right| \\
\frac{n a_{3}^{2} b_{1}^{\mid}\left|b_{4}\right|}{b_{4}^{*}} & 0 & \frac{-n a_{1} a_{3} b_{1}\left|b_{4}\right|}{b_{4}^{*}} & n\left(a_{1}^{2}+a_{3}^{2}\right)\left|b_{4}\right|
\end{array}\right),
$$

where the parameters k, l, m and n are chosen as

$$
\begin{align*}
k^{2} & =\frac{1}{a_{1}^{2}+a_{3}^{2}}, \\
l^{2} & =\frac{1}{a_{3}^{4} a_{4}^{2}\left|b_{1}\right|^{2}\left|b_{4}\right|^{2}+a_{2}^{2}\left(a_{1}^{2}\left|b_{4}\right|^{2}+a_{3}^{2}\left|b_{1}\right|^{2}+a_{3}^{2}\left|b_{4}\right|^{2}\right)^{2}+a_{1}^{2} a_{3}^{2} a_{4}^{2}\left|b_{1}\right|^{2}\left|b_{4}\right|^{2}+a_{3}^{4} a_{4}^{2}\left|b_{1}\right|^{4}}, \tag{7}\\
m^{2} & =\frac{1}{a_{2}^{2} a_{3}^{2}\left|b_{4}\right|^{2}+a_{3}^{4} a_{4}^{2}\left|b_{1}\right|^{2}+a_{1}^{2} a_{2}^{2}\left|b_{4}\right|^{2}+a_{2}^{2} a_{3}^{2}\left|b_{1}\right|^{2}}, \\
n^{2} & =\frac{1}{a_{3}^{4}\left|b_{1}\right|^{2}+a_{1}^{2} a_{3}^{2}\left|b_{1}\right|^{2}+\left(a_{1}^{2}+a_{3}^{2}\right)^{2}\left|b_{4}\right|^{2}} .
\end{align*}
$$

We then introduce a unitary matrix V defined by

$$
\begin{equation*}
V=U \oplus I_{1}, \tag{8}
\end{equation*}
$$

where I_{1} is the identity operator with dimension 1 . According to Lemma 1 , we have

$$
L_{i}= \begin{cases}\sum_{j=1}^{4} V_{i, j} K_{j} & \text { for } 1 \leq i \leq 4 \tag{9}\\ K_{i} & \text { for } i=5\end{cases}
$$

Then one computes that

$$
L_{1}=\left(\begin{array}{ll}
* & * \tag{10}\\
0 & 0
\end{array}\right), \quad L_{2}=\left(\begin{array}{cc}
0 & 0 \\
* & *
\end{array}\right), \quad L_{3}=\left(\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right), \quad L_{4}=\left(\begin{array}{cc}
0 & * \\
* & 0
\end{array}\right), \quad L_{5}=\left(\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right)
$$

where $*$ denote some complex numbers that are the combinations of a_{i} and b_{i}. It is obvious that L_{5} has the same form as L_{3}. Thus, we can reduce the set $\left\{L_{3}, L_{5}\right\}$ to one Kraus operator. This proves that every IO in qubit system can be decomposed into at most four incoherent Kraus operators as given in Eq.(4). From the normalization property $\sum_{i=1}^{4} K_{i}^{\dagger} K_{i}=I$, we have $\sum_{i=1}^{4} a_{i}^{2}=\sum_{j=1}^{4}\left|b_{j}\right|^{2}=1$ and $a_{1} b_{1}+a_{2} b_{2}=0$.

Using the Choi-Jamiołkowski-Sudarshan matrix for a quantum operation, Rana et al. have proved that the optimal number of incoherent Kraus operators for an incoherent qubit operation is four. However, we observe that it is more convenient to draw the conclusion using the isometry of Kraus decompositions. For most incoherent operations, the above result is the optimal form of incoherent Kraus decomposition. We cannot find a general unitary matrix to reduce the number of incoherent Kraus operator. But some special quantum operations could be decomposed into least four incoherent Kraus operators, such as the phase damping channel and amplitude damping channel [16].

For qutrit system, any incoherent operation admits a decomposition with at most 39 incoherent Kraus operators. A canonical
representation of the Kraus operators for a qutrit IO can be obtained from the proof of Proposition 5 in Ref. [13] as follows,

$$
\begin{align*}
& K_{1}=\left[\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad K_{2}=\left[\begin{array}{ccc}
a_{2} & b_{2} & 0 \\
0 & 0 & c_{2} \\
0 & 0 & 0
\end{array}\right], \quad K_{3}=\left[\begin{array}{ccc}
a_{3} & b_{3} & 0 \\
0 & 0 & 0 \\
0 & 0 & c_{3}
\end{array}\right], \quad K_{4}=\left[\begin{array}{ccc}
a_{4} & b_{4} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad K_{5}=\left[\begin{array}{ccc}
0 & 0 & c_{5} \\
a_{5} & b_{5} & 0 \\
0 & 0 & 0
\end{array}\right], \\
& K_{6}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
a_{6} & b_{6} & c_{6} \\
0 & 0 & 0
\end{array}\right], \quad K_{7}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
a_{7} & b_{7} & 0 \\
0 & 0 & c_{7}
\end{array}\right], \quad K_{8}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
a_{8} & b_{8} & 0 \\
0 & 0 & 0
\end{array}\right], \quad K_{9}=\left[\begin{array}{ccc}
a_{9} & 0 & c_{9} \\
0 & b_{9} & 0 \\
0 & 0 & 0
\end{array}\right], \quad K_{10}=\left[\begin{array}{ccc}
a_{10} & 0 & 0 \\
0 & b_{10} & c_{10} \\
0 & 0 & 0
\end{array}\right], \\
& K_{11}=\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & b_{11} & 0 \\
0 & 0 & c_{11}
\end{array}\right], \quad K_{12}=\left[\begin{array}{ccc}
a_{12} & 0 & 0 \\
0 & b_{12} & 0 \\
0 & 0 & 0
\end{array}\right], \quad K_{13}=\left[\begin{array}{ccc}
0 & b_{13} & c_{13} \\
a_{13} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad K_{14}=\left[\begin{array}{ccc}
0 & b_{14} & 0 \\
a_{14} & 0 & c_{14} \\
0 & 0 & 0
\end{array}\right], \quad K_{15}=\left[\begin{array}{ccc}
0 & b_{15} & 0 \\
a_{15} & 0 & 0 \\
0 & 0 & c_{15}
\end{array}\right], \\
& K_{16}=\left[\begin{array}{ccc}
0 & b_{16} & 0 \\
a_{16} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad K_{17}=\left[\begin{array}{ccc}
a_{17} & 0 & c_{17} \\
0 & 0 & 0 \\
0 & b_{17} & 0
\end{array}\right], \quad K_{18}=\left[\begin{array}{ccc}
a_{18} & 0 & 0 \\
0 & 0 & c_{18} \\
0 & b_{18} & 0
\end{array}\right], \quad K_{19}=\left[\begin{array}{ccc}
a_{19} & 0 & 0 \\
0 & 0 & 0 \\
0 & b_{19} & c_{19}
\end{array}\right], \quad K_{20}=\left[\begin{array}{ccc}
a_{20} & 0 & 0 \\
0 & 0 & 0 \\
0 & b_{20} & 0
\end{array}\right], \\
& K_{21}=\left[\begin{array}{ccc}
0 & 0 & c_{21} \\
a_{21} & 0 & 0 \\
0 & b_{21} & 0
\end{array}\right], \quad K_{22}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
a_{22} & 0 & c_{22} \\
0 & b_{22} & 0
\end{array}\right], \quad K_{23}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
a_{23} & 0 & 0 \\
0 & b_{23} & c_{23}
\end{array}\right], \quad K_{24}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
a_{24} & 0 & 0 \\
0 & b_{24} & 0
\end{array}\right], \quad K_{25}=\left[\begin{array}{ccc}
0 & 0 & c_{25} \\
0 & b_{25} & 0 \\
a_{25} & 0 & 0
\end{array}\right], \\
& K_{26}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & b_{26} & c_{26} \\
a_{26} & 0 & 0
\end{array}\right], \quad K_{27}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & b_{27} & 0 \\
a_{27} & 0 & c_{27}
\end{array}\right], \quad K_{28}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & b_{28} & 0 \\
a_{28} & 0 & 0
\end{array}\right], \quad K_{29}=\left[\begin{array}{ccc}
0 & 0 & c_{29} \\
0 & 0 & 0 \\
a_{29} & b_{29} & 0
\end{array}\right], \quad K_{30}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & c_{30} \\
a_{30} & b_{30} & 0
\end{array}\right], \\
& K_{31}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
a_{31} & b_{31} & c_{31}
\end{array}\right], \quad K_{32}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
a_{32} & b_{32} & 0
\end{array}\right], \quad K_{33}=\left[\begin{array}{ccc}
0 & b_{33} & c_{33} \\
0 & 0 & 0 \\
a_{33} & 0 & 0
\end{array}\right], \quad K_{34}=\left[\begin{array}{ccc}
0 & b_{34} & 0 \\
0 & 0 & c_{34} \\
a_{34} & 0 & 0
\end{array}\right], \quad K_{35}=\left[\begin{array}{ccc}
0 & b_{35} & 0 \\
0 & 0 & 0 \\
a_{35} & 0 & c_{35}
\end{array}\right], \\
& K_{36}=\left[\begin{array}{ccc}
0 & b_{36} & 0 \\
0 & 0 & 0 \\
a_{36} & 0 & 0
\end{array}\right], \quad K_{37}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
a_{37} & 0 & 0
\end{array}\right], \quad K_{38}=\left[\begin{array}{ccc}
a_{38} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad K_{39}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
a_{39} & 0 & 0 \\
0 & 0 & 0
\end{array}\right] . \tag{11}
\end{align*}
$$

Theorem 1. Any incoherent operation acting on a single qutrit system admits a decomposition with at most 32 incoherent Kraus operators.

Proof. Firstly, we choose the Kraus operators K_{32}, K_{24}, K_{37} and K_{39}. Denote K_{32}, K_{24}, K_{37} and K_{39} as M_{1}, M_{2}, M_{3} and M_{4} respectively. Define a 3×3 unitary matrix U_{1} by

$$
U_{1}=\left(\begin{array}{ccc}
l_{1} a_{32}^{*} & 0 & l_{1} a_{37}^{*} \tag{12}\\
m_{1} b_{32}^{*}\left|a_{37}\right|^{2} & m_{1}\left(\left|a_{32}\right|^{2}+\left|a_{37}\right|^{2}\right) b_{24}^{*} & -m_{1} a_{37}^{*} b_{32}^{*} a_{32} \\
n_{1} a_{37} b_{24} & -n_{1} a_{37} b_{32} & -n_{1} a_{32} b_{24}
\end{array}\right),
$$

where the parameters l_{1}, m_{1} and n_{1} are chosen as

$$
\begin{align*}
l_{1}^{2} & =\frac{1}{a_{32}^{2}+a_{37}^{2}}, \\
m_{1}^{2} & =\frac{1}{\left(a_{32}^{2}+a_{37}^{2}\right)\left(\left|a_{37}\right|^{2}\left(\left|b_{32}\right|^{2}+\left|b_{24}\right|^{2}\right)+\left|a_{37} b_{24}\right|^{2}\right)} \tag{13}\\
n_{1}^{2} & =\frac{1}{\left|a_{37}\right|^{2}\left(\left|b_{32}\right|^{2}+\left|b_{24}\right|^{2}\right)+\left|a_{37} b_{24}\right|^{2}}
\end{align*}
$$

According to Lemma 1 and the construction of the unitary matrix such as Eq.(8), we find that the operator L_{4} has the same form as L_{3}. In other words, the set $\left\{M_{1}, M_{2}, M_{3}, M_{4}\right\}$ can be reduce to the set $\left\{M_{1}, M_{2}, M_{4}\right\}$, that is, the number of the incoherent Kraus operators can be reduce to 38 .

Similarly, define U_{2} as a unitary matrix by,

$$
U_{2}=\left(\begin{array}{ccc}
l_{2} a_{8}^{*} & 0 & l_{2} a_{39}^{*} \tag{14}\\
m_{2} b_{8}^{*}\left|a_{39}\right|^{2} & m_{2}\left(\left|a_{8}\right|^{2}+\left|a_{39}\right|^{2}\right) b_{12}^{*} & -m_{2} a_{39}^{*} b_{8}^{*} a_{8} \\
n_{2} a_{39} b_{12} & -n_{2} a_{39} b_{8} & -n_{2} a_{8} b_{12}
\end{array}\right),
$$

where the parameters l_{2}, m_{2} and n_{2} are chosen as

$$
\begin{align*}
l_{2}^{2} & =\frac{1}{a_{8}^{2}+a_{39}^{2}}, \\
m_{2}^{2} & =\frac{1}{\left(a_{8}^{2}+a_{39}^{2}\right)\left(\left|a_{39}\right|^{2}\left(\left|b_{8}\right|^{2}+\left|b_{12}\right|^{2}\right)+\left|a_{39} b_{12}\right|^{2}\right)} \tag{15}\\
n_{2}^{2} & =\frac{1}{\left|a_{39}\right|^{2}\left(\left|b_{8}\right|^{2}+\left|b_{12}\right|^{2}\right)+\left|a_{39} b_{12}\right|^{2}} .
\end{align*}
$$

One finds the set $\left\{K_{8}, K_{12}, K_{39}, K_{38}\right\}$ can be reduce to $\left\{K_{8}, K_{12}, K_{38}\right\}$. Thus the number of the incoherent Kraus operators can be reduce to 37 .

Then, we discover that there is a unitary matrix U_{3} which can reduce the set $\left\{K_{4}, K_{8}, K_{38}, K_{16}, K_{12}\right\}$ to $\left\{K_{4}, K_{8}, K_{12}, K_{16}\right\}$. The specific form of U_{3} is as follows,

$$
U_{3}=\left(\begin{array}{cccc}
k_{3} a_{4} & 0 & k_{3} a_{38} & 0 \tag{16}\\
-l_{3} a_{38}^{2} a_{16}\left|b_{4}\right|\left|b_{16}\right| & \frac{l_{3} a a_{8}\left|b_{4}\right|\left|b_{16}\right|\left(a_{4}^{2}\left|b_{16}\right|^{2}+a_{38}^{2}\left|b_{4}\right|^{2}+a_{38}^{2}\left|b_{66}\right|^{2}\right)}{b_{4}^{4} b_{16}} & l a_{4} a_{38} a_{16}\left|b_{4}\right|\left|b_{16}\right| & l_{3} a_{38}^{2} a_{16}\left|b_{4}\right|^{2} \\
-\frac{m_{3} a_{8} a_{38} b_{16}\left|b_{4}\right|}{b_{4}} & -m_{3} a_{38} a_{16}\left|b_{4}\right| & \frac{m_{3} a_{4} a_{8} b_{16}\left|b_{4}\right|}{b_{4}} & m a_{8} a_{38}\left|b_{4}\right| \\
\frac{n_{3} a_{38}^{2} b_{4}^{4}\left|b_{16}\right|}{b_{16}^{4}} & 0 & \frac{-b_{3} a_{4} a_{35}^{*} b_{4}^{*}\left|b_{16}\right|}{b_{16}} & n_{3}\left(a_{4}^{2}+a_{38}^{2}\right)\left|b_{16}\right|
\end{array}\right),
$$

where the parameters k_{3}, l_{3}, m_{3} and n_{3} are chosen as

$$
\begin{align*}
& k_{3}^{2}=\frac{1}{a_{4}^{2}+a_{38}^{2}}, \\
& l_{3}^{2}=\frac{1}{a_{38}^{4} a_{16}^{2}\left|b_{4}\right|^{2}\left|b_{16}\right|^{2}+a_{8}^{2}\left(a_{4}^{2}\left|b_{16}\right|^{2}+a_{38}^{2}\left|b_{4}\right|^{2}+a_{38}^{2}\left|b_{16}\right|^{2}\right)^{2}+a_{4}^{2} a_{38}^{2} a_{16}^{2}\left|b_{4}\right|^{2}\left|b_{16}\right|^{2}+a_{38}^{4} a_{16}^{2}\left|b_{4}\right|^{4}}, \\
& m_{3}^{2}=\frac{1}{a_{8}^{2} a_{38}^{2}\left|b_{16}\right|^{2}+a_{38}^{4} a_{16}^{2}\left|b_{4}\right|^{2}+a_{4}^{2} a_{8}^{2}\left|b_{16}\right|^{2}+a_{8}^{2} a_{38}^{2}\left|b_{4}\right|^{2}}, \tag{17}\\
& n_{3}^{2}=\frac{1}{a_{38}^{4}\left|b_{4}\right|^{2}+a_{4}^{2} a_{38}^{2}\left|b_{4}\right|^{2}+\left(a_{4}^{2}+a_{38}^{2}\right)^{2}\left|b_{16}\right|^{2}} .
\end{align*}
$$

Similarly, we can find some special unitary matrices reducing the set $\left\{K_{11}, K_{12}, K_{19}, K_{20}\right\},\left\{K_{15}, K_{16}, K_{35}, K_{36}\right\}$, $\left\{K_{15}, K_{16}, K_{23}, K_{24}\right\}$ and $\left\{K_{11}, K_{12}, K_{27}, K_{28}\right\}$ to the set $\left\{K_{11}, K_{12}, K_{19}\right\},\left\{K_{15}, K_{16}, K_{35}\right\},\left\{K_{15}, K_{16}, K_{23}\right\}$ and $\left\{K_{11}, K_{12}, K_{27}\right\}$ respectively. Therefore, the upper bound on the number of incoherent Kraus operators is 32 .

Theorem 2. Any strictly incoherent operation acting on a single qutrit system admits a decomposition with at most 13 strictly incoherent Kraus operators.

Proof. In Ref. [13], the authors verify that any qutrits strictly incoherent operation admits a decomposition with at most 15
incoherent Kraus operators. The specific form is as follows,

$$
\begin{array}{ll}
K_{1}=\left[\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & b_{1} & 0 \\
0 & 0 & c_{1}
\end{array}\right], \quad K_{2}=\left[\begin{array}{ccc}
a_{2} & 0 & 0 \\
0 & 0 & c_{2} \\
0 & b_{2} & 0
\end{array}\right], \quad K_{3}=\left[\begin{array}{ccc}
0 & b_{3} & 0 \\
a_{3} & 0 & 0 \\
0 & 0 & c_{3}
\end{array}\right], \quad K_{4}=\left[\begin{array}{ccc}
0 & 0 & c_{4} \\
a_{4} & 0 & 0 \\
0 & b_{4} & 0
\end{array}\right], \quad K_{5}=\left[\begin{array}{ccc}
0 & 0 & c_{5} \\
0 & b_{5} & 0 \\
a_{5} & 0 & 0
\end{array}\right], \\
K_{6}=\left[\begin{array}{ccc}
0 & b_{6} & 0 \\
0 & 0 & c_{6} \\
a_{6} & 0 & 0
\end{array}\right], \quad K_{7}=\left[\begin{array}{ccc}
a_{7} & 0 & 0 \\
0 & b_{7} & 0 \\
0 & 0 & 0
\end{array}\right], \quad K_{8}=\left[\begin{array}{ccc}
a_{8} & 0 & 0 \\
0 & 0 & 0 \\
0 & b_{8} & 0
\end{array}\right], \quad K_{9}=\left[\begin{array}{ccc}
0 & b_{9} & 0 \\
a_{9} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad K_{10}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
a_{10} & 0 & 0 \\
0 & b_{10} & 0
\end{array}\right], \tag{18}\\
K_{11}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & b_{11} & 0 \\
a_{11} & 0 & 0
\end{array}\right], \quad K_{12}=\left[\begin{array}{ccc}
0 & b_{12} & 0 \\
0 & 0 & 0 \\
a_{12} & 0 & 0
\end{array}\right], \quad K_{13}=\left[\begin{array}{ccc}
a_{13} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad K_{14}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
a_{14} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad K_{15}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
a_{15} & 0 & 0
\end{array}\right] .
\end{array}
$$

By defining the following 3×3 unitary matrix

$$
U_{1}=\left(\begin{array}{ccc}
-l_{1}\left(\left|a_{12}\right|^{2}+\left|a_{15}\right|^{2}\right) b_{9} & -l_{1}\left|a_{15}\right|^{2} b_{12}^{*} & l_{1} a_{12} a_{15}^{*} b_{12}^{*} \tag{19}\\
0 & -m_{1} a_{12}^{*} & -m_{1} a_{15}^{*} \\
n_{1} a_{15} b_{12} & -n_{1} a_{15} b_{9}^{*} & n_{1} a_{12} b_{9}^{*}
\end{array}\right),
$$

where the parameters l_{1}, m_{1} and n_{1} are chosen as

$$
\begin{align*}
l_{1}^{2} & =\frac{1}{\left(\left|a_{12}\right|^{2}+\left|a_{15}\right|^{2}\right)\left(\left|a_{12}\right|^{2}\left|b_{9}\right|^{2}+\left|a_{15}\right|^{2}\left|b_{9}\right|^{2}+\left|a_{15}\right|^{2}\left|b_{12}\right|^{2}\right)}, \\
m_{1}^{2} & =\frac{1}{\left|a_{12}\right|^{2}+\left|a_{15}\right|^{2}}, \tag{20}\\
n_{1}^{2} & =\frac{1}{\left|a_{12}\right|^{2}\left|b_{9}\right|^{2}+\left|a_{15}\right|^{2}\left|b_{9}\right|^{2}+\left|a_{15}\right|^{2}\left|b_{12}\right|^{2}} .
\end{align*}
$$

we find the set $\left\{K_{9}, K_{12}, K_{14}, K_{15}\right\}$ can be reduced to $\left\{K_{9}, K_{12}, K_{14}\right\}$.
Besides, we take the unitary matrix

$$
U_{2}=\left(\begin{array}{ccc}
-l_{2}\left(\left|a_{10}\right|^{2}+\left|a_{14}\right|^{2}\right) b_{8} & -l_{2}\left|a_{14}\right|^{2} b_{10}^{*} & l_{2} a_{10} a_{14}^{*} b_{10}^{*} \tag{21}\\
0 & -m_{2} a_{10}^{*} & -m_{2} a_{14}^{*} \\
n_{2} a_{14} b_{10} & -n_{2} a_{14} b_{8}^{*} & n_{2} a_{10} b_{8}^{*}
\end{array}\right),
$$

where the parameters l_{2}, m_{2} and n_{2} are chosen as

$$
\begin{align*}
& l_{2}^{2}=\frac{1}{\left(\left|a_{10}\right|^{2}+\left|a_{14}\right|^{2}\right)\left(\left|a_{10}\right|^{2}\left|b_{8}\right|^{2}+\left|a_{14}\right|^{2}\left|b_{8}\right|^{2}+\left|a_{14}\right|^{2}\left|b_{10}\right|^{2}\right)} \\
& m_{2}^{2}=\frac{1}{\left|a_{10}\right|^{2}+\left|a_{14}\right|^{2}}, \tag{22}\\
& n_{2}^{2}=\frac{1}{\left|a_{10}\right|^{2}\left|b_{8}\right|^{2}+\left|a_{14}\right|^{2}\left|b_{8}\right|^{2}+\left|a_{14}\right|^{2}\left|b_{10}\right|^{2}} .
\end{align*}
$$

The combination of K_{8}, K_{10} and K_{14} has the same form of K_{13}. So the set $\left\{K_{8}, K_{10}, K_{13}, K_{14}\right\}$ can be reduced to $\left\{K_{8}, K_{10}, K_{13}\right\}$. In other words, any single-qutrit strictly incoherent operation admits a decomposition with at most 13 strictly incoherent Kraus operators.

In 3-dimension Hilbert space, an arbitrary quantum state is expressed as

$$
\begin{equation*}
\rho=\frac{1}{3} I+\frac{1}{2} \sum_{i=1}^{8} t_{i} \lambda_{i}, \tag{23}
\end{equation*}
$$

where $\vec{t}=\left\{t_{1}, t_{2}, \ldots, t_{8}\right\}$ is the 8 dimensional Bloch vector, λ_{i} is a generator of $\mathrm{SU}(3)$, where the length of \vec{t} should be less than or equal to $\frac{2}{\sqrt{3}}$ [17]. In order to visualize the state transformation via single qutrit SIO and IO, we consider two-dimensional sections of $\sum_{3}(i, j)[18]$ which are constructed as $\sum_{3}(i, j)=\left\{\mathbf{t} \in B\left(\mathbb{R}^{8}\right): \mathbf{t}=\left\{0, \ldots, 0, t_{i}, 0, \ldots, t_{j}, \ldots, 0\right\}\right\}$. For a given Bloch vector of $\mathbf{t}=\left\{0, \ldots, 0, t_{i}, 0, \ldots, t_{j}, \ldots, 0\right\}$, we can find the achievable region for the final state $\mathbf{m}=\left\{0, \ldots, 0, m_{i}, 0, \ldots, m_{j}, \ldots, 0\right\}$ via single qutrit SIO and IO. In the two-dimensional sections, we can find the limited conditions, the proof can be found in Appendix A.

1: In the $\left\{m_{1}, \ldots, m_{6}\right\}-\left\{m_{7}, m_{8}\right\}$ plane, the following inequalities should be satisfied:

$$
\begin{align*}
& m_{i}^{2} \leq t_{i}^{2}, \quad\{i=1, \ldots, 6\} \\
& m_{7} \in\left[\frac{1-\sqrt{3}}{3}, \frac{2}{\sqrt{3}}\right], \tag{24}\\
& m_{8} \in\left[-\frac{2 \sqrt{3}}{3}, \frac{2 \sqrt{3}}{3}\right] .
\end{align*}
$$

2: In the $\left\{m_{7}\right\}-\left\{m_{8}\right\}$ plane, the following equality should be satisfied:

$$
\begin{equation*}
-\sqrt{3} m_{7}+m_{8}-\frac{2 \sqrt{3}}{3}=0 . \tag{25}
\end{equation*}
$$

3: In the $\left\{m_{1}\right\}-\left\{m_{4}\right\},\left\{m_{2}\right\}-\left\{m_{5}\right\}$ and $\left\{m_{3}\right\}-\left\{m_{6}\right\}$ planes, the following inequality should be satisfied respectively:

$$
\begin{align*}
& m_{1}^{2}+m_{4}^{2} \leq t_{1}^{2}+t_{4}^{2}, \\
& m_{2}^{2}+m_{5}^{2} \leq t_{2}^{2}+t_{5}^{2}, \tag{26}\\
& m_{3}^{2}+m_{6}^{2} \leq t_{3}^{2}+t_{6}^{2}
\end{align*}
$$

4: In the other planes, we find the following inequality:

$$
\begin{equation*}
\left(\left|m_{i}\right|+\left|m_{j}\right|\right)^{2} \leq\left(\left|t_{i}\right|+\left|t_{j}\right|\right)^{2} \tag{27}
\end{equation*}
$$

In the following Fig.1-Fig.4, we show the projection of the achievable region into the $\left\{m_{1}, \ldots, m_{6}\right\}-\left\{m_{7}, m_{8}\right\},\left\{m_{7}\right\}-$ $\left\{m_{8}\right\},\left\{m_{1}\right\}-\left\{m_{4}\right\},\left\{m_{2}\right\}-\left\{m_{5}\right\},\left\{m_{3}\right\}-\left\{m_{6}\right\}$ and other planes for the corresponding different initial states. These images, which are numerically simulated the set of final states, coincide with our conclusion.

FIG. 1: The achievable region for single qutrit SIO and IO in condition 1. The blue colored area shows the projection of the achievable region in the $m_{i}-m_{8}(i=1, \ldots, 6)$ plane. We have set $t_{i}=t_{8}=0.5$ in the initial state.

III. DISCUSSION AND CONCLUSION

In this paper, we have discussed how to reduce the number of incoherent Kraus operators. Furthermore, we have shown that the number of incoherent Kraus operators for a single qubit can be reduce from 5 to 4 . For qutrit system, we have found that any incoherent operation or strictly incoherent operation admits decomposition with at most 32 or 13 Kraus operator respectively. We have also investigated the achievable region for a fixed state via single qutrit SIO and IO. An open question is that whether the upper bound can be further reduced to a much tight level. Besides, it is still yet to be solved to compute the optimal number

(a) $m_{1}-m_{7}$ plane

(b) $m_{2}-m_{7}$ plane

(c) $m_{3}-m_{7}$ plane

(d) $m_{4}-m_{7}$ plane

(e) $m_{5}-m_{7}$ plane

(f) $m_{6}-m_{7}$ plane

FIG. 2: The achievable region for single qutrit SIO and IO in condition 2. The blue colored area shows the projection of the achievable region in the $m_{i}-m_{7}(i=1, \ldots, 6)$ plane. In the initial state we set $t_{i}=0.5, t_{7}=0.5$ respectively.

FIG. 3: The achievable region for single qutrit SIO and IO in condition 3. The blue colored area shows the projection of the achievable region in the $m_{1}-m_{4}, m_{2}-m_{5}, m_{3}-m_{6}$ and $m_{7}-m_{8}$ plane, where in the initial state we set $t_{i}=0.5, t_{j}=0.5$ respectively.

FIG. 4: The achievable region for single qutrit SIO and IO in condition 4. The blue colored area shows the projection of the achievable region in the planes that are not mentioned above, where in the initial state we set $t_{i}=0.5, t_{j}=0.5$ respectively.
of incoherent Kraus operator when $d \geq 4$. We suspect that the number of dimensional incoherent Kraus operators is related to the number of d-1 dimensional incoherent Kraus operators. In addition, the form of incoherent Kraus operator in d dimension is also related to the d-1 dimensional incoherent Kraus operators. More importantly, according to the relationship between the superposition-free operation and incoherent operation, we can obtain the structure of the resource theory of superposition[19].

Acknowledgments This work is supported by NSFC (11775306, 11701568, 11675113), the Fundamental Research Funds for the Central Universities (18CX02035A, 18CX02023A, 19CX02050A), Beijing Municipal Commission of Education under Grant No. KZ201810028042, and Beijing Natural Science Foundation (Z190005).
[1] F. G. S. L. Brandão and G. Gour, Reversible Framework for Quantum Resource Theories, Phys. Rev. Lett. 115, 070503 (2015).
[2] E. Chitambar and G. Gour, Quantum resource theories, Rev. Mod. Phys. 91, 025001 (2019).
[3] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).
[4] F. G. S. L. Brandão, M. Horodecki, J. Oppenheim, J. M. Renes, R. W. Spekkens, Resource Theory of Quantum States Out of Thermal Equilibrium, Phys. Rev. Lett. 111, 250404 (2013).
[5] T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113, 140401 (2014)
[6] M.L. Hu, X.Y. Hu, J.C. Wang, Y. Peng, Y.R. Zhang, H. Fan, Quantum coherence and geometric quantum discord, Phys. Rep. 762, 1 - 100 (2018).
[7] M. Hillery, Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation, Phys. Rev. A 93, 012111 (2016).
[8] M. Lostaglio, D. Jennings, and T. Rudolph, Description of quantum coherence in thermodynamic processes requires constraints beyond free energy, Nat. Commun. 6, 6383 (2015).
[9] M. Lostaglio, D. Jennings, and T. Rudolph, Thermodynamic resource theories, non-commutativity and maximum entropy principles, New J. Phys. 19, 043008 (2017).
[10] K. Micadei, D. A. Rowlands, F. A. Pollock, L. C. Céleri, R. M. Serra, and K. Modi, Coherent measurements in quantum metrology, New J. Phys. 17, 023057 (2015).
[11] S. Lloyd, Quantum coherence in biological systems, J. Phys.: Conf. Ser. 302, 012037 (2011).
[12] A. Winter and D. Yang, Operational resource theory of coherence, Phys. Rev. Lett. 116, 120404 (2016).
[13] A. Streltsov, S. Rana, P. Boes, J. Eisert, Structure of the Resource Theory of Quantum Coherence, Phys. Rev. Lett. 119, 140402 (2017).
[14] S. Rana and M. Lewenstein, Optimal decomposition of incoherent qubit channel, J. Phys. A: Math. Theor. 51, 414002 (2018).
[15] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th ed. (Cambridge University Press,2010).
[16] L. M. Yang, B. Chen, S. M. Fei, and Z. X. Wang, Dynamics of coherence-induced state ordering under Markovian channels, Front. Phys. 13(5), 130310 (2018).
[17] G. Kimura, The Bloch Vector for N-Level Systems, Phys. Lett. A 314, 339(2003).
[18] L. Jakóbczyk, M. Siennicki, Geometry of Bloch vectors in two-qubit system, Phys. Lett. A 286, 383(2001).
[19] T. Theurer, N. Killoran, D. Egloff, and M. B. Plenio, Resource Theory of Superposition, Phys. Rev. Lett. 119,230401(2017).

APPENDIX A: THE COMPUTATIONS OF THE CONDITIONS FOR THE STATE TRANSFORMATION

In this appendix, we will introduce the proof of the conditions for the state transformation. For the 2-dimensional sections $\sum_{3}(i, j)$, where $i \in\{1,2, \ldots, 6\}$ and $j \in\{7,8\}$, the coefficients m_{i} and m_{j} of the final state via a strictly incoherent channel can be derived as follows:

$$
\begin{align*}
& m_{1}=t_{1}\left(a_{1} \operatorname{Re}\left[b_{1}\right]+a_{3} \operatorname{Re}\left[b_{3}\right]+a_{7} \operatorname{Re}\left[b_{7}\right]+a_{9} \operatorname{Re}\left[b_{9}\right]\right), \\
& m_{2}=t_{2}\left(a_{1} \operatorname{Re}\left[c_{1}\right]+a_{5} \operatorname{Re}\left[c_{5}\right]\right), \\
& m_{3}=t_{3}\left(\frac{1}{2}\left(b_{1} c_{1}^{\dagger}+b_{1}^{\dagger} c_{1}+b_{2} c_{2}^{\dagger}+b_{2}^{\dagger} c_{2}\right)\right), \\
& m_{4}=t_{4}\left(a_{1} \operatorname{Re}\left[b_{1}\right]-a_{3} \operatorname{Re}\left[b_{3}\right]+a_{7} \operatorname{Re}\left[b_{7}\right]-a_{9} \operatorname{Re}\left[b_{9}\right]\right), \\
& m_{5}=t_{5}\left(a_{1} \operatorname{Re}\left[c_{1}\right]-a_{5} \operatorname{Re}\left[c_{5}\right]\right), \tag{28}\\
& m_{6}=t_{6}\left(\frac{1}{2}\left(b_{1} c_{1}^{\dagger}+b_{1}^{\dagger} c_{1}-b_{2} c_{2}^{\dagger}+b_{2}^{\dagger} c_{2}\right)\right), \\
& m_{7}=\frac{1}{3}\left(1-\left|c_{1}\right|^{2}-\left|c_{3}\right|^{2}\right)+\left(1-\left|a_{5}\right|^{2}-\left|a_{6}\right|^{2}-\left|a_{11}\right|^{2}-\left|a_{12}\right|^{2}\right)\left(\frac{1}{3}+\frac{t_{7}}{2}\right)+\left(1-\left|b_{2}\right|^{2}-\left|b_{4}\right|^{2}-\left|b_{8}\right|^{2}-\left|b_{10}\right|^{2}\right)\left(\frac{1}{3}-\frac{t_{7}}{2}\right), \\
& m_{8}=\frac{1}{\sqrt{3}}-\sqrt{3}\left(\left(\left|c_{1}\right|^{2}+\left|c_{3}\right|^{2}\right)\left(\frac{1}{3}-\frac{t_{8}}{\sqrt{3}}\right)+\left(\left|a_{5}\right|^{2}+\left|a_{6}\right|^{2}+\left|a_{11}\right|^{2}+\left|a_{12}\right|^{2}+\left|b_{2}\right|^{2}+\left|b_{4}\right|^{2}+\left|b_{8}\right|^{2}+\left|b_{10}\right|^{2}\right)\left(\frac{1}{3}+\frac{t_{8}}{2 \sqrt{3}}\right)\right) .
\end{align*}
$$

Due to the completeness of Kraus operators, $\sum_{i} K_{i}^{\dagger} K_{i}=\mathcal{I}$, we obtain $\sum_{i=1}^{13} a_{i}^{2}=\sum_{j=1}^{12}\left|b_{j}\right|^{2}=\sum_{k=1}^{6}\left|c_{k}\right|^{2}=1$, where a_{i} can be chosen as real numbers, b_{j} and c_{k} as complex numbers. It is easy to obtain the conditions 1 by using the length of the Bloch vector, the normalization of the parameters and the Cauchy - Schwarz inequality.

In the $m_{7}-m_{8}$ plane, we can obtain the explicit relation. The final form of m_{7}, m_{8} are as follows:

$$
\begin{align*}
m_{7} & =\left(\left|c_{2}\right|^{2}+\left|c_{4}\right|^{2}+\left|c_{5}\right|^{2}+\left|c_{6}\right|^{2}\right)\left(\frac{1}{3}-\frac{t_{8}}{\sqrt{3}}\right)+\left(\left|b_{1}\right|^{2}+\left|b_{3}\right|^{2}+\left|b_{5}\right|^{2}+\left|b_{6}\right|^{2}+\left|b_{7}\right|^{2}+\left|b_{9}\right|^{2}+\left|b_{11}\right|^{2}+\left|b_{12}\right|^{2}\right)\left(\frac{1}{3}+\frac{1}{2}\left(-t_{7}+\frac{t_{8}}{\sqrt{3}}\right)\right) \\
& +\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{7}^{2}+a_{8}^{2}+a_{9}^{2}+a_{10}^{2}+a_{13}^{2}\right)\left(\frac{1}{3}+\frac{1}{2}\left(t_{7}+\frac{t_{8}}{\sqrt{3}}\right)\right), \\
m_{8} & =\frac{1}{\sqrt{3}}-\sqrt{3}\left(\left|c_{1}\right|^{2}+\left|c_{3}\right|^{2}\right)\left(\frac{1}{3}-\frac{t_{8}}{\sqrt{3}}\right)+\left(\left|b_{2}\right|^{2}+\left|b_{4}\right|^{2}+\left|b_{8}\right|^{2}+\left|b_{10}\right|^{2}\right)\left(\frac{1}{3}+\frac{1}{2}\left(-t_{7}+\frac{t_{8}}{\sqrt{3}}\right)\right)+\left(a_{5}^{2}+a_{6}^{2}+a_{11}^{2}+a_{12}^{2}\right)\left(\frac{1}{3}+\frac{1}{2}\left(t_{7}+\frac{t_{8}}{\sqrt{3}}\right)\right) . \tag{29}
\end{align*}
$$

It is obvious that $-\sqrt{3} m_{7}+m_{8}-\frac{2 \sqrt{3}}{3}=0$, using the conditions of $\sum_{i=1}^{13} a_{i}^{2}=\sum_{j=1}^{12}\left|b_{j}\right|^{2}=\sum_{k=1}^{6}\left|c_{k}\right|^{2}=1$.
In $m_{1}-m_{4}$ plane, the final state form of m_{1}, m_{4} are as follows:

$$
\begin{align*}
& m_{1}=\frac{1}{2}\left(\left(a_{1} b_{1}^{\dagger}+a_{3} b_{3}^{\dagger}+a_{7} b_{7}^{\dagger}+a_{9} b_{9}^{\dagger}\right)\left(t_{1}-i t_{4}\right)+\left(\left(a_{1} b_{1}+a_{3} b_{3}+a_{7} b_{7}+a_{9} b_{9}\right)\left(t_{1}+i t_{4}\right)\right),\right. \\
& m_{4}=\frac{-i}{2}\left(\left(-a_{1} b_{1}^{\dagger}+a_{3} b_{3}^{\dagger}-a_{7} b_{7}^{\dagger}+a_{9} b_{9}^{\dagger}\right)\left(t_{1}-i t_{4}\right)+\left(\left(a_{1} b_{1}-a_{3} b_{3}+a_{7} b_{7}-a_{9} b_{9}\right)\left(t_{1}+i t_{4}\right)\right) .\right. \tag{30}
\end{align*}
$$

Then

$$
\begin{align*}
m_{1}^{2}+m_{4}^{2} & =\left(a_{1}^{2}\left|b_{1}\right|^{2}+a_{3}^{2}\left|b_{3}\right|^{2}+a_{7}^{2}\left|b_{7}\right|^{2}+a_{9}^{2}\left|b_{9}\right|^{2}+a_{1} a_{7} b_{1} b_{7}^{\dagger}+a_{3} a_{9} b_{3} b_{9}^{\dagger}+a_{1} a_{7} b_{1}^{\dagger} b_{7}+a_{3} a_{9} b_{3}^{\dagger} b_{9}\right)\left(t_{1}^{2}+t_{4}^{2}\right) \\
& +\left(a_{1} a_{3} b_{1}^{\dagger} b_{3}^{\dagger}+a_{3} a_{7} b_{3}^{\dagger} b_{7}^{\dagger}+a_{1} a_{9} b_{1}^{\dagger} b_{9}^{\dagger}+a_{7} a_{9} b_{7}^{\dagger} b_{9}^{\dagger}+a_{1} a_{3} b_{1} b_{3}+a_{3} a_{7} b_{3} b_{7}+a_{1} a_{9} b_{1} b_{9}+a_{7} a_{9} b_{7} b_{9}\right)\left(t_{1}^{2}-t_{4}^{2}\right) \tag{31}
\end{align*}
$$

They are classified into 3 types of conditions:
(1) When $t_{1}=t_{4}$, we get $m_{1}^{2}+m_{4}^{2} \leq t_{1}^{2}+t_{4}^{2}$ directly by using the Cauchy - Schwarz inequality.
(2) When $\left(a_{1} a_{3} b_{1}^{\dagger} b_{3}^{\dagger}+a_{3} a_{7} b_{3}^{\dagger} b_{7}^{\dagger}+a_{1} a_{9} b_{1}^{\dagger} b_{9}^{\dagger}+a_{7} a_{9} b_{7}^{\dagger} b_{9}^{\dagger}+a_{1} a_{3} b_{1} b_{3}+a_{3} a_{7} b_{3} b_{7}+a_{1} a_{9} b_{1} b_{9}+a_{7} a_{9} b_{7} b_{9}\right)\left(t_{1}^{2}-t_{4}^{2}\right) \leq 0, m_{1}^{2}+m_{4}^{2} \leq t_{1}^{2}+t_{4}^{2}$ holds.
(3) When $\left(a_{1} a_{3} b_{1}^{\dagger} b_{3}^{\dagger}+a_{3} a_{7} b_{3}^{\dagger} b_{7}^{\dagger}+a_{1} a_{9} b_{1}^{\dagger} b_{9}^{\dagger}+a_{7} a_{9} b_{7}^{\dagger} b_{9}^{\dagger}+a_{1} a_{3} b_{1} b_{3}+a_{3} a_{7} b_{3} b_{7}+a_{1} a_{9} b_{1} b_{9}+a_{7} a_{9} b_{7} b_{9}\right)\left(t_{1}^{2}-t_{4}^{2}\right) \geq 0$, by setting $t_{1}>t_{4}$, we find

$$
\begin{align*}
m_{1}^{2}+m_{4}^{2} & =\left(a_{1}^{2}\left|b_{1}\right|^{2}+a_{3}^{2}\left|b_{3}\right|^{2}+a_{7}^{2}\left|b_{7}\right|^{2}+a_{9}^{2}\left|b_{9}\right|^{2}+a_{1} a_{7} b_{1} b_{7}^{\dagger}+a_{3} a_{9} b_{3} b_{9}^{\dagger}+a_{1} a_{7} b_{1}^{\dagger} b_{7}+a_{3} a_{9} b_{3}^{\dagger} b_{9}\right)\left(t_{1}^{2}+t_{4}^{2}\right) \\
& +\left(a_{1} a_{3} b_{1}^{\dagger} b_{3}^{\dagger}+a_{3} a_{7} b_{3}^{\dagger} b_{7}^{\dagger}+a_{1} a_{9} b_{1}^{\dagger} b_{9}^{\dagger}+a_{7} a_{9} b_{7}^{\dagger} b_{9}^{\dagger}+a_{1} a_{3} b_{1} b_{3}+a_{3} a_{7} b_{3} b_{7}+a_{1} a_{9} b_{1} b_{9}+a_{7} a_{9} b_{7} b_{9}\right)\left(t_{1}^{2}-t_{4}^{2}\right) \\
& \leq\left(a_{1}^{2}\left|b_{1}\right|^{2}+a_{3}^{2}\left|b_{3}\right|^{2}+a_{7}^{2}\left|b_{7}\right|^{2}+a_{9}^{2}\left|b_{9}\right|^{2}+2 a_{1} a_{7}\left|b_{1}\right|\left|b_{7}\right|+a_{3} a_{9}\left|b_{3} \| b_{9}\right|\right)\left(t_{1}^{2}+t_{4}^{2}\right) \\
& +2\left(a_{1} a_{3}\left|b_{1}\right|\left|b_{3}\right|+a_{3} a_{7}\left|b_{3}\right|\left|b_{7}\right|+a_{1} a_{9}\left|b_{1}\left\|b_{9}\left|+a_{7} a_{9}\right| b_{7}\right\| b_{9}\right|\right)\left(t_{1}^{2}-t_{4}^{2}\right) \tag{32}\\
& \leq\left(a_{1}\left|b_{1}\right|+a_{3}\left|b_{3}\right|+a_{7}\left|b_{7}\right|+a_{9}\left|b_{9}\right|\right)^{2}\left(t_{1}^{2}+t_{4}^{2}\right) \\
& \leq\left(t_{1}^{2}+t_{4}^{2}\right)
\end{align*}
$$

Together with the three conditions, we show that the inequality $m_{1}^{2}+m_{4}^{2} \leq t_{1}^{2}+t_{4}^{2}$ holds. Similar conditions can be derived for $m_{2}-m_{5}$ plane and $m_{3}-m_{6}$ plane.

Without loss of generality, we take $m_{1}-m_{2}$ plane for the other planes as an example. An IO maps a density matrix $\left\{t_{1}, t_{2}, 0,0,0,0,0,0\right\}$ to another density matrix $\left\{m_{1}, m_{2}, 0,0,0,0,0,0\right\}$, we have

$$
\begin{align*}
& m_{1}=\left(a_{1} \operatorname{Re}\left[b_{1}\right]+a_{3} \operatorname{Re}\left[b_{3}\right]+a_{7} \operatorname{Re}\left[b_{7}\right]+a_{9} \operatorname{Re}\left[b_{9}\right]\right) t_{1}+\left(\left(a_{2} \operatorname{Re}\left[c_{2}\right]+a_{4} \operatorname{Re}\left[c_{4}\right]\right) t_{1},\right. \\
& m_{2}=\left(a_{2} \operatorname{Re}\left[b_{2}\right]+a_{6} \operatorname{Re}\left[b_{6}\right]+a_{8} \operatorname{Re}\left[b_{8}\right]+a_{12} \operatorname{Re}\left[b_{12}\right]\right) t_{1}+\left(\left(a_{1} \operatorname{Re}\left[c_{1}\right]+a_{5} \operatorname{Re}\left[c_{5}\right]\right) t_{2} .\right. \tag{33}
\end{align*}
$$

Then, we find the relation between initial vector and the final vector as

$$
\begin{align*}
\left(\left|m_{1}\right|+\left|m_{2}\right|\right)^{2} & =\left(\left|\left(a_{1} \operatorname{Re}\left[b_{1}\right]+a_{3} \operatorname{Re}\left[b_{3}\right]+a_{7} \operatorname{Re}\left[b_{7}\right]+a_{9} \operatorname{Re}\left[b_{9}\right]+a_{2} \operatorname{Re}\left[b_{2}\right]+a_{6} \operatorname{Re}\left[b_{6}\right]+a_{8} \operatorname{Re}\left[b_{8}\right]+a_{12} \operatorname{Re}\left[b_{12}\right]\right) t_{1}\right|\right. \\
& \left.+\left|\left(a_{1} \operatorname{Re}\left[c_{1}\right]+a_{2} \operatorname{Re}\left[c_{2}\right]+a_{4} \operatorname{Re}\left[c_{4}\right]+a_{5} \operatorname{Re}\left[c_{5}\right]\right) t_{2}\right|\right)^{2} \tag{34}\\
& \leq\left(\left|t_{1}+t_{2}\right|\right)^{2} .
\end{align*}
$$

Other 2-dimensional Bloch vectors have the similar relationship.

