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Quantum coherence is a fundamental property that can emerge within any quantum system. Incoherent op-

erations, defined in terms of the Kraus decomposition, take an important role in state transformation. The

maximum number of incoherent Kraus operators has been present in [A. Streltsov, S. Rana, P. Boes, J. Eisert,

Phys. Rev. Lett. 119. 140402 (2017)]. In this work, we show that the number of incoherent Kraus operators

for a single qubit can be reduce from 5 to 4 by constructing a proper unitary matrix. For qutrit systems we

further obtain 32 incoherent Kraus operators, while the upper bound in the research of Sterltsov gives 39 Kraus

operators. Besides, we reduce the number of strictly incoherent Kraus operators from more than 15 to 13. And

we consider the state transformation via single qutrit strictly incoherent operation and incoherent operation.

PACS numbers: 03.67.-a, 02.20.Hj, 03.65.-w

I.INTRODUCTION

Quantum resource theories [1, 2] offer a powerful framework for understanding the natural change of certain physical

properties in a physical system and their applications for quantum technology. In recent years, a lot of works on the development

of quantum resource theory in different physics fields have been done, such as the quantum resource theory of entanglement

[3], the quantum resource theory of thermodynamics [4], the quantum resource theory of coherence [5] and so on. The general

structure of quantum resource theory has three ingredients in common：free states, free operations and resource states. The

basic requirement of resource theory is that free operations cannot generate a resource state from a free one. Free states can be

created and performed at no cost, and any state outside of the set of free states is called a resource state.

As an important physical resource, quantum coherence [6] has found use in a variety of physical tasks in quantum infor-

mation processing, such as quantum algorithm [7], quantum thermodynamics [8, 9], metrology [10], and quantum biology [11].

Let {|i⟩} (i = 1, ..., d) be a paticular basis in a d−dimensional Hilbert spaceHd. A state is called incoherent state if it is diagonal

in this basis and otherwise coherent. The structure of the incoherent states is as follows

δ =

d∑
i=1

δi|i⟩⟨i|, (1)

where
∑d

i=1 δi = 1.

Depending on the different physical requirement, there exist different types of incoherent operations. The important free

operations are known as incoherent operations(IO) [5] and strictly incoherent operations(SIO) [12]. We denote I as the set of

all incoherent states. A completely positive and trace-preserving map(CPTP) Φ is said to be an IO if Φ has a Kraus operator

representation {Kn} such that KnρK
†
n/Tr[KnρK

†
n ] ∈ I for all n and ρ ∈ I, while SIO require further {Kn} and {K†n } are incoherent.

Recently, A. Streltsov et al. in [13] have derived the upper bound of the number of incoherent Kraus operators in a general

incoherent operation. For any single qubit IO, the canonical representation of the Kraus operator is given by the set
 a1 b1

0 0

 ,
 0 0

a2 b2

 ,
 a3 0

0 b3

 ,
 0 b4

a4 0

 ,
 a5 0

0 0


 , (2)

where ai ∈ R, b j ∈ C. Moreover, ai and b j should satisfy the equalities
∑5

i=1 a2
i =
∑4

j=1 |b j|2 = 1 and a1b1+a2b2 = 0. Later, some

scholars have reduced the optimal number of incoherent Kraus operators on qubit systems to 4 by using the Choi-Jamiołkowski-
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Sudarshan matrix [14], which is proved to be optimal. In this work, we reduce the number of qubit and qutrit incoherent Kraus

operators by constructing proper unitary matrices. We show that the number of incoherent Kraus operators for a single qubit

can be reduce from 5 to 4. For qutrit systems we obtain 32 incoherent Kraus operators, while the upper bound in the research of

Sterltsov gives 39 Kraus operators. Besides, we reduce the number of strictly incoherent Kraus operators from more than 15 to

13. Lastly, we consider the state transformation via SIO and IO in qutrit system. And we find the achievable region about the set

of final states from a given initial qutrit state by all possible qutrit IOs.

II.THE UPPER BOUND OF (STRICTLY) INCOHERENT OPERATORS FOR QUTRIT SYSTEM

Recently, the structure of incoherent and strictly incoherent operations is studied in [13, 14]. As mentioned in [13], any

single qubit IO can be decomposed into 5 incoherent Kraus operators using the structure of IO. Similarly, the number of inco-

herent Kraus operators can be reduced to 39 for any single qutrit incoherent operation. Besides, the upper bound of the number

of strictly incoherent operator is less than 15. In the following, we first introduce an isometry about the two sets of Kraus

decompositions which give rise to the same quantum operation.

Lemma 1. The two sets of Kraus operators {K j} and {Li} are Kraus decompositions of the same quantum operation if and only

if there is a unitary matrix U such that [15]

Li =
∑

j

Ui, jK j. (3)

Therefore, according to the above result, the number of Kraus operators of a quantum operation is finite. There must be

a set with the least number of Kraus operators. Firstly, let’s study the qubit case. By using the properties of Lemma 1 and the

qubit incoherent Kraus operator, we find the following conclusion

Proposition 1. Every qubit IO can be decomposed into four incoherent Kraus operators. The canonical representation of the

Kraus operators is given by the set 
 a1 b1

0 0

 ,
 0 0

a2 b2

 ,
 a3 0

0 b3

 ,
 0 b4

a4 0


 , (4)

where ai ∈ R, b j ∈ C satisfing the equalities
∑4

i=1 a2
i =
∑4

j=1 |b j|2 = 1 and a1b1 + a2b2 = 0.

Proof. Denote the incoherent Kraus operations in Eq.(2) as follows

K1 =

 a1 b1

0 0

 , K2 =

 0 0

a2 b2

 , K3 =

 a3 0

0 0

 K4 =

 0 b4

a4 0

 , K5 =

 ∗ 0

0 ∗

 , (5)

where ai ∈ R, b j ∈ C, ∗ denotes some complex number. Now, select the following 4 × 4 unitary matrix

U =


ka1 0 ka3 0

−la2
3a4|b1||b4|

la2 |b1 ||b4 |(a2
1 |b4 |2+a2

3 |b1 |2+a2
3 |b4 |2)

b∗1b4
la1a3a4|b1||b4| la2

3a4|b1|2

−ma2a3b4 |b1 |
b1

−ma3a4|b1| ma1a2b4 |b1 |
b1

ma2a3|b1|
na2

3b∗1 |b4 |
b∗4

0 −na1a3b∗1 |b4 |
b∗4

n(a2
1 + a2

3)|b4|


, (6)
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where the parameters k, l, m and n are chosen as

k2 =
1

a2
1 + a2

3

,

l2 =
1

a4
3a2

4|b1|2|b4|2 + a2
2(a2

1|b4|2 + a2
3|b1|2 + a2

3|b4|2)2 + a2
1a2

3a2
4|b1|2|b4|2 + a4

3a2
4|b1|4

,

m2 =
1

a2
2a2

3|b4|2 + a4
3a2

4|b1|2 + a2
1a2

2|b4|2 + a2
2a2

3|b1|2
,

n2 =
1

a4
3|b1|2 + a2

1a2
3|b1|2 + (a2

1 + a2
3)2|b4|2

.

(7)

We then introduce a unitary matrix V defined by

V = U ⊕ I1, (8)

where I1 is the identity operator with dimension 1. According to Lemma 1, we have

Li =


∑4

j=1 Vi, jK j f or 1 ≤ i ≤ 4,

Ki f or i = 5.
(9)

Then one computes that

L1 =

 ∗ ∗0 0

 , L2 =

 0 0

∗ ∗

 , L3 =

 ∗ 0

0 ∗

 , L4 =

 0 ∗
∗ 0

 , L5 =

 ∗ 0

0 ∗

 , (10)

where ∗ denote some complex numbers that are the combinations of ai and bi. It is obvious that L5 has the same form as L3.

Thus, we can reduce the set {L3, L5} to one Kraus operator. This proves that every IO in qubit system can be decomposed

into at most four incoherent Kraus operators as given in Eq.(4). From the normalization property
∑4

i=1 K†i Ki = I, we have∑4
i=1 a2

i =
∑4

j=1 |b j|2 = 1 and a1b1 + a2b2 = 0. �

Using the Choi-Jamiołkowski-Sudarshan matrix for a quantum operation, Rana et al. have proved that the optimal number

of incoherent Kraus operators for an incoherent qubit operation is four. However, we observe that it is more convenient to draw

the conclusion using the isometry of Kraus decompositions. For most incoherent operations, the above result is the optimal

form of incoherent Kraus decomposition. We cannot find a general unitary matrix to reduce the number of incoherent Kraus

operator. But some special quantum operations could be decomposed into least four incoherent Kraus operators, such as the

phase damping channel and amplitude damping channel [16].

For qutrit system, any incoherent operation admits a decomposition with at most 39 incoherent Kraus operators. A canonical
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representation of the Kraus operators for a qutrit IO can be obtained from the proof of Proposition 5 in Ref. [13] as follows,

K1 =


a1 b1 c1

0 0 0

0 0 0

 , K2 =


a2 b2 0

0 0 c2

0 0 0

 , K3 =


a3 b3 0

0 0 0

0 0 c3

 , K4 =


a4 b4 0

0 0 0

0 0 0

 , K5 =


0 0 c5

a5 b5 0

0 0 0

 ,

K6 =


0 0 0

a6 b6 c6

0 0 0

 , K7 =


0 0 0

a7 b7 0

0 0 c7

 , K8 =


0 0 0

a8 b8 0

0 0 0

 , K9 =


a9 0 c9

0 b9 0

0 0 0

 , K10 =


a10 0 0

0 b10 c10

0 0 0

 ,

K11 =


a11 0 0

0 b11 0

0 0 c11

 , K12 =


a12 0 0

0 b12 0

0 0 0

 , K13 =


0 b13 c13

a13 0 0

0 0 0

 , K14 =


0 b14 0

a14 0 c14

0 0 0

 , K15 =


0 b15 0

a15 0 0

0 0 c15

 ,

K16 =


0 b16 0

a16 0 0

0 0 0

 , K17 =


a17 0 c17

0 0 0

0 b17 0

 , K18 =


a18 0 0

0 0 c18

0 b18 0

 , K19 =


a19 0 0

0 0 0

0 b19 c19

 , K20 =


a20 0 0

0 0 0

0 b20 0

 ,

K21 =


0 0 c21

a21 0 0

0 b21 0

 , K22 =


0 0 0

a22 0 c22

0 b22 0

 , K23 =


0 0 0

a23 0 0

0 b23 c23

 , K24 =


0 0 0

a24 0 0

0 b24 0

 , K25 =


0 0 c25

0 b25 0

a25 0 0

 ,

K26 =


0 0 0

0 b26 c26

a26 0 0

 , K27 =


0 0 0

0 b27 0

a27 0 c27

 , K28 =


0 0 0

0 b28 0

a28 0 0

 , K29 =


0 0 c29

0 0 0

a29 b29 0

 , K30 =


0 0 0

0 0 c30

a30 b30 0

 ,

K31 =


0 0 0

0 0 0

a31 b31 c31

 , K32 =


0 0 0

0 0 0

a32 b32 0

 , K33 =


0 b33 c33

0 0 0

a33 0 0

 , K34 =


0 b34 0

0 0 c34

a34 0 0

 , K35 =


0 b35 0

0 0 0

a35 0 c35

 ,

K36 =


0 b36 0

0 0 0

a36 0 0

 , K37 =


0 0 0

0 0 0

a37 0 0

 , K38 =


a38 0 0

0 0 0

0 0 0

 , K39 =


0 0 0

a39 0 0

0 0 0

 .
(11)

Theorem 1. Any incoherent operation acting on a single qutrit system admits a decomposition with at most 32 incoherent Kraus

operators.

Proof. Firstly, we choose the Kraus operators K32, K24, K37 and K39. Denote K32, K24, K37 and K39 as M1, M2, M3 and M4

respectively. Define a 3 × 3 unitary matrix U1 by

U1 =


l1a∗32 0 l1a∗37

m1b∗32|a37|2 m1(|a32|2 + |a37|2)b∗24 −m1a∗37b∗32a32

n1a37b24 −n1a37b32 −n1a32b24

 , (12)

where the parameters l1, m1 and n1 are chosen as

l21 =
1

a2
32 + a2

37

,

m2
1 =

1
(a2

32 + a2
37)(|a37|2(|b32|2 + |b24|2) + |a37b24|2)

,

n2
1 =

1
|a37|2(|b32|2 + |b24|2) + |a37b24|2

.

(13)
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According to Lemma 1 and the construction of the unitary matrix such as Eq.(8), we find that the operator L4 has the same form

as L3. In other words, the set {M1, M2, M3, M4} can be reduce to the set {M1, M2, M4}, that is, the number of the incoherent

Kraus operators can be reduce to 38.

Similarly, define U2 as a unitary matrix by,

U2 =


l2a∗8 0 l2a∗39

m2b∗8|a39|2 m2(|a8|2 + |a39|2)b∗12 −m2a∗39b∗8a8

n2a39b12 −n2a39b8 −n2a8b12

 , (14)

where the parameters l2, m2 and n2 are chosen as

l22 =
1

a2
8 + a2

39

,

m2
2 =

1
(a2

8 + a2
39)(|a39|2(|b8|2 + |b12|2) + |a39b12|2)

,

n2
2 =

1
|a39|2(|b8|2 + |b12|2) + |a39b12|2

.

(15)

One finds the set {K8, K12, K39, K38} can be reduce to {K8, K12, K38}. Thus the number of the incoherent Kraus operators can

be reduce to 37.

Then, we discover that there is a unitary matrix U3 which can reduce the set {K4, K8, K38, K16, K12} to {K4, K8, K12, K16}.
The specific form of U3 is as follows,

U3 =


k3a4 0 k3a38 0

−l3a2
38a16|b4||b16|

l3a8 |b4 ||b16 |(a2
4 |b16 |2+a2

38 |b4 |2+a2
38 |b16 |2)

b∗4b16
la4a38a16|b4||b16| l3a2

38a16|b4|2

−m3a8a38b16 |b4 |
b4

−m3a38a16|b4| m3a4a8b16 |b4 |
b4

ma8a38|b4|
n3a2

38b∗4 |b16 |
b∗16

0 −n3a4a38b∗4 |b16 |
b∗16

n3(a2
4 + a2

38)|b16|


, (16)

where the parameters k3, l3, m3 and n3 are chosen as

k2
3 =

1
a2

4 + a2
38

,

l23 =
1

a4
38a2

16|b4|2|b16|2 + a2
8(a2

4|b16|2 + a2
38|b4|2 + a2

38|b16|2)2 + a2
4a2

38a2
16|b4|2|b16|2 + a4

38a2
16|b4|4

,

m2
3 =

1
a2

8a2
38|b16|2 + a4

38a2
16|b4|2 + a2

4a2
8|b16|2 + a2

8a2
38|b4|2

,

n2
3 =

1
a4

38|b4|2 + a2
4a2

38|b4|2 + (a2
4 + a2

38)2|b16|2
.

(17)

Similarly, we can find some special unitary matrices reducing the set {K11, K12, K19, K20}, {K15, K16, K35, K36},
{K15, K16, K23, K24} and {K11, K12, K27, K28} to the set {K11, K12, K19}, {K15, K16, K35}, {K15, K16, K23} and {K11, K12, K27}
respectively. Therefore, the upper bound on the number of incoherent Kraus operators is 32.

�

Theorem 2. Any strictly incoherent operation acting on a single qutrit system admits a decomposition with at most 13 strictly

incoherent Kraus operators.

Proof. In Ref. [13], the authors verify that any qutrits strictly incoherent operation admits a decomposition with at most 15
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incoherent Kraus operators. The specific form is as follows,

K1 =


a1 0 0

0 b1 0

0 0 c1

 , K2 =


a2 0 0

0 0 c2

0 b2 0

 , K3 =


0 b3 0

a3 0 0

0 0 c3

 , K4 =


0 0 c4

a4 0 0

0 b4 0

 , K5 =


0 0 c5

0 b5 0

a5 0 0

 ,

K6 =


0 b6 0

0 0 c6

a6 0 0

 , K7 =


a7 0 0

0 b7 0

0 0 0

 , K8 =


a8 0 0

0 0 0

0 b8 0

 , K9 =


0 b9 0

a9 0 0

0 0 0

 , K10 =


0 0 0

a10 0 0

0 b10 0

 ,

K11 =


0 0 0

0 b11 0

a11 0 0

 , K12 =


0 b12 0

0 0 0

a12 0 0

 , K13 =


a13 0 0

0 0 0

0 0 0

 , K14 =


0 0 0

a14 0 0

0 0 0

 , K15 =


0 0 0

0 0 0

a15 0 0

 .

(18)

By defining the following 3 × 3 unitary matrix

U1 =


−l1(|a12|2 + |a15|2)b9 −l1|a15|2b∗12 l1a12a∗15b∗12

0 −m1a∗12 −m1a∗15

n1a15b12 −n1a15b∗9 n1a12b∗9

 , (19)

where the parameters l1, m1 and n1 are chosen as

l21 =
1

(|a12|2 + |a15|2)(|a12|2|b9|2 + |a15|2|b9|2 + |a15|2|b12|2)
,

m2
1 =

1
|a12|2 + |a15|2

,

n2
1 =

1
|a12|2|b9|2 + |a15|2|b9|2 + |a15|2|b12|2

.

(20)

we find the set {K9,K12,K14,K15} can be reduced to {K9,K12,K14}.
Besides, we take the unitary matrix

U2 =


−l2(|a10|2 + |a14|2)b8 −l2|a14|2b∗10 l2a10a∗14b∗10

0 −m2a∗10 −m2a∗14

n2a14b10 −n2a14b∗8 n2a10b∗8

 , (21)

where the parameters l2, m2 and n2 are chosen as

l22 =
1

(|a10|2 + |a14|2)(|a10|2|b8|2 + |a14|2|b8|2 + |a14|2|b10|2)

m2
2 =

1
|a10|2 + |a14|2

,

n2
2 =

1
|a10|2|b8|2 + |a14|2|b8|2 + |a14|2|b10|2

.

(22)

The combination of K8, K10 and K14 has the same form of K13. So the set {K8,K10,K13,K14} can be reduced to {K8,K10,K13}.
In other words, any single-qutrit strictly incoherent operation admits a decomposition with at most 13 strictly incoherent Kraus

operators. �

In 3-dimension Hilbert space, an arbitrary quantum state is expressed as

ρ =
1
3

I +
1
2

8∑
i=1

tiλi, (23)
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where t⃗ = {t1, t2, ..., t8} is the 8 dimensional Bloch vector, λi is a generator of SU(3), where the length of t⃗ should be less than

or equal to 2√
3

[17]. In order to visualize the state transformation via single qutrit SIO and IO, we consider two-dimensional

sections of
∑

3(i, j) [18] which are constructed as
∑

3(i, j) = {t ∈ B(R8) : t = {0, ..., 0, ti, 0, ..., t j, ..., 0}}. For a given Bloch vector

of t = {0, ..., 0, ti, 0, ..., t j, ..., 0}, we can find the achievable region for the final state m = {0, ..., 0,mi, 0, ...,m j, ..., 0} via single

qutrit SIO and IO. In the two-dimensional sections, we can find the limited conditions, the proof can be found in Appendix A.

1: In the {m1, ...,m6} − {m7,m8} plane, the following inequalities should be satisfied:

m2
i ≤ t2

i , {i = 1, ..., 6}

m7 ∈ [
1 −
√

3
3
,

2
√

3
],

m8 ∈ [−2
√

3
3
,

2
√

3
3

].

(24)

2: In the {m7} − {m8} plane, the following equality should be satisfied:

−
√

3m7 + m8 −
2
√

3
3
= 0. (25)

3: In the {m1} − {m4}, {m2} − {m5} and {m3} − {m6} planes, the following inequality should be satisfied respectively:

m2
1 + m2

4 ≤ t2
1 + t2

4,

m2
2 + m2

5 ≤ t2
2 + t2

5,

m2
3 + m2

6 ≤ t2
3 + t2

6.

(26)

4: In the other planes, we find the following inequality:

(|mi| + |m j|)2 ≤ (|ti| + |t j|)2. (27)

In the following Fig.1−Fig.4, we show the projection of the achievable region into the {m1, ...,m6} − {m7,m8}, {m7} −
{m8}, {m1} − {m4}, {m2} − {m5}, {m3} − {m6} and other planes for the corresponding different initial states. These images, which

are numerically simulated the set of final states, coincide with our conclusion.

FIG. 1: The achievable region for single qutrit SIO and IO in condition 1. The blue colored area shows the projection of the achievable region

in the mi − m8 (i = 1, ..., 6) plane. We have set ti = t8 = 0.5 in the initial state.

III. DISCUSSION AND CONCLUSION

In this paper, we have discussed how to reduce the number of incoherent Kraus operators. Furthermore, we have shown that

the number of incoherent Kraus operators for a single qubit can be reduce from 5 to 4. For qutrit system, we have found that any

incoherent operation or strictly incoherent operation admits decomposition with at most 32 or 13 Kraus operator respectively.

We have also investigated the achievable region for a fixed state via single qutrit SIO and IO. An open question is that whether

the upper bound can be further reduced to a much tight level. Besides, it is still yet to be solved to compute the optimal number
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FIG. 2: The achievable region for single qutrit SIO and IO in condition 2. The blue colored area shows the projection of the achievable region

in the mi − m7 (i = 1, ..., 6) plane. In the initial state we set ti = 0.5, t7 = 0.5 respectively.

FIG. 3: The achievable region for single qutrit SIO and IO in condition 3. The blue colored area shows the projection of the achievable region

in the m1 − m4, m2 − m5, m3 − m6 and m7 − m8 plane, where in the initial state we set ti = 0.5, t j = 0.5 respectively.

FIG. 4: The achievable region for single qutrit SIO and IO in condition 4. The blue colored area shows the projection of the achievable region

in the planes that are not mentioned above, where in the initial state we set ti = 0.5, t j = 0.5 respectively.

of incoherent Kraus operator when d ≥ 4. We suspect that the number of d dimensional incoherent Kraus operators is related to

the number of d-1 dimensional incoherent Kraus operators. In addition, the form of incoherent Kraus operator in d dimension

is also related to the d-1 dimensional incoherent Kraus operators. More importantly, according to the relationship between the

superposition-free operation and incoherent operation, we can obtain the structure of the resource theory of superposition[19].
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APPENDIX A: THE COMPUTATIONS OF THE CONDITIONS FOR THE STATE TRANSFORMATION

In this appendix, we will introduce the proof of the conditions for the state transformation. For the 2-dimensional sections∑
3(i, j), where i ∈ {1, 2, ..., 6} and j ∈ {7, 8}, the coefficients mi and m j of the final state via a strictly incoherent channel can be

derived as follows:

m1 = t1(a1Re[b1] + a3Re[b3] + a7Re[b7] + a9Re[b9]),

m2 = t2(a1Re[c1] + a5Re[c5]),

m3 = t3(
1
2

(b1c†1 + b†1c1 + b2c†2 + b†2c2)),

m4 = t4(a1Re[b1] − a3Re[b3] + a7Re[b7] − a9Re[b9]),

m5 = t5(a1Re[c1] − a5Re[c5]),

m6 = t6(
1
2

(b1c†1 + b†1c1 − b2c†2 + b†2c2)),

m7 =
1
3

(1 − |c1|2 − |c3|2) + (1 − |a5|2 − |a6|2 − |a11|2 − |a12|2)(
1
3
+

t7
2

) + (1 − |b2|2 − |b4|2 − |b8|2 − |b10|2)(
1
3
− t7

2
),

m8 =
1
√

3
−
√

3((|c1|2 + |c3|2)(
1
3
− t8√

3
) + (|a5|2 + |a6|2 + |a11|2 + |a12|2 + |b2|2 + |b4|2 + |b8|2 + |b10|2)(

1
3
+

t8
2
√

3
)).

(28)

Due to the completeness of Kraus operators,
∑

i K†i Ki = I, we obtain
∑13

i=1 a2
i =
∑12

j=1 |b j|2 =
∑6

k=1 |ck |2 = 1, where ai can

be chosen as real numbers, b j and ck as complex numbers. It is easy to obtain the conditions 1 by using the length of the Bloch

vector, the normalization of the parameters and the Cauchy–Schwarz inequality.
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In the m7 − m8 plane, we can obtain the explicit relation. The final form of m7, m8 are as follows:

m7 = (|c2|2 + |c4|2 + |c5|2 + |c6|2)(
1
3
− t8√

3
) + (|b1|2 + |b3|2 + |b5|2 + |b6|2 + |b7|2 + |b9|2 + |b11|2 + |b12|2)(

1
3
+

1
2

(−t7 +
t8√

3
))

+ (a2
1 + a2

2 + a2
3 + a2

4 + a2
7 + a2

8 + a2
9 + a2

10 + a2
13)(

1
3
+

1
2

(t7 +
t8√

3
)),

m8 =
1
√

3
−
√

3(|c1|2 + |c3|2)(
1
3
− t8√

3
) + (|b2|2 + |b4|2 + |b8|2 + |b10|2)(

1
3
+

1
2

(−t7 +
t8√

3
)) + (a2

5 + a2
6 + a2

11 + a2
12)(

1
3
+

1
2

(t7 +
t8√

3
)).

(29)

It is obvious that −
√

3m7 + m8 − 2
√

3
3 = 0, using the conditions of

∑13
i=1 a2

i =
∑12

j=1 |b j|2 =
∑6

k=1 |ck |2 = 1.

In m1 − m4 plane, the final state form of m1, m4 are as follows:

m1 =
1
2

((a1b†1 + a3b†3 + a7b†7 + a9b†9)(t1 − it4) + ((a1b1 + a3b3 + a7b7 + a9b9)(t1 + it4)),

m4 =
−i
2

((−a1b†1 + a3b†3 − a7b†7 + a9b†9)(t1 − it4) + ((a1b1 − a3b3 + a7b7 − a9b9)(t1 + it4)).
(30)

Then

m2
1 + m2

4 = (a2
1|b1|2 + a2

3|b3|2 + a2
7|b7|2 + a2

9|b9|2 + a1a7b1b†7 + a3a9b3b†9 + a1a7b†1b7 + a3a9b†3b9)(t2
1 + t2

4)

+ (a1a3b†1b†3 + a3a7b†3b†7 + a1a9b†1b†9 + a7a9b†7b†9 + a1a3b1b3 + a3a7b3b7 + a1a9b1b9 + a7a9b7b9)(t2
1 − t2

4)
(31)

They are classified into 3 types of conditions:

(1) When t1 = t4, we get m2
1 + m2

4 ≤ t2
1 + t2

4 directly by using the Cauchy–Schwarz inequality.

(2) When (a1a3b†1b†3+a3a7b†3b†7+a1a9b†1b†9+a7a9b†7b†9+a1a3b1b3+a3a7b3b7+a1a9b1b9+a7a9b7b9)(t2
1−t2

4) ≤ 0, m2
1+m2

4 ≤ t2
1+t2

4

holds.

(3) When (a1a3b†1b†3 +a3a7b†3b†7 +a1a9b†1b†9 +a7a9b†7b†9 +a1a3b1b3 +a3a7b3b7 +a1a9b1b9 +a7a9b7b9)(t2
1 − t2

4) ≥ 0, by setting

t1 > t4, we find

m2
1 + m2

4 = (a2
1|b1|2 + a2

3|b3|2 + a2
7|b7|2 + a2

9|b9|2 + a1a7b1b†7 + a3a9b3b†9 + a1a7b†1b7 + a3a9b†3b9)(t2
1 + t2

4)

+ (a1a3b†1b†3 + a3a7b†3b†7 + a1a9b†1b†9 + a7a9b†7b†9 + a1a3b1b3 + a3a7b3b7 + a1a9b1b9 + a7a9b7b9)(t2
1 − t2

4)

≤ (a2
1|b1|2 + a2

3|b3|2 + a2
7|b7|2 + a2

9|b9|2 + 2a1a7|b1||b7| + a3a9|b3||b9|)(t2
1 + t2

4)

+ 2(a1a3|b1||b3| + a3a7|b3||b7| + a1a9|b1||b9| + a7a9|b7||b9|)(t2
1 − t2

4)

≤ (a1|b1| + a3|b3| + a7|b7| + a9|b9|)2(t2
1 + t2

4)

≤ (t2
1 + t2

4)

(32)

Together with the three conditions, we show that the inequality m2
1 + m2

4 ≤ t2
1 + t2

4 holds. Similar conditions can be derived

for m2 − m5 plane and m3 − m6 plane.

Without loss of generality, we take m1 − m2 plane for the other planes as an example. An IO maps a density matrix

{t1, t2, 0, 0, 0, 0, 0, 0} to another density matrix {m1,m2, 0, 0, 0, 0, 0, 0}, we have

m1 = (a1Re[b1] + a3Re[b3] + a7Re[b7] + a9Re[b9])t1 + ((a2Re[c2] + a4Re[c4])t1,

m2 = (a2Re[b2] + a6Re[b6] + a8Re[b8] + a12Re[b12])t1 + ((a1Re[c1] + a5Re[c5])t2.
(33)

Then, we find the relation between initial vector and the final vector as

(|m1| + |m2|)2 = (|(a1Re[b1] + a3Re[b3] + a7Re[b7] + a9Re[b9] + a2Re[b2] + a6Re[b6] + a8Re[b8] + a12Re[b12])t1|

+ |(a1Re[c1] + a2Re[c2] + a4Re[c4] + a5Re[c5])t2|)2

≤ (|t1 + t2|)2.

(34)

Other 2-dimensional Bloch vectors have the similar relationship.


