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Abstract

We investigate gradient descent training of wide neural networks and the corre-
sponding implicit bias in function space. Focusing on 1D regression, we show that
the solution of training a width-n shallow ReLU network is within n−1/2 of the
function which fits the training data and whose difference from initialization has
smallest 2-norm of the second derivative weighted by 1/ζ. The curvature penalty
function 1/ζ is expressed in terms of the probability distribution that is utilized to
initialize the network parameters, and we compute it explicitly for various common
initialization procedures. For instance, asymmetric initialization with a uniform
distribution yields a constant curvature penalty, and thence the solution function is
the natural cubic spline interpolation of the training data. The statement generalizes
to the training trajectories, which in turn are captured by trajectories of spatially
adaptive smoothing splines with decreasing regularization strength.
Keywords. Implicit bias, overparametrized neural network, cubic spline interpola-
tion, spatially adaptive smoothing spline, effective capacity.

1 Introduction

Deep neural networks have achieved tremendous success in many areas. Understanding why neural
networks trained in the overparametrized regime and without explicit regularization generalize well
in practice is an important problem (Zhang et al., 2017). It has been observed that some form of
capacity control different from network size must be at play (Neyshabur et al., 2014). Specifically the
implicit bias of parameter optimization has been identified to play a key role in the generalization
performance of neural networks (Neyshabur et al., 2017). By implicit bias we mean that among
the many hypotheses that fit the training data, the algorithm selects one which satisfies additional
properties that may be beneficial for its performance on new data.

The implicit bias of parameter optimization has been investigated in terms of the properties of the
loss function at the points reached by different optimization methodologies (Keskar et al., 2017; Wu
et al., 2017; Dinh et al., 2017). In terms of the solutions, Maennel et al. (2018) show that gradient
flow for shallow ReLU networks initialized close to zero quantizes features in a way that depends on
the training data but not on the network size. Soudry et al. (2018) show that in classification problems



with separable data, gradient descent with linear networks converges to a max-margin solution.
Gunasekar et al. (2018b) present a result on implicit bias for deep linear convolutional networks, and
Ji and Telgarsky (2019) study non-separable data. Chizat and Bach (2020) show that gradient flow
for logistic regression with infinitely wide two-layer networks yields a max-margin classifier in a
certain space. Gunasekar et al. (2018a) analyze the implicit bias of different optimization methods
(natural gradient, steepest and mirror descent) for linear regression and separable linear classification
problems, and obtain characterizations in terms of minimum norm or max-margin solutions.

Jacot et al. (2018) and Lee et al. (2019) showed that the training dynamics of shallow and deep wide
neural networks is well approximated by that of the linear Taylor approximation of the models at a
suitable initialization. Chizat et al. (2019) observe that a model can converge to zero training loss
while hardly varying its parameters, a phenomenon that can be attributed to scaling of the output
weights and makes the model behave as its linearization around the initialization. Zhang et al. (2019)
consider linearized models for regression problems and show that gradient flow finds the global
minimum of the loss function which is closest to initialization in parameter space. This type of
analysis connects with trajectory based analysis of neural networks (Saxe et al., 2014). Oymak and
Soltanolkotabi (2019) studied the overparametrized neural networks directly and showed that gradient
descent finds a global minimizer of the loss function which is close to the initialization.

Towards interpreting parameters in function space, Savarese et al. (2019) and Ongie et al. (2020)
studied infinite-width neural networks with parameters having bounded norm, in 1D and multi-
dimensional input spaces, respectively. They showed that, under a standard parametrization, the
complexity of the functions represented by the network, as measured by the 1-norm of the second
derivative, can be controlled by the 2-norm of the parameters. Using these results, one can show that
gradient descent with `2 weight penalty leads to simple functions. Sahs et al. (2020) relates function
properties, such as breakpoint and slope distributions, to the distributions of the network parameters.

In this work, we study the implicit bias of gradient descent for regression problems. We focus on
wide networks with rectified linear units (ReLU) and describe the bias in function space. We present
our main results in Section 2, and develop the main theory in Sections 3 and 4. In the interest of a
concise presentation, technical proofs and extended discussions are deferred to appendices.

2 Main results and discussion

We obtain a description of the implicit bias in function space when applying gradient descent to
regression problems with wide ReLU neural networks. Our strategy and main results are as follows.

1. In Section 3, for a linearized model Theorem 2 shows that gradient descent with sufficiently small
step size finds the minimizer of the training objective which is closest to the initial parameter
(similar to a result by Zhang et al., 2019). Then Theorem 3 shows that the training dynamics of
the linearization of a wide network is well approximated in parameter and function space by that
of a lower dimensional linear model which trains only the output weights.

2. In Section 4, for networks with a single input and a single layer of ReLUs, we relate the implicit
bias of gradient descent in parameter space to an alternative optimization problem. In Theorem 5
we show that the solution of this problem has a well defined limit as the width of the network
tends to infinity, which allows us to obtain a variational formulation.

3. In Theorem 6 we translate the description of the bias from parameter space to function space.
This is expressed as the minimization of the 2-norm of second derivative weighted by a function
that depends on the distribution that is utilized to initialize the parameters, subject to fitting the
training data. In Theorem 9 we provide explicit descriptions of the weight function for various
common initialization procedures.

Finally, we can utilize recent results bounding the difference in function space of the solutions
obtained from training a wide network and its linearization (Lee et al., 2019, Theorem H.1). We
prove the following result (proof in Appendix D).

Theorem 1 (Implicit bias of gradient descent in wide ReLU networks). Consider a feedforward
network with a single input unit, a hidden layer of n rectified linear units, and a single linear output
unit. Assume standard parametrization (2) and that for each hidden unit the input weight and bias
are initialized from a sub-Gaussian (W,B) (3) with joint density pW,B. Then, for any finite data set
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{(xi, yi)}Mi=1 and sufficiently large n there exist constant u and v so that optimization of the mean
square error on the adjusted training data {(xi, yi−uxi−v)}Mi=1 by full-batch gradient descent with
sufficiently small step size converges to a parameter θ∗ for which f(x, θ∗) attains zero training error.
Furthermore, letting ζ(x) =

∫
R |W |

3pW,B(W,−Wx) dW and S = supp(ζ) ∩ [mini xi,maxi xi],
we have ‖f(x, θ∗)− g∗(x)‖2 = O(n−

1
2 ), x ∈ S (the 2-norm over S) with high probability over the

random initialization θ0, where g∗ solves following variational problem:

min
g∈C2(S)

∫
S

1

ζ(x)
(g′′(x)− f ′′(x, θ0))2 dx

subject to g(xi) = yi − uxi − v, i = 1, . . . ,M.

(1)

Here, the curvature penalty function 1/ζ(x) emphasizes different parts of the input space depending
on the density pW,B from which weights and biases are initialized.

Interpretation An intuitive interpretation of the theorem is that at those regions of the input space
where ζ is smaller, we can expect the difference between the functions after and before training to
have a small curvature. We may call ρ = 1/ζ a curvature penalty function. The bias induced from
initialization is expressed explicitly. We note that under suitable asymmetric parameter initialization
(see Appendix C.2), it is possible to achieve f(·, θ0) ≡ 0. Then the regularization is on the curvature
of the output function itself. Moreover, if we substitute constraints g(xi) = yi by a quadratic term
1
λ

1
M

∑M
i=1(g(xi) − yi)2 added to the objective, we obtain the variational problem for a so-called

spatially adaptive smoothing spline (see Abramovich and Steinberg, 1996; Pintore et al., 2006). This
problem can be solved explicitly and can be shown to approximate early stopping. This allows us to
describe the optimization trajectory in function space (see Appendix M). In Theorem 9 we obtain the
explicit form of ζ for various common parameter initialization procedures. In particular, when the
parameters are initialized independently from a uniform distribution on a finite interval, ζ is constant
and the problem is solved by the natural cubic spline interpolation of the data. The adjustment of
the training data simply accounts for the fact that second derivatives define a function only up to
linear terms. In practice we can use the coefficients a and b of linear regression yi = axi + b+ εi,
i = 1, . . . ,M , and set the adjusted data as {(xi, εi)}Mi=1.

We illustrate Theorem 1 numerically in Figure 1 and more extensively in Appendix A. In close
agreement with the theory, the solution to the variational problem captures the solution of gradient
descent training uniformly with error of order n−1/2. To illustrate the effect of the curvature penalty
function, Figure 1 also shows the solutions to the variational problem for different values of ζ
corresponding to different initialization distributions. We see that at input points where ζ is small /
peaks strongly, the solution function tends to have a lower curvature / be able to use a higher curvature
in order to fit the data.

Relation to previous and concurrent works Zhang et al. (2019) described the implicit bias of
gradient descent in the kernel regime as minimizing a kernel norm from initialization, subject to
fitting the training data. Our result can be regarded as making the kernel norm explicit, thus providing
an interpretable description of the bias in function space and further illuminating the role of the
parameter initialization procedure. We prove the equivalence in Appendix L. Savarese et al. (2019)
showed that infinite-width networks with 2-norm weight regularization represent functions with
smallest 1-norm of the second derivative, an example of which are linear splines. We further discuss
this in Appendix C.4. A recent preprint further develops this direction, for two-layer networks with
certain activation functions that interpolate data while minimizing a weight norm (Parhi and Nowak,
2019). In contrast, our result characterizes the solutions of training from a given initialization without
explicit regularization, which turn out to minimize a weighted 2-norm of the second derivative and
hence correspond to cubic splines. In finishing this work we became aware of a recent preprint (Heiss
et al., 2019) which discusses ridge weight penalty, adaptive splines, and early stopping for one-input
ReLU networks training only the output layer. These results are closely related to ours, although they
do not connect to training the full network.

Consequences and possible generalizations The key innovation from this work is the interpretable
description of the implicit bias of gradient descent in function space for regression problems. One
of the technical challenges that we encountered was the reformulation of the bias in parameter
space into a suitable optimization problem which has a continuous limit and proving convergence
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n = 10 n = 640 Solution g∗ to the variational problem

Reciprocal curvature penalty ζ

Figure 1: Illustration of Theorem 1. Left: Uniform error between the solution g∗ to the variational
problem and the functions f(·, θ∗) obtained by gradient descent training of a neural network (in this
case with uniform initialization W ∼ U(−1, 1), B ∼ U(−2, 2)), against the number of neurons.
The inset shows examples of the trained networks (blue) alongside with the training data (dots) and
the solution to the variational problem (orange). Right: Effect of the curvature penalty function on
the shape of the solution function. The bottom shows g∗ for various different ζ shown at the top.
Again dots are training data. The green curve is for ζ constant on [−2, 2], derived from initialization
W ∼ U(−1, 1), B ∼ U(−2, 2); blue is for ζ(x) = 1/(1 + x2)2, derived from W ∼ N(0, 1),
B ∼ N(0, 1); and orange for ζ(x) = 1/(0.1 + x2)2, derived fromW ∼ N(0, 1), B ∼ N(0, 0.1).
Theorem 9 shows how to compute ζ for the above distributions.

of the corresponding solutions. With the presented bias description we can formulate heuristics for
parameter initialization either to ease optimization or also to induce specific smoothness priors on
the solutions. In particular, by Proposition 8 any curvature penalty 1/ζ can be implemented by an
appropriate choice of the parameter initialization distribution. By our analysis, the effective capacity
of the model, understood as the set of possible output functions after training, is adapted to the size M
of the training dataset and is well captured by a space of cubic splines relative to the initial function.
This is a space with dimension of order M independently of the number of parameters of the network.
Several generalizations are interesting to consider in more detail, including multi-dimensional inputs,
other network architectures and activations, and other loss functions. We comment on these in
Appendix O.

3 Wide networks and parameter space

3.1 Notation and problem setup

Consider a feedforward network fully connected between subsequent layers with n0 inputs, L hidden
layers of widths n1, . . . , nL, and k outputs. Given an input x ≡ x(0) ∈ Rn0 , the pre-activation value
h(l) and post-activation value x(l) at layer l are given by:

h(l) = W (l)x(l−1) + b(l), x(l) = φ(h(l)), (2)

where φ is a point-wise activation function, W (l) ∈ Rnl×nl−1 and b(l) ∈ Rnl are the weights and
biases of layer l. For any given input x, the output of the network is f(x, θ) = hL+1(x) ∈ Rk. We
write θ = vec(∪L+1

l=1 {W (l), b(l)}) for the vector of all network parameters. These parameters are
initialized by independent samples of pre-specified random variablesW and B in the following way:

W
(l)
i,j

d
=

√
1

nl−1
W, b

(l)
j

d
=

√
1

nl−1
B. (3)

More generally, we will also allow weight-bias pairs to be sampled from a joint distribution of (W,B)
which we only assume to be sub-Gaussian. In the analysis of Jacot et al. (2018); Lee et al. (2019),
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W and B are Gaussian N (0, σ2). In the default initialization of PyTorch,W and B have uniform
distribution U(−σ, σ). The setting (2) is known as the standard parametrization. Some works (Jacot
et al., 2018; Lee et al., 2019) utilize the so-called NTK parametrization, where the factor

√
1/nl−1

is carried outside of the trainable parameter. If we fix the learning rate for all parameters, gradient
descent leads to different trajectories under these two parametrizations. Our results are presented for
the standard parametrization. Details on this in Appendix C.3.

We consider a regression problem for data {(xi, yi)}Mi=1 with inputs X = {xi}Mi=1 and outputs
Y = {yi}Mi=1. For a loss function ` : Rk × Rk → R, the empirical risk of our function is L(θ) =∑M
i=1 `(f(xi, θ), yi). We use full batch gradient descent with a fixed learning rate η to minimize

L(θ). Writing θt for the parameter at time t, and θ0 for the initialization, this defines an iteration

θt+1 = θt − η∇L(θ) = θt − η∇θf(X , θt)T∇f(X ,θt)L, (4)

where f(X , θt) = [f(x1, θt), . . . , f(xM , θt)]
T is the vector of network outputs for all training inputs,

and∇f(X ,θt)L is the gradient of the loss with respect to the model outputs. We will use subscript i to
index neurons and subscript t to index time.

3.2 Implicit bias in parameter space for a linearized model

In this section we describe how training a linearized network or a wide network by gradient descent
leads to solutions that are biased, having parameter values close to the values at initialization. First,
we consider the linearized model. This is obtained by the first order Taylor expansion of the network
function with respect to the parameter, at the initial parameter value,

f lin(x, ω) = f(x, θ0) +∇θf(x, θ0)(ω − θ0). (5)

We write ω for the parameter of the linearized model, in order to distinguish it from the parameter
of the nonlinearized model. The empirical loss of the linearized model is defined by Llin(ω) =∑M
i=1 `(f

lin(xi, ω), yi). The gradient descent iteration for the linearized model is given by

ω0 = θ0, ωt+1 = ωt − η∇θf(X , θ0)T∇f lin(X ,ωt)L
lin. (6)

Next, we consider wide neural networks. Assume that the widths of the hidden layers are identical,
i.e. n1 = n2 = · · · = nL = n. According to Lee et al. (2019, Theorem H.1),

sup
t
‖f lin(x, ωt)− f(x, θt)‖2 = O(n−

1
2 )

with arbitrarily high probability. So gradient descent training of a wide network or of the linearized
model give similar trajectories and solutions in function space. Both fit the training data perfectly,
meaning f lin(X , ω∞) = f(X , θ∞) = Y , and are also approximately equal outside the training data.

Let Θ̂n be the empirical neural tangent kernel (NTK) of the standard parametrization at time 0, which
is the matrix Θ̂n = 1

n∇θf(X , θ0)∇θf(X , θ0)T . According to Yang (2019), if the parameters are
initialized by a Gaussian, the empirical NTK converges in probability to an analytic NTK then defined
by Θ := limn→∞ Θ̂n in probability. Let λmax(Θ̂n) be the maximum eigenvalue of Θ̂n. Now we
consider the implicit bias of training the linearized model using (6). Zhang et al. (2019) show that
gradient flow converges to the solution with zero empirical loss which is closest to the initial weights.
We show a similar result for the case of gradient descent with small enough learning rate.

Theorem 2 (Bias of the linearized model in parameter space). Consider a convex loss function
` with a unique finite minimum and which is K-Lipschitz continuous, i.e. |`(ŷ1, y) − `(ŷ2, y)| ≤
K|ŷ1 − ŷ2|. If rank(∇θf(X , θ0)) = M , then the gradient descent iteration (6) with learning rate
η ≤ 1

Kn
√
Mλmax(Θ̂n)

converges to the unique solution of following constrained optimization problem:

min
ω
‖ω − θ0‖2 s.t. f lin(X , ω) = Y. (7)

The proof and further remarks are provided in Appendix E. Note that this statement is valid for the
linearization of any set of functions, not only neural networks.
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3.3 Training only the output layer approximates training all parameters

In the following we consider networks with a single hidden layer of n ReLUs and a linear output:

f(x, θ) =

n∑
i=1

W
(2)
i [W

(1)
i x+ b

(1)
i ]+ + b(2). (8)

We show that the functions and parameter vectors obtained by training the linearized model are close
to those obtained by training only the output layer. Hence, by the arguments of the previous section,
training all parameters of a wide network or training only the output layer gives similar functions.

Let θ0 = vec(W
(1)
, b

(1)
,W

(2)
, b

(2)
) be the parameter at initialization so that f lin(·, θ0) = f(·, θ0).

After training the linearized network let the parameter be ω∞ = vec(Ŵ (1), b̂(1), Ŵ (2), b̂(2)). Us-

ing initialization (3), with probability arbitrarily close to 1, W
(1)

i , b
(1)

i = O(1) and W
(2)

i , b
(2)

=

O(n−
1
2 ).1 Therefore, writing H for the Heaviside function, we have

∇
W

(1)
i ,b

(1)
i
f(x, θ0) =

[
W

(2)

i H(W
(1)

i x+ b
(1)

) · x , W (2)

i H(W
(1)

i x+ b
(1)

i )
]

= O(n−
1
2 ),

∇
W

(2)
i ,b(2)f(x, θ0) =

[
[W

(1)

i x+ b
(1)

i ]+ , 1
]

= O(1).
(9)

So when n is large, if we use gradient descent with a constant learning rate for all parameters, then the
changes of W (1), b(1), b(2) are negligible compared with the changes of W (2). So approximately we
can train just the output weights, W (2)

i , i = 1, . . . , n, and fix all other parameters. This corresponds

to a smaller linear model. Let ω̃t = vec(W
(1)

t , b
(1)

t , W̃
(2)
t , b

(2)

t ) be the parameter at time t under the

update rule where W
(1)
, b

(1)
, b

(2)
are kept fixed at their initial values, and

W̃
(2)
0 = W

(2)
, W̃

(2)
t+1 = W̃

(2)
t − η∇W (2)Llin(ω̃t). (10)

Let ω̃∞ = limt→∞ ω̃t. By the above discussion, we can expect that f lin(x, ω̃∞) will be close to
f lin(x, ω∞). In fact, we prove the following in the case of the MSE loss.
Theorem 3 (Training only output weights vs linearized network). Consider a finite data set
{(xi, yi)}Mi=1. Assume that (1) we use the MSE loss `(ŷ, y) = 1

2‖ŷ−y‖
2
2; (2) liminfn λmin(Θ̂n) > 0.

Let ωt denote the parameters of the linearized model at time t when we train all parameters using (6),
and let ω̃t denote the parameters at time t when we only train weights of the output layer using (10).
If we use the same learning rate η in these two training processes and η < 2

nλmax(Θ̂n)
, then for any

x ∈ R, with probability arbitrarily close to 1 over the random initialization (3),

sup
t
|f lin(x, ω̃t)− f lin(x, ωt)| = O(n−1), as n→∞. (11)

Moreover, in terms of the parameter trajectories we have

sup
t
‖W (1)

t − Ŵ
(1)
t ‖2 = O(n−1), sup

t
‖b(1)

t − b̂
(1)
t ‖2 = O(n−1), (12)

sup
t
‖W̃ (2)

t − Ŵ (2)
t ‖2 = O(n−3/2), sup

t
‖b(2)

t − b̂
(2)
t ‖ = O(n−1). (13)

The proof and further remarks are provided in Appendix F. By combining Theorem 3 and the fact
that training a linearized model approximates training a wide network (Lee et al., 2019, Theorem
H.1), we obtain the following.
Corollary 4 (Training only output weights vs training all weights). Consider the settings of Theo-
rem 3, and assume that the joint distribution of (W,B) is sub-Gaussian. Then supt ‖f lin(x, ω̃t)−
f(x, θt)‖2 = O(n−

1
2 ) with arbitrarily high probability over the random initialization (3).

The proof is provided in Appendix G. In view of Corollary 4, in the next sections we will focus on
training only the output weights and understanding the corresponding solution functions.

1More precisely, for any δ > 0, ∃C, s.t. with prob. 1− δ, |W (2)
i |, |b

(2)| ≤ Cn−1/2 and |W (1)
i |, |b

(1)
i | ≤ C.
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4 Gradient descent leads to simple functions

In this section we provide a function space characterization of the implicit bias previously described
in parameter space. By Theorem 2, gradient descent training of the output weights (10) achieves
zero loss, f lin(xj , ω̃∞) − f lin(xj , θ0) =

∑n
i=1(W̃

(2)
i −W (2)

i )[W
(1)

i xj + bi]+ = yj − f(xj , θ0),

j = 1, . . . ,M , with minimum ‖W̃ (2) −W (2)‖22. Hence gradient descent is actually solving

min
W (2)
‖W (2)−W (2)‖22 s.t.

n∑
i=1

(W
(2)
i −W (2)

i )[W
(1)
i xj + bi]+ = yj − f(xj , θ0), j = 1, . . . ,M.

(14)
To simplify the presentation, in the following we let f lin(x, θ0) ≡ 0 by using the ASI trick (see
Appendix C.2). The analysis still goes through without this.

4.1 Infinite width limit

We reformulate problem (14) in a way that allows us to consider the limit of infinitely wide
networks, with n → ∞, and obtain a deterministic counterpart, analogous to the convergence
of the NTK. Let µn denote the empirical distribution of the samples (W

(1)
i , bi)

n
i=1, so that

µn(A) = 1
n

∑n
i=1 1A

(
(W

(1)
i , bi)

)
. Here 1A is the indicator function for measurable subsets

A in R2. We further consider a function αn : R2 → R whose value encodes the difference of
the output weight from its initialization for a hidden unit with input weight and bias given by the
argument, αn(W

(1)
i , bi) = n(W

(2)
i −W (2)

i ). Then (14) with ASI can be rewritten as

min
αn∈C(R2)

∫
R2

α2
n(W (1), b) dµn(W (1), b)

subject to
∫
R2

αn(W (1), b)[W (1)xj + b]+ dµn(W (1), b) = yj , j = 1, . . . ,M.

(15)

Here we minimize over functions αn in C(R2), but since only the values on (W
(1)
i , bi)

n
i=1 are taken

into account, we can take any continuous interpolation of αn(W
(1)
i , bi), i = 1, . . . , n. Now we

can consider the infinite width limit. Let µ be the probability measure of (W,B). We obtain a
continuous version of problem (15) by substituting µ for µn. By the Glivenko-Cantelli Theorem in
two dimensions (Lo et al., 2016), we know that µn weakly converges to µ. We prove that in fact the
solution of problem (15) converges to the solution of the continuous problem. Let

gn(x, αn) =

∫
R2

αn(W (1), b)[W (1)x+ b]+ dµn(W (1), b)

be the function represented by a network with n hidden neurons after training, and let g(x, α) =∫
R2 α(W (1), b)[W (1)x+ b]+ dµ(W (1), b) be the function represented by the infinite-width network.

We prove the following theorem. Details in Appendix H.

Theorem 5. Let (W
(1)
i , bi)

n
i=1 be i.i.d. samples from a pair (W,B) of random variables with finite

fourth moment. Suppose µn is the empirical distribution of (W
(1)
i , bi)

n
i=1 and αn(W (1), b) is the

solution of (15). Let α(W (1), b) be the solution of the continuous problem with µ in place of µn. Then
for any bounded [−L,L], supx∈[−L,L] |gn(x, αn)− g(x, α)| = O(n−1/2) with high probability.

4.2 Function space description of the implicit bias

Next we connect the problem from the previous section to second derivatives by first rewriting it in
terms of breakpoints. Consider the breakpoint c = −b/W (1) of a ReLU with weight W (1) and bias b.
We define a corresponding random variable C = −B/W and let ν denote the distribution of (W, C).2

2Here we assume that P(W = 0) = 0 so that the random variable C is well defined. It is not an important
restriction, since neurons with weight W (1) = 0 give constant functions that can be absorbed in the bias of
output layer.
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Then with γ(W (1), c) = α(W (1),−cW (1)) the continuous version of (15) is equivalently given as

min
γ∈C(R2)

∫
R2

γ2(W (1), c) dν(W (1), c)

subject to
∫
R2

γ(W (1), c)[W (1)(xj − c)]+ dν(W (1), c) = yj , j = 1, . . . ,M.

(16)

Let νC denote the distribution of C = −B/W , and νW|C=c the conditional distribution of W
given C = c. Suppose νC has support supp(νC) and a density function pC(c). Let g(x, γ) =∫
R2 γ(W (1), c)[W (1)(x− c)]+ dν(W (1), c), which again corresponds to the output function of the

network. Then, the second derivative g′′ with respect to x (see Appendix I) satisfies

g′′(x, γ) = pC(x)

∫
R
γ(W (1), x)

∣∣W (1)
∣∣ dνW|C=x(W (1)). (17)

Thus γ(W (1), c) is closely related to g′′(x, γ) and we can try to express (16) in terms of g′′(x, γ).
Since g′′(x, γ) determines g(x, γ) only up to linear functions, we consider the following problem:

min
γ∈C(R2),u∈R,v∈R

∫
R2

γ2(W (1), c) dν(W (1), c)

subject to uxj + v +

∫
R2

γ(W (1), c)[W (1)(xj − c)]+ dν(W (1), c) = yj , j = 1, . . . ,M.

(18)
Here u, v are not included in the cost. They add a linear function to the output of the neural network.
If u and v in the solution of (18) are small, then the solution is close to the solution of (16). Ongie
et al. (2020) also use this trick to simplify the characterization of neural networks in function space.
Next we study the solution of (18) in function space. This is our main technical result.
Theorem 6 (Implicit bias in function space). AssumeW and B are random variables with P(W =
0) = 0, and let C = −B/W . Let ν denote the probability distribution of (W, C). Suppose (γ, u, v) is
the solution of (18), and consider the corresponding output function

g(x, (γ, u, v)) = ux+ v +

∫
R2

γ(W (1), c)[W (1)(x− c)]+ dν(W (1), c). (19)

Let νC denote the marginal distribution of C and assume it has a density function pC . Let E(W2|C)
denote the conditional expectation ofW2 given C. Consider the function

ζ(x) = pC(x)E(W2|C = x). (20)

Assume that training data xi ∈ supp(ζ), i = 1, . . . ,m. Consider the set S = supp(ζ) ∩
[mini xi,maxi xi]. Then g(x, (γ, u, v)) satisfies g′′(x, (γ, u, v)) = 0 for x 6∈ S and for x ∈ S
it is the solution of the following problem:

min
h∈C2(S)

∫
S

(h′′(x))2

ζ(x)
dx s.t. h(xj) = yj , j = 1, . . . ,m. (21)

The proof is provided in Appendix I, where we also present the corresponding statement without ASI.
Theorem 6 formulates the implicit bias in terms of an optimization problem in function space which
depends on the function ζ. We study the explicit form of this function in the next section.

4.3 Explicit form of the curvature penalty function

Proposition 7. Let pW,B denote the joint density function of (W,B) and let C = −B/W so that pC
is the breakpoint density. Then ζ(x) = E(W 2|C = x)pC(x) =

∫
R |W |

3pW,B(W,−Wx) dW .

The proof is presented in Appendix J. If we allow the initial weight and biases to be sampled from a
suitable joint distribution, we can make the curvature penalty ρ = 1/ζ arbitrary.
Proposition 8 (Constructing any curvature penalty). Given any function % : R → R>0, satisfying
Z =

∫
R

1
% < ∞, if we set the density of C as pC(x) = 1

Z
1

%(x) and makeW independent of C with
non-vanishing second moment, then (E(W 2|C = x)pC(x))−1 = (E(W 2)pC(x))−1 ∝ %(x), x ∈ R.
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Further remarks on sampling and independent variables are provided in Appendix J. To conclude this
section we compute the explicit form of ζ for several common initialization procedures.

Theorem 9 (Explicit form of the curvature penalty for common initializations).

(a) Gaussian initialization. Assume that W and B are independent, W ∼ N (0, σ2
w) and B ∼

N (0, σ2
b ). Then ζ is given by ζ(x) =

2σ3
wσ

3
b

π(σ2
b+x2σ2

w)2 .
(b) Binary-uniform initialization. Assume that W and B are independent, W ∈ {−1, 1} and
B ∼ U(−ab, ab) with ab ≥ L. Then ζ is constant on [−L,L].

(c) Uniform initialization. Assume thatW and B are independent, W ∼ U(−aw, aw) and B ∼
U(−ab, ab) with ab

aw
≥ L. Then ζ is constant on [−L,L].

The proof is provided in Appendix K. Theorem 9 (b) and (c) show that for certain distributions of
(W,B), ζ is constant. In this case problem (21) is solved by the cubic spline interpolation of the data
with natural boundary conditions (Ahlberg et al., 1967). The case of general ζ is solved by space
adaptive natural cubic splines, which can be computed numerically by solving a linear system and
theoretically in an RKHS formalism. We provide details in Appendix N.
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Appendices
The appendices are organized as follows. In Appendix A we illustrate our theoretical results numeri-
cally, and in Appendix B we provide details on the numerical implementation.

In Appendix C we briefly comment on definitions and settings around the parametrization and
initialization of neural networks, as well as on the limiting NTK and the linearization of a neural
network. In Appendices D E, F, G, H, I, J, K we provide the proofs of the formal results from the
main part.

In Appendix L we show the equivalence between our variational characterization of the implicit bias
of gradient descent in function space and the description in terms of a kernel norm minimization
problem. We provide an interpretable description of the kernel norm.

In Appendix M we discuss the relation between the gradient descent optimization trajectory and
a trajectory of spatially adaptive smoothing splines with decreasing smoothness regularization
coefficient which converges to the spatially adaptive interpolating spline.

In Appendix N we give the explicit form of the solution to our variational problem, i.e. the spatially
adaptive interpolating spline, which corresponds to the output function upon gradient descent training
in the infinite width limit.

In Appendix O we comment on some of the possible extensions and generalizations of the analysis.
In particular, we give a generalization of Theorem 1 to the case of multi-dimensional inputs, and a
formulation for neural networks with activation function different from ReLU.

A Numerical illustration of the theoretical results

Gradient descent training and variational problem To illustrate Theorem 1 across different
initialization procedures, in Figures A1 and A2 we show analogous experiments to those in the left
panel of Figure 1, but using two types of Gaussian initialization instead of the uniform initialization.
As we already observed in the right panel of Figure 1, here the effect of the curvature penalty function
is also visible. In portions of the input space where ζ is peaked, the solution function can have a high
curvature, and, conversely, in portions of the input space where ζ takes small values, the solution
function has a small second derivative and is more linear.

To verify that the results are stable over different data sets, in Figure A3 we show an experiment
similar to that of Figure 1, but for a larger data set.

Gaussian initialization σ2
B = 1

n = 20 n = 80

n = 320 n = 1280

Figure A1: Illustration of Theorem 1. Shown is the error between the output function f(·, θ∗) of
the trained neural network and the solution g∗ to the variational problem (21) against the number
of neurons, n. Shown is the average over 5 repetitions, with error bars indicating the standard
deviation. Here the training data is fixed, and the parameters were initialized with W ∼ N(0, 1) and
B ∼ N(0, 1). The right panel shows the data (dots), trained network functions (blue) with 20, 80,
320, 1280 neurons, and the solution (orange) to the variational problem.
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Gaussian initialization σ2
B = 0.1

n = 20 n = 80

n = 320 n = 1280

Figure A2: Illustration of Theorem 1. Similar to Figure A1, but with a different initialization
W ∼ N(0, 1) and N(0, 0.1), which gives rise to a curvature penalty function ζ that is more strongly
peaked around x = 0 (see Figure 1). We observe in particular that the solutions are more curvy
around x = 0.

Uniform initialization

n = 160 n = 640

n = 2560 n = 10240

Figure A3: Illustration of Theorem 1. Similar to Figure 1, with uniform initialization, but with a
larger dataset and larger networks.

Training all layers versus training only the output layer To illustrate Theorem 3, we conduct
the following experiment. We use the same training set as in Figure 1 and use uniform initialization.
Starting from the same initial weights, we train the network in two ways. One way is only training the
output layer and another way is training all layers of the network. The result is shown in Figure A4.
The left panel plots the error between two trained network functions against the number of neurons n.
In this experiment the error is of order n−3/2, which is even smaller than the upper bound n−1 given
in Theorem 3. Potentially the bound can be improved. The right panel plots two trained network
functions with 20, 80, 320, 1280 neurons.

Effect of linear function on implicit bias In our main result Theorem 1, since the variational
problem defines functions only up to addition of linear functions, we need to adjust training data by
subtracting a specific linear function ux+ v. However, in our previous experiments, we don’t adjust
the training data and the statement of Theorem 1 still approximately holds. The reason might be that
the coefficients u and v of the linear function which we need to subtract are relatively small. In order
to see the effect of linear function on implicit bias, we conduct the following experiment. Similar
to Figure 1, we use uniform initialization. We add a linear function 10x+ 10 to the training data in
Figure 1. So the training data we use are {(−2,−8.5), (−1, 0.5), (0, 11.5), (1, 20.5), (2, 31.5)}. In
Figure A5 we show analogous experiments to those in the left panel of Figure 1. In order to clearly
show the difference between the trained network function and the solution to the variational problem,
we subtract 10x+ 10 from these two functions in the right panel of Figure A5. From the right panel
of Figure A5, we see that the difference between plotted two functions is relatively larger than that in
Figure 1. From the left panel of Figure A5, we see that the error between these two functions stops to
decrease when number of neurons n is larger than 1280. It means that the limit of trained network
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Only output layer vs all parameters

n = 20 n = 80

n = 320 n = 1280

Figure A4: Illustration of Theorem 3. Training only output layer vs training all parameters of the
network. We use uniform initialization and the same training set as in Figure 1. The left panel plots
the error between two trained network functions against the number of neurons n. For one network,
we only train the output layer while for the another one, we train all layers. The right panel shows the
data (dots) and two trained network functions with 20, 80, 320, 1280 neurons.

function as n→∞ is slightly different from the solution to the variational problem. If we choose
bigger u and v, we expect that the difference will become larger.

Severely unadjusted data

n = 80 n = 320

n = 1280 n = 5120

Figure A5: Effect of not adjusting the data. We use uniform initialization and add a linear function
10x + 10 to the training data of Figure 1. In order to clearly show the difference between trained
network function and the solution to the variational problem, we subtract 10x+ 10 from these two
functions in the right panel. In the right panel we see that if we ignore u and v in the variational
problem (18), the solution is slightly different from (21).

B Details on the numerical implementation

Implementation of gradient descent Training is implemented as full-batch gradient descent. In
practice we choose the learning rate as follows. We start with a large learning rate and keep decreasing
it by half until we observe that the loss function decreases. After that, we start training with the fixed
learning rate we found. We observe that the learning rate we found is inversely proportional to the
width n of the neural network. This observation is in accord with Theorem 2 with respect to the upper
bound of the learning rate in order to converge.

We note that the implicit bias in parameter space Theorem 2 is independent of the specific step size
that is used in the optimization, so long as it is small enough. See Appendix E. The stopping criterion
for training of the neural network is that the change in the training loss in consecutive iterations is
less than a pre-specified threshold: |L(θt)− L(θt−1)| ≤ 10−8.

For the comparison of the functions f(·, θ∗) and g∗, the 2-norm of error ‖f(·, θ∗)−g∗‖2 is computed
by numerical integration with step 0.01 over [min(ixi),maxi(xi)].
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We use ASI (see Appendix C.2) at initialization. Then the initial output function of the network is
f(·, θ0) ≡ 0. Then according to Theorem 1, the weighted 2-norm of the second derivative of the
trained network function is minimized. So in the figures the output function is actually equal to the
difference from initialization.

Numerical solution of the variational problem The variational problem for cubic splines can be
solved explicitly as described in Appendix N. For a general non-constant curvature penalty 1/ζ,
we can obtain a numerical solution to problem (21) as follows. First we discretize the interval
[−L,L] evenly with points xj = −L + 2jL/n, j = 0, . . . , n. For simplicity we suppose that
the input training data points are among these grid points, and we denote them by xj1 , . . . xjm .
Then we initialize f(xj) = 0 for xj not in the training data (to be optimized) and f(xji) = yi
(fixed values during optimization). We use central differences to approximate the second derivative,
f ′′(xj) =

f(xj+1)−2f(xj)+f(xj−1)
h2 , where h = |xj+1 − xj |. Then the objective function in (21)

is approximated by
∑n−1
j=1

1
ζ(xj)

(
f(xj+1)−2f(xj)+f(xj−1)

h2

)2

. This is quadratic problem in f(xj),
j ∈ {1, . . . , n} \ {j1, . . . , jm}. If we equate the gradient to zero, we obtain a linear system. The
solution can be written in closed form in terms of the inverse of a design matrix. As with any linear
regression problem, in practice we may still prefer to use an iterative approach to obtain a numerical
solution. We use a discretization of the interval [−2, 2] into 200 pieces and use conjugate gradient
descent for solving the linear system.

C Additional comments

C.1 NTK convergence and positive-definiteness

The convergence of the empirical NTK to a deterministic limiting NTK as the width of the network
tends to infinity and the positive-definiteness of this limiting kernel can be ensured whenever the
neural network converges to a Gaussian process. The arguments from Jacot et al. (2018) to prove
convergence and positive definiteness hold in this case. As they mention, the limiting NTK only
depends on the choice of the network activation function, the depth of the network, and the variance
of the parameters at initialization. They prove positive definiteness when the input data is supported
on a sphere. More generally, positive definiteness can be proved based on the structure of the NTK as
a covariance matrix. Let ‖f‖2p = Ex∼p[f(x)T f(x)], where p denotes the distribution of inputs. The
NTK is positive definite when the span of the partial derivatives ∂θif(·, θ), i = 1, . . . , d, becomes
dense in function space with respect to ‖ · ‖p as the width of the network tends to infinity (Jacot et al.,
2018). For a finite data set x1, . . . , xM , positive definiteness of the corresponding Gram matrix is
equivalent to ∂θif(xj , ·) being linearly independent (Du et al., 2018, Theorem 3.1). This condition
for positive definiteness does not depend on the specific distribution of the parameters, but if anything
it only depends on the support of the distribution of parameters and on the input data. The precise
value of the least eigenvalue may be affected by changes in the distribution however. The convergence
of the network function to a Gaussian process in the limit of infinite width and independent parameter
initialization is a classic result (Neal, 1996). To verify this Gaussian process assumption it is sufficient
that

∑
iW

(2)
i σ(W

(1)
i x+ bi) is a sum of independent random variables with finite variance.

C.2 Anti-Symmetrical Initialization (ASI)

The AntiSymmetrical Initialization (ASI) trick as proposed by Zhang et al. (2019) creates duplicate
hidden units with opposite output weights, ensuring that f(·, θ0) ≡ 0. More precisely, ASI defines
fASI(x, ϑ) =

√
2

2 f(x, ϑ′)−
√

2
2 f(x, ϑ′′). Here ϑ = (ϑ′, ϑ′′) is initialized with ϑ′0 = ϑ′′0 , so that

fASI(x, ϑ0) =

n∑
i=1

√
2

2
V

(2)

i [V
(1)

i x+ a
(1)
i ]+ +

n∑
i=1

−
√

2

2
V

(2)

i [V
(1)

i x+ a
(1)
i ]+ ≡ 0. (A1)

The parameter vector is thus ϑ0 = vec(V
(1)
, V

(1)
, a(1), a(1),

√
2

2 V
(2)
,−
√

2
2 V

(2)
,
√

2
2 a

(2),−
√

2
2 a

(2)).

The basic statistics on the size of the parameters remains like (3), even if now there are perfectly
correlated pairs of parameters. Hence the analysis and results on limits when the number of hidden
units tends to infinity remain valid under ASI. The ASI is not needed for our analysis, which can be
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used to compare different types of initialization procedures, but it simplifies some of the presentation.
One motivation for using ASI in practical applications is that it provides a simple way to implement a
simple output function at initialization. Since the output function at initialization directly influences
the bias of the gradient descent solution, this is a particular way to control the bias. Manipulating the
bias from initialization is also the motivation presented by Zhang et al. (2019). A related discussion
also appears in

C.3 Standard vs NTK parametrization

We have focused on the standard parametrization of the neural network. Jacot et al. (2018) use a
non-standard parametrization which is now known as the NTK parametrization. We briefly discuss
the difference. A network with NTK parameterization is described as{

h(l+1) =
√

1
nl
w(l+1)xl + b(l+1)

x(l+1) = φ(h(l+1))
and

{
w

(l)
i,j ∼ N (0, 1)

b
(l)
j ∼ N (0, 1)

. (A2)

In contrast to the standard parametrization, in the NTK parametrization the factor
√

1/nl is carried
outside of the trainable parameter. In this case, the scaling of the derivatives is ∇

w
(1)
i
f(x, θ0) =

O(n−
1
2 ) and ∇

w
(2)
i
f(x, θ0) = O(n−

1
2 ). In turn, during training the changes of w(1)

i and w(2)
i are

comparable in magnitude. This implies that we can not ignore the changes of w(1)
i and approximate

the dynamics by that of the linearized model that trains only the output weights as we did in the case
of the standard parameterization. In particular, we can not use problem (A62) to describe the result
of gradient descent as n→∞.

C.4 Weight norm minimization

Savarese et al. (2019) studied networks of the form (8) allowing the width to tend to infin-
ity. They showed that the minimum weight norm for approximating a given function g is re-
lated to a measure of the smoothness of g by limε→0(infθ C(θ) s.t. ‖f(·, θ) − g‖∞ ≤ ε) =

max{
∫∞
−∞ |g

′′(x)| dx, |g′(−∞) + g′(∞)|}, where C(θ) = 1
2

∑n
i=1((W

(2)
i )2 + (W

(1)
i )2). Here

the derivatives are understood in the weak sense. This implies that infinite width shallow networks
trained with weight norm regularization (sparing biases) represent functions with smallest 1-norm of
the second derivative, an example of which are linear splines. (Note that C(θ) is not strictly convex in
the space of all parameters and also the 1-norm of the second derivative is not strictly convex, hence
the solution is not unique).

The result of Savarese et al. (2019) is illuminating in that it connects properties of the parameters
and properties of the represented functions. However, the result does not necessarily inform us about
the functions represented by the network upon gradient descent training without explicit weight
norm regularization. Indeed, if we initialize the parameters by (3) with sub-Gaussian distribution,
the neural network can be approximated by the linearized model. Then by Theorem 2, ‖ω − θ0‖2 is
minimized rather than ‖ω‖2. But in this case ‖θ0‖2 is bounded away from zero with high probability
and the 2-norm of all parameters (or also of the weights only) is not minimized. On the other hand,
if we initialize the parameters with ‖θ0‖2 close to 0, then the neural network might not be well
approximated by the linearized model. This has been observed experimentally by Chizat et al. (2019)
and we further illustrate it in Appendix C.5.

Even if we assume that the linearization of a network at the origin is valid, in order for the network
to approximate certain complex functions, the weights necessarily have to be bounded away from
zero. This means that reaching zero training error requires to move far from the basis point, where
the difference between linearized and non-linearized model could become significant. In turn, the
implicit bias description derived from a linearization at the origin may not accurately reflect the
implicit bias of gradient descent in the original non-linearized model.

The paper by Parhi and Nowak (2019) follows the approach of Savarese et al. (2019) and generalizes
the result of Savarese et al. (2019) to different types of activation functions σ. Then they show that
minimizing the weight “norm” of two-layer neural networks with activation function σ is actually
minimizing 1-norm of Lf in place of the second derivative, where f is the output function of the
neural network. Here L and σ satisfy Lσ = δ, i.e. σ is a Green’s function of L. Such activation
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functions can be used in combination with our analysis. We comment further on such generalizations
in Appendix O.

C.5 Basis parameter for linearization of the model

We discuss how the quality of the approximation of a neural network by a linearized model depends
on the basis point. For a feedforward ReLU network and a list X = (xi)

m
i=1 of input data points,

the mapping θ 7→ f(X , θ) = [f(x1, θ), . . . , f(xm, θ)] is piecewise multilinear. Each of the pieces is
smooth and we can assume that it is approximated reasonably well by its Taylor expansion. However,
the quality of the approximation can drop when we cross the boundary between smooth pieces.
Consider a single-input network with a layer of n ReLUs and a single output unit. At an input x
the prediction is f(x; θ) = W (2)[W (1)x + b(1)]+ + b(2), where θ = (W (1), b(1),W (2), b(2)). The
Jacobian is non-smooth whenever θ ∈ Hxj = {W (1)

j1 x+ b
(1)
j = 0} for some j = 1, . . . , n. Hence for

m input data points xi, i = 1, . . . ,m, the locus of non-smoothness is given by m central hyperplanes
Hij , i = 1, . . . ,m in the parameter space of each hidden unit j = 1, . . . , n. For an individual ReLU,
if the parameter θ0 is drawn from a centrally symmetric probability distribution, the probability p that
an ε ball around cθ0 intersects one of the non-linearity hyperplanesHi, i = 1, . . . ,m, behaves roughly
as p = O(mc−1). Hence we can expect that the prediction function will be better approximated by
its linearization f lin(x, θ) = f(x, cθ0) +∇θf(x, cθ0)(θ − cθ0) at a point cθ0 if c is larger. This is
well reflected numerically in Figure A6. As we see, for larger initialization the model looks more
linear. We observed that this qualitative behavior remains same if we try to adjust the size of the
window around the initial value.
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Figure A6: Left: For a single ReLU, the map θ 7→ f(X , θ) from parameters to prediction vectors
over a set X = {x1, . . . , xm} of m input data points is piecewise linear, with pieces separated by
m central hyperplanes. Right: Shown is the prediction f(x, θ) of a shallow ReLU network on a
fixed input point x, over a 2D slice of parameters θ = cθ0 + v1ξ1 + v2ξ2 spanned by two random
orthogonal unit norm vectors v1, v2 and parametrized by (ξ1, ξ2) ∈ [−1, 1]2. From top to bottom,
the number of hidden units is n = 1, 5, 25, 125 and in each row the initial parameter θ0 is drawn i.i.d.
from a standard Gaussian. In each column we use a different scaling constant c = 0, 0.5, 10. As we
see, for larger scaling c of the initialization the model looks more linear.
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D Proof of Theorem 1

Proof of Theorem 1. The convergence to zero training error for ReLU networks is by now a well
known result (Du et al., 2018; Allen-Zhu et al., 2019). We proceed with the implicit bias result.

For simplicity, we give out the proof under ASI (see Appendix C.2). In Section 4.2, we relax the
optimization problem (16) to (18). Suppose (γ, u, v) is the solution of (18). The we can adjust the
training samples {(xi, yi)}Mi=1 to {(xi, yi−uxi−v)}Mi=1. It’s easy to see that on the adjusted training
samples, (0, 0, γ) is the solution of (18). Then γ is the solution of (16). Furthermore, the solution of
(16) in function space, g(x, γ), equals to the solution of (18) in function space, g(x, (γ, 0, 0)), i.e.

g(x, γ) = g(x, (γ, 0, 0)). (A3)

It we change the variable γ to α as in Section 4.2, we get

g(x, α) = g(x, γ), (A4)

where g(x, α) is the solution of the continuous version of problem (15) with µ in place of µn. On the
set S = supp(ζ) ∩ [mini xi,maxi xi], according to Theorem 5,

sup
x∈S
|gn(x, αn)− g(x, α)| = O(n−1/2), (A5)

where gn(x, αn) is the solution of problem (15) in function space. Since problem (15) is equivalent
to problem (14), gn(x, αn) is also the solution of (14) in function space. According to discussion in
Section 4, f lin(xj , ω̃∞) is the solution of (14). Then

gn(x, αn) = f lin(xj , ω̃∞). (A6)

According to Corollary 4,

‖f lin(x, ω̃∞)− f(x, θ∗)‖2 = O(n−
1
2 ). (A7)

Finally, according to Theorem 6 and Proposition 7, g(x, (γ, 0, 0)) restricted on S is the solution of
(1), which is g∗(x). Then on the set S,

g(x, (γ, 0, 0)) = g∗(x) (A8)

Combining (A3), (A4), (A5), (A6), (A7), (A8), and using the fact that on domain S, ‖f‖2 ≤
vol(S)‖f‖∞, we prove the theorem.

E Proof of Theorem 2

Here we give out the proof of Theorem 2. We note that Zhang et al. (2019) prove a similar result for
gradient flow. Our proof is for finite step size and different from theirs.
Remark A10 (Remark on Theorem 2, step size). The proof remains valid for a changing step size as
long as this satisfies the required inequality.

Proof of Theorem 2. We use gradient descent to minimize Llin(ω) =
∑M
i=1 `(f

lin(xi, ω), yi). First
we prove that∇ωLlin(ω) is Lipschitz continuous. Since

‖∇ωLlin(ω1)−∇ωLlin(ω2)‖2
=‖∇θf(X , θ0)>∇f lin(X ,ω1)L−∇θf(X , θ0)>∇f lin(X ,ω2)L‖2
≤‖∇θf(X , θ0)>‖2‖∇f lin(X ,ω1)L−∇f lin(X ,ω2)L‖2
≤K‖∇θf(X , θ0)>‖2‖f lin(X , ω1)− f lin(X , ω2)‖1 (K-Lipschitz continuity of `)

≤K
√
M‖∇θf(X , θ0)>‖2‖f lin(X , ω1)− f lin(X , ω2)‖2

=K
√
M‖∇θf(X , θ0)>‖2‖∇θf(X , θ0)(ω1 − ω2)‖2

≤K
√
M‖∇θf(X , θ0)>‖2‖∇θf(X , θ0)‖2‖(ω1 − ω2)‖2

≤Kn
√
Mλmax(Θ̂n)‖ω1 − ω2‖2.

(A9)
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So Llin(ω) is Lipschitz continuous with Lipschitz constant Kn
√
Mλmax(Θ̂n). Since Llin is convex

over ω, gradient descent with learning rate η = 1
Kn
√
Mλmax(Θ̂n)

converges to a global minimium of

Llin(ω). By assumption that rank(∇θf(X , θ0)) = M , the model can perfectly fit all data. Then the
minimium of Llin(ω) is zero and gradient descent converges to zero loss.

Let ω∞ = limt→∞ ωt. Then f lin(X , ω∞) = Y . According to gradient descent iteration,

ω∞ = θ0 −
∞∑
t=0

η∇θf(X , θ0)T∇f lin(X ,ωt)L
lin

= θ0 − η∇θf(X , θ0)T
∞∑
t=0

∇f lin(X ,ωt)L
lin

(A10)

Since f lin is linear over weights ω and ‖ω − θ0‖2 is strongly convex, the constrained optimization
problem (7) is a strongly convex optimization problem. The first order optimality condition of the
problem is {

ω − θ0 +∇θf lin(X , θ0)Tλ = 0

f lin(X , ω) = Y. (A11)

Let λ =
∑∞
t=0∇f lin(X ,θt)L, we can easily check out that ω∞ satisfies condition (A11). So ω∞ is

the solution of problem (7).

Remark A11 (Remark to Theorem 2). Making an analogous statement to Theorem 2 to describe the
bias in parameter space when training wide networks rather than the linearized model is interesting,
but harder, because the gradient direction is no longer constant. Oymak and Soltanolkotabi (2019)
obtain bounds on the trajectory length in parameter space, putting the final solution within a factor
4β/α of minθ ‖θ0 − θ‖, where β and α are upper and lower bounds on the singular values of the
Jacobian over the relevant region. However, currently it is unclear whether the solution upon gradient
optimization is indeed the distance minimizer from initialization.

F Proof of Theorem 3

We note that assumption (2) liminfn→∞ λmin(Θ̂n) > 0 is satisfied if the empirical NTK converges
and the limit NTK is positive definite. For details see Appendix C.1.

Proof of Theorem 3. According to (6),

ωt+1 = ωt − η∇θf(X , θ0)T∇f lin(X ,ωt)L
lin. (A12)

Since we use the MSE loss,
ωt+1 = ωt − η∇θf(X , θ0)T (f lin(X , ωt)− Y). (A13)

Using (5), we get

f lin(X , ωt+1) = f lin(X , ωt)− η∇θf(X , θ0)∇θf(X , θ0)T (f lin(X , ωt)− Y)

= f lin(X , ωt)− nηΘ̂n(f lin(X , ωt)− Y).
(A14)

Then we have
f lin(X , ωt+1)− Y = (I − nηΘ̂n)(f lin(X , ωt)− Y), (A15)

and
f lin(X , ωt)− Y = (I − nηΘ̂n)t(f lin(X , θ0)− Y)

= (I − nηΘ̂n)t(f(X , θ0)− Y).
(A16)

According to the update rule of ωt, we know that ωt = ∇θf(X , θ0)T ξ + θ0, where ξ is a column
vector. Then

f lin(X , ωt)− Y = f lin(X , ωt)− f(X , θ0) + f(X , θ0)− Y
= ∇θf(X , θ0)(ωt − θ0) + f(X , θ0)− Y
= ∇θf(X , θ0)∇θf(X , θ0)T ξ + f(X , θ0)− Y
= nΘ̂nξ + f(X , θ0)− Y
= (I − nηΘ̂n)t(f(X , θ0)− Y).

(A17)
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From above equation we can solve for ξ:

ξ = −n−1Θ̂−1
n [I − (I − nηΘ̂n)t](f(X , θ0)− Y). (A18)

Therefore

ωt = −n−1∇θf(X , θ0)T Θ̂−1
n [I − (I − nηΘ̂n)t](f(X , θ0)− Y) + θ0. (A19)

For any x ∈ R,

f lin(x, ωt) = f(x, θ0) +∇θf(x, θ0)(ωt − θ0)

= f(x, θ0)− n−1∇θf(x, θ0)∇θf(X , θ0)T Θ̂−1
n [I − (I − nηΘ̂n)t](f(X , θ0)− Y).

(A20)
For the training process (10), we can define the corresponding empirical neural tangent kernel in the
following way:

Θ̃n =
1

n
∇W (2)f(X , θ0)∇W (2)f(X , θ0)T . (A21)

Using the same argument, we have

W̃
(2)
t = −n−1∇W (2)f(X , θ0)T Θ̃−1

n [I − (I − nηΘ̃n)t](f(X , θ0)− Y) +W
(2)

0 (A22)

and

f lin(x, ω̃t) = f(x, θ0)−n−1∇W (2)f(x, θ0)∇W (2)f(X , θ0)T Θ̃−1
n [I−(I−nηΘ̃n)t](f(X , θ0)−Y).

(A23)
Then

|f lin(x, ω̃t)− f lin(x, ωt)|

=n−1
∣∣∣∇θf(x, θ0)∇θf(X , θ0)T Θ̂−1

n [I − (I − nηΘ̂n)t](f(X , θ0)− Y)

−∇W (2)f(x, θ0)∇W (2)f(X , θ0)T Θ̃−1
n [I − (I − nηΘ̃n)t](f(X , θ0)− Y)

∣∣∣ .
(A24)

The next step is to compute the difference between Θ̃n and Θ̂n. Let ∆Θ = Θ̂n − Θ̃n, then the ij-th
entry of the matrix ∆Θ is

(∆Θ)ij =
1

n

[
n∑
k=1

(
∇
W

(1)
k

f(xi, θ0)∇
W

(1)
k

f(xj , θ0) +∇
b
(1)
k

f(xi, θ0)∇
b
(1)
k

f(xj , θ0)
)

+ ∇b(2)f(xi, θ0)∇b(2)f(xj , θ0)

]
.

(A25)

According to initialization (3), we can find a C > 0 such that |W (1)
i |, |b

(1)
i | ≤ C and |W (2)

i |, |b(2)| ≤
Cn−

1
2 with probability at least (1− δ/4). Then given x ∈ R,

|∇
W

(1)
i
f(x, θ0)| =|W (2)

i H(W
(1)
i x+ b) · x| ≤ Cn− 1

2x = O(n−
1
2 ), (A26)

|∇
b
(1)
i
f(x, θ0)| =|W (2)

i H(W
(1)
i x+ b

(1)
i )| ≤ Cn− 1

2 = O(n−
1
2 ) (A27)

|∇
W

(2)
i
f(x, θ0)| =[W

(1)
i x+ b

(1)
i ]+ ≤ C|x|+ C = O(1), (A28)

|∇b(2)f(x, θ0)| =1 = O(1). (A29)

So

|(∆Θ)ij | ≤
1

n

[
n∑
k=1

(
O(n−

1
2 )O(n−

1
2 ) +O(n−

1
2 )O(n−

1
2 )
)

+ O(1)O(1)

]
= O(n−1).

(A30)

Since the size of ∆Θ is M ×M , which does not change as n goes up. So ‖∆Θ‖2 = O(n−1), which
means ‖Θ̂n − Θ̃n‖2 = O(n−1).
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Now we measure the difference of each part in (A24). According to assumption (2), infn λmin(Θ̂n) >
0, then

λmin(Θ̂n) ≥ 1

infn λmin(Θ̂n)
= O(1) (A31)

λmin(Θ̃n) ≥ 1

infn λmin(Θ̂n)−O(n−1)
= O(1). (A32)

So
‖Θ̂−1

n − Θ̃−1
n ‖2 = ‖Θ̂−1

n (Θ̃n − Θ̂n)Θ̃−1
n ‖2

≤ ‖Θ̂−1
n ‖2‖∆Θ‖2‖Θ̃−1

n ‖2
= O(n−1).

(A33)

The assumption η < 2
nλmax(Θ̂n)

implies

‖I − nηΘ̂n‖2 < 1, (A34)

And
‖I − nηΘ̃n‖2 ≤ ‖I − nηΘ̂n‖2 + nη‖Θ̂n −Θ‖2

≤ max{nηλmax(Θ)

2
, 1− nηλmin(Θ̂n)}+O(n−1).

(A35)

As n is large enough, we also have ‖I − nηΘ̃n‖2 < 1. Then as n is large enough,

‖[I − (I − nηΘ̂n)t]− [I − (I − nηΘ̃n)t]‖2
= ‖(I − nηΘ̂n)t − (I − nηΘ̃n)t‖2
≤ ‖[(I − nηΘ̂n)− (I − nηΘ̃n)](I − nηΘ̂n)t−1‖2

+ ‖(I − nηΘ̃n)[(I − nηΘ̂n)− (I − nηΘ̃n)](I − nηΘ̂n)t−2‖2
+ · · ·
+ ‖(I − nηΘ̃n)t−1[(I − nηΘ̂n)− (I − nηΘ̃n)]‖2
≤ η‖Θ̂n − Θ̃n‖2‖I − nηΘ̂n‖t−1

2

+ η‖I − nηΘ̃n‖2‖Θ̂n − Θ̃n‖2‖I − nηΘ̂n‖t−2
2

+ · · ·
+ η‖I − nηΘ̃n‖t−1

2 ‖Θ̂n − Θ̃n‖2
≤ η‖Θ̂n − Θ̃n‖2 · t · (max{‖I − nηΘ̂n‖2, ‖I − nηΘ̃n‖2})t−1.

(A36)

Since max{‖I − nηΘ̂n‖2, ‖I − nηΘ̃n‖2} < 1, supt>0 t · (max{‖I − nηΘ̂n‖2, ‖I − nηΘ̃n‖2})t−1

is a finite number. So

‖[I − (I − nηΘ̂n)t]− [I − (I − nηΘ̃n)t]‖2 ≤ O(η‖Θ̂n − Θ̃n‖2)

≤ O(n−1).
(A37)

Let ∆Θ(x,X ) = n−1(∇θf(x, θ0)∇θf(X , θ0)T − ∇W (2)f(x, θ0)∇W (2)f(X , θ0)T ), then the i-th
entry of the vector ∆Θ(x,X ) is

(∆Θ(x,X ))i =
1

n

[
n∑
k=1

(
∇
W

(1)
k

f(x, θ0)∇
W

(1)
k

f(xi, θ0) +∇
b
(1)
k

f(x, θ0)∇
b
(1)
k

f(xi, θ0)
)

+ ∇b(2)f(x, θ0)∇b(2)f(xi, θ0)

]
.

(A38)

According to (A26), (A27), (A28) and (A29), we have

|(∆Θ(x,X ))i| ≤
1

n

[
n∑
k=1

(
O(n−

1
2 )O(n−

1
2 ) +O(n−

1
2 )O(n−

1
2 )
)

+ O(1)O(1)

]
= O(n−1).

(A39)
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Since the size of ∆Θ(x,X ) is M , which does not change as n goes up. So

‖∆Θ(x,X )‖2 = O(n−1). (A40)

Let Θ̃n(x,X ) = n−1(∇W (2)f(x, θ0)∇W (2)f(X , θ0)T )), then the i-th entry of the vector Θ̃n(x,X )
is

|(Θ̃n(x,X ))i| ≤
1

n

n∑
k=1

|∇
W

(2)
k

f(x, θ0)∇
W

(2)
k

f(xi, θ0)|

≤ 1

n

n∑
k=1

|O(1)O(1)|

= O(1).

(A41)

Since the size of Θ̃n(x,X ) is M , which does not change as n goes up. So

‖Θ(x,X )‖2 = O(n−1). (A42)
Neal (1996), Lee et al. (2018) show that as n goes to infinity, the output function at initialization
f(·, θ0) tends to a Gaussian process, which means that f(X , θ0) ∼ N (0,K(X ,X )). Here K(X ,X )
can be computed recursively. So as n is large enough, we can find a C1 > 0 such that f(xi, θ0) ≤
C1, i = 1, · · · ,M with probability at least (1− δ/4). Then

‖f(X , θ0)− Y‖2 = O(1). (A43)
Combine all these together, we have that with probability at least (1−δ), (A31), (A32), (A33), (A34),
(A37), (A40), (A41) and (A43) hold true. Then follow the equation (A24), we get

|f lin(x, ω̃t)− f(x, θt)|
=n−1|∇θf(x, θ0)∇θf(X , θ0)T Θ̂−1

n [I − (I − nηΘ̂n)t](f(X , θ0)− Y)

−∇W (2)f(x, θ0)∇W (2)f(X , θ0)T Θ̃−1
n [I − (I − nηΘ̃n)t](f(X , θ0)− Y)|

=n−1‖∇θf(x, θ0)∇θf(X , θ0)T Θ̂−1
n [I − (I − nηΘ̂n)t]

−∇W (2)f(x, θ0)∇W (2)f(X , θ0)T Θ̃−1
n [I − (I − nηΘ̃n)t]‖2‖f(X , θ0)− Y‖2

=n−1‖∇θf(x, θ0)∇θf(X , θ0)T Θ̂−1
n [I − (I − nηΘ̂n)t]

−∇W (2)f(x, θ0)∇W (2)f(X , θ0)T Θ̃−1
n [I − (I − nηΘ̃n)t]‖2 ·O(1).

(A44)

And
n−1‖∇θf(x, θ0)∇θf(X , θ0)T Θ̂−1

n [I − (I − nηΘ̂n)t]

−∇W (2)f(x, θ0)∇W (2)f(X , θ0)T Θ̃−1
n [I − (I − nηΘ̃n)t]‖2

≤n−1‖∇θf(x, θ0)∇θf(X , θ0)T −∇W (2)f(x, θ0)∇W (2)f(X , θ0)T ‖‖Θ̂−1
n ‖2‖I − (I − nηΘ̂n)t‖2

+ n−1‖∇W (2)f(x, θ0)∇W (2)f(X , θ0)T ‖2‖Θ̂−1
n − Θ̃−1

n ‖2‖I − (I − nηΘ̂n)t‖2
+ n−1‖∇W (2)f(x, θ0)∇W (2)f(X , θ0)T ‖2‖Θ̃−1

n ‖2‖[I − (I − nηΘ̂n)t]− [I − (I − nηΘ̃n)t]‖2
≤O(n−1)O(1)O(1) +O(1)O(n−1)O(1) +O(1)O(1)O(n−1)

=O(n−1).
(A45)

So we have |f lin(x, ω̃t) − f(x, θt)| = O(n−1), and O(n−1) does not contain any constant factor
which is related to t. Then

sup
t
|f lin(x, ω̃t)− f lin(x, ωt)| = O(n−1), as n→∞. (A46)

For the difference of parameters, we have

ω̃t − ωt = vec(W
(1)

t − Ŵ
(1)
t , b

(1)

t − b̂
(1)
t , W̃

(2)
t − Ŵ (2)

t , b
(2)

t − b̂
(2)
t ). (A47)

According to (A19) and (A22),

‖W (1)

t − Ŵ
(1)
t ‖2 = ‖n−1∇W (1)f(X , θ0)T Θ̂−1

n [I − (I − nηΘ̂n)t](f(X , θ0)− Y)‖2
≤ ‖n−1∇W (1)f(X , θ0)T ‖2‖Θ̂−1

n ‖2‖I − (I − nηΘ̂n)t‖2‖f(X , θ0)− Y‖2
≤ n−1‖∇W (1)f(X , θ0)T ‖2 ·O(1).

(A48)
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Here∇W (1)f(X , θ0)T is a n×M matrix, the ij-th entry of the matrix is∇
W

(1)
i
f(xj , θ0). According

to (A26), we have ∇
W

(1)
i
f(xj , θ0) = O(n−1/2). Then ‖∇W (1)f(X , θ0)T ‖2 = O(1). So we have

‖W (1)

t − Ŵ
(1)
t ‖2 = O(n−1), and O(n−1) does not contain any constant factor which is related to t.

Then
sup
t
‖W 1

t − Ŵ 1
t ‖2 = O(n−1), as n→∞. (A49)

Similarly we can prove

sup
t
‖b1t − b̂1t‖2 = O(n−1), as n→∞. (A50)

sup
t
‖b2t − b̂2t‖ = O(n−1), as n→∞. (A51)

For W̃ (2)
t − Ŵ (2)

t , we have

‖W (2)

t − Ŵ
(2)
t ‖2 = ‖n−1∇W (2)f(X , θ0)T

(
Θ̂−1
n [I − (I − nηΘ̂n)t]−

Θ̃−1
n [I − (I − nηΘ̃n)t]

)
(f(X , θ0)− Y)‖2

≤ ‖n−1∇W (2)f(X , θ0)T ‖2
(
‖Θ̂−1

n − Θ̃−1
n ‖2‖I − (I − nηΘ̂n)t‖2+

‖Θ̃−1
n ‖2‖[I − (I − nηΘ̂)t]− [I − (I − nηΘ̃)t]‖2

)
‖f(X , θ0)− Y‖2

≤ n−1‖∇W (2)f(X , θ0)T ‖2(O(n−1)O(1) +O(1)O(n−1)) ·O(1)

= O(n−2)‖∇W (2)f(X , θ0)T ‖2.
(A52)

Here∇W (2)f(X , θ0)T is a n×M matrix, the ij-th entry of the matrix is∇
W

(2)
i
f(xj , θ0). According

to (A28), we have ∇
W

(2)
i
f(xj , θ0) = O(1). Then ‖∇W (2)f(X , θ0)T ‖2 = O(n1/2). So we have

‖W̃ (2)
t − Ŵ (2)

t ‖2 = O(n−3/2), and O(n−3/2) does not contain any constant factor which is related
to t. Then

sup
t
‖W̃ 2

t − Ŵ 2
t ‖2 = O(n−3/2), as n→∞. (A53)

G Proof of Corollary 4

Corollary 4 is obtained by combining Theorem 3 and the fact that training a linearized model
approximates training a wide network (Lee et al., 2019, Theorem H.1). Although Lee et al. (2019,
Theorem H.1) consider Gaussian initialization, the arguments extend to sub-Gaussian initialization.

Proof of Corollary 4. Using Theorem 3, we have that

sup
t
|f lin(x, ω̃t)− f lin(x, ωt)| = O(n−1), as n→∞. (A54)

According to Lee et al. (2019, Theorem H.1), in the case of Gaussian initialization, we have

sup
t
|f lin(x, ωt)− f(x, θ)| = O(n−

1
2 ), as n→∞. (A55)

Under our neural network setting, which is a one-input network with a single hidden layer of n ReLUs
and a linear output, we can generalize the above result to sub-Gaussian initialization. In the remark
of Theorem 3, we illustrate that the empirical NTK converges to analytic NTK for initialization with
finite variance distribution. Then for sub-Gaussian initialization the empirical NTK still converges to
analytic NTK. Then the only part we need to adapt in the proof of Lee et al. (2019, Theorem H.1) is
the following theorem (Lee et al., 2019, Theorem G.3):

Theorem A12. Let A be an N × n random matrix whose entries are independent standard normal
random variables. Then for every t ≥ 0, with probability at least 1− 2 exp(−t2/2) one has

‖A‖op ≤
√
N +

√
n+ t. (A56)
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Then Lee et al. (2019) applies the above theorem to weight matrices in the neural network. In our
case, the weight matrices W (1) and W (2) are 1× n matrices, which can be regarded as vectors. So

‖W (1)‖op =

√√√√ n∑
i=1

(W
(1)
i )2. (A57)

Now we use sub-Gaussian initialization. Then P(|W (1)
i | ≥ t) ≤ 2 exp(−t2/2σ2) for some positive

σ. Then (W
(1)
i )2 is sub-exponential. Using the property of sub-Gaussian exponential, we have

E exp(|W (1)
i )2|/λ) ≤ 2 for some positive λ. Using Vershynin (2018, Theorem 1.4.1), we have

P

(
|
n∑
i=1

(W
(1)
i )2 − E

n∑
i=1

(W
(1)
i )2| ≥ t

)
≤ 2 exp

[
−cmin

(
t2

nλ2
,
t

λ

)]
. (A58)

Let t = nλ, then we have

P

(
n∑
i=1

(W
(1)
i )2 ≥ E

n∑
i=1

(W
(1)
i )2 + nλ

)
≤ 2 exp(−cn). (A59)

Since 2 exp(−cn)→ 0 as n→∞, the above equation means that with arbitrarily high probability,
n∑
i=1

(W
(1)
i )2 ≤ E

n∑
i=1

(W
(1)
i )2 + nλ

= nE(W
(1)
i )2 + nλ

= O(n).

(A60)

So ‖W (1)‖op = O(
√
n). For the same reason, ‖W (2)‖op = O(1). Then follow the remaining

argument of Lee et al. (2019) we can show that

sup
t
|f lin(x, ωt)− f(x, θ)| = O(n−

1
2 ), as n→∞. (A61)

Combine the above equation with (A54) then we finish the proof.

H Proof of Theorem 5

We consider the continuous version of problem (15):

min
α∈C(R2)

∫
R2

α2(W (1), b) dµ(W (1), b)

subject to
∫
R2

α(W (1), b)[W (1)xj + b]+ dµ(W (1), b) = yj , j = 1, . . . ,M.

(A62)

Here the only difference between (15) and (A62) is the difference of measures µn and µ.

Proof of Theorem 5. The Lagrangian of problem (15) is

L(αn, λ
n) =

∫
R2

α2
n(W (1), b) dµn(W (1), b) +

M∑
j=1

λnj (gn(xj , αn)− yj) (A63)

The optimal condition is∇αnL = 0, which means

∇αnL = 2αn(W (1), b) +

M∑
j=1

λnj [W (1)xj + b]+ = 0 when (W (1), b) = (W
(1)
i , bi), i = 1, · · · , k.

(A64)
Then

αn(W (1), b) = −1

2

M∑
j=1

λnj [W (1)xj + b]+ when (W (1), b) = (W
(1)
i , bi), i = 1, · · · , k. (A65)
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Since only function values on (W
(1)
i , bi)

M
i=1 are really taken into account in problem (15), we can let

αn(W (1), b) = −1

2

M∑
j=1

λnj [W (1)xj + b]+ ∀(W (1), b) ∈ R2 (A66)

without changing
∫
R2 α

2
n(W (1), b) dµn(W (1), b) and gn(x, αn).

Here λnj , j = 1, · · · ,M are chosen to make gn(xi, αn) = yi, i = 1, · · · ,M . It means that

−1

2

M∑
j=1

λnj

∫
R2

[W (1)xj + b]+[W (1)xi + b]+ dµn(W (1), b) = yi, i = 1, . . . ,M. (A67)

Similarly the Lagrangian of problem (A62) is

L̃(α, λ) =

∫
R2

α2(W (1), b) dµ(W (1), b) +

M∑
j=1

λj(g(xj , α)− yj). (A68)

The optimal condition is∇αL̃ = 0, which means

∇αL̃ = 2α(W (1), b) +

M∑
j=1

λj [W
(1)xj + b]+ = 0 ∀(W (1), b) ∈ R2. (A69)

Then

α(W (1), b) = −1

2

M∑
j=1

λj [W
(1)xj + b]+ ∀(W (1), b) ∈ R2. (A70)

Here λj , j = 1, . . . ,M are chosen to make g(x, α) = yi, i = 1, . . . ,M . It means that

−1

2

M∑
j=1

λj

∫
R2

[W (1)xj + b]+[W (1)xi + b]+ dµ(W (1), b) = yi, i = 1, . . . ,M. (A71)

Compare (A67) and (A71). Since the number of samples is finite, xi is also bounded. Then by the
assumption thatW and B have finite fourth moments, we have that [W (1)xj + b]+[W (1)xi + b]+
has finite variance. According to central limit theorem, as n → ∞,

∫
R2 [W (1)xj + b]+[W (1)xi +

b]+ dµn(W (1), b) tends to Gaussian distribution of variance O(n−1). Then

|
∫
R2

[W (1)xj + b]+[W (1)xi + b]+ dµn(W (1), b)−
∫
R2

[W (1)xj + b]+[W (1)xi + b]+ dµ(W (1), b)|

= O(n−1/2)
(A72)

∀i = 1, · · · ,M, ∀j = 1, . . . ,M with high probability. Since (A67) and (A71) are systems of linear
equations and coefficients of (A67) converge to coefficients of (A71) at the rate of O(n−1/2), then

|λnj − λj | = O(n−1/2), j = 1, . . . ,M. (A73)

Compare (A66) and (A70). Given (W (1), b), we have

|αn(W (1), b)− α(W (1), b)| = O(n−1/2) (A74)

Next we want to prove that supx∈[−L,L] |gn(x, αn)− g(x, α)| = O(n−1/2). Firstly, we prove that
supx∈[−L,L] |gn(x, α)− g(x, α)| = O(n−1/2). Since

gn(x, α) =

∫
R2

α(W (1), b)[W (1)x+ b]+ dµn(W (1), b)

g(x, α) =

∫
R2

α(W (1), b)[W (1)x+ b]+ dµ(W (1), b)

(A75)
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So
Egn(x, α) = g(x, α)

Var gn(x, α) =
1

n

∫
R2

[α(W (1), b)[W (1)x+ b]+ − g(x, α)]2 dµ(W (1), b).
(A76)

Here the expectation and the variance are with respect to (W
(1)
i , bi)

n
i=1. According to (A70) and the

assumption thatW and B have finite fourth moments, the integral in (A76) is bounded on [−L,L].
So supx∈[−L,L] Var gn(x, α) = O(n−1). According to central limit theorem, as n→∞, gn(x, α)

tends to Gaussian distribution of variance O(n−1) for any x ∈ [−L,L]. Then |gn(x, α)− g(x, α)| =
O(n−1/2) pointwise on [−L,L] with high probability. Then we only need to prove that the sequence
of functions {gn(x, α)}∞n=1 is uniformly equicontinuous. Actually, ∀x1, x2 ∈ [−L,L]

|gn(x1, α)− gn(x2, α)|

≤
∫
R2

∣∣∣α(W (1), b)[W (1)x1 + b]+ − α(W (1), b)[W (1)x2 + b]+

∣∣∣ dµn(W (1), b)

≤
∫
R2

∣∣∣α(W (1), b)
∣∣∣ ∣∣∣W (1)

i

∣∣∣ |x1 − x2| dµn(W (1), b)

≤
∫
R2

∣∣∣α(W (1), b)
∣∣∣ ∣∣∣W (1)

i

∣∣∣ dµn(W (1), b) |x1 − x2| .

(A77)

Because
∫
R2

∣∣α(W (1), b)
∣∣ ∣∣∣W (1)

i

∣∣∣ dµn(W (1), b)→
∫
R2

∣∣α(W (1), b)
∣∣ ∣∣∣W (1)

i

∣∣∣ dµ(W (1), b) with prob-

ability 1 according to the law of large numbers. So
∫
R2

∣∣α(W (1), b)
∣∣ ∣∣∣W (1)

i

∣∣∣ dµn(W (1), b) is bounded
and the bound is independent of n. So {gn(x, α)}∞n=1 is uniformly equicontinuous. Then by the
argument similar to Arzela-Ascoli theorem, with high probability,

sup
x∈[−L,L]

|gn(x, α)− g(x, α)| = O(n−1/2). (A78)

Finally, we prove that supx∈[−L,L] |gn(x, αn)− gn(x, α)| = O(n−1/2). Since ∀x ∈ [−L,L]

|gn(x, αn)− gn(x, α)|

≤
∫
R2

∣∣∣αn(W (1), b)[W (1)x+ b]+ − α(W (1), b)[W (1)x+ b]+

∣∣∣ dµn(W (1), b)

≤
∫
R2

∣∣∣αn(W (1), b)− α(W (1), b)
∣∣∣ [W (1)x+ b]+ dµn(W (1), b)

≤
∫
R2

∣∣∣∣∣∣−1

2

M∑
j=1

(λnj − λj)[W (1)xj + b]+

∣∣∣∣∣∣ [W (1)x+ b]+ dµn(W (1), b)

≤1

2

M∑
j=1

|λnj − λj |
∫
R2

[W (1)xj + b]+[W (1)x+ b]+ dµn(W (1), b)

≤1

2

(
max

x∈[−L,L]

∫
R2

[W (1)xj + b]+[W (1)x+ b]+ dµn(W (1), b)

) M∑
j=1

|λnj − λj |.

(A79)

Because [−L,L] is compact and
∫
R2 [W (1)xj+b]+[W (1)x+b]+ dµn(W (1), b) converges according to

the law of large numbers, maxx∈[−L,L]

∫
R2 [W (1)xj+b]+[W (1)x+b]+ dµn(W (1), b) is a finite num-

ber independent of n. Then according to (A73), max(W i,b)∈supp(µ)

∣∣αn(W (1), b)− α(W (1), b)
∣∣→

0. Then
sup

x∈[−L,L]

|gn(x, αn)− gn(x, α)| = O(n−1/2). (A80)

Combined with (A78), we have

sup
x∈[−L,L]

|gn(x, αn)− g(x, α)| = O(n−1/2). (A81)

This concludes the proof.
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I Proof of Theorem 6

The detailed calculation of (17) for the second derivative g′′ is as follows:

g′′(x, γ) =

∫
R2

γ(W (1), c)
∣∣∣W (1)

∣∣∣ δ(x− c) dν(W (1), c)

=

∫
supp(νC)

(∫
R
γ(W (1), c)

∣∣∣W (1)
∣∣∣ dνW|C=c(W

(1))

)
δ(x− c) dνC(c)

=

∫
supp(νC)

(∫
R
γ(W (1), c)

∣∣∣W (1)
∣∣∣ dνW|C=c(W

(1))

)
δ(x− c)pC(c)dc

= pC(x)

∫
R
γ(W (1), x)

∣∣∣W (1)
∣∣∣ dνW|C=x(W (1)).

(A82)

Proof of Theorem 6. First, if x 6∈ supp(ζ), similar to (17), we have

g(x, (γ, u, v)) = pC(x)

∫
R
γ(W (1), x)

∣∣∣W (1)
∣∣∣ dνW|C=x(W (1))

= 0.

(A83)

Next, we prove that g(x, (γ, u, v)) restricted on supp(ζ) is the solution of the following problem:

min
h∈C2(supp(ζ))

∫
supp(ζ)

(h′′(x))2

ζ(x)
dx

subject to h(xj) = yj , j = 1, . . . ,m.

(A84)

Let L(f) =
∫

supp(ζ)
(f ′′(x))2

p(x)E(W2|C=x)dx. Then the functional L(f) is strictly convex on space {f ∈
C2(R2)|f(xi) = yi, i = 1, . . . ,m} when m ≥ 2. It means that the minimizer of problem (A84) is
unique.

Suppose h(x) is the minimizer of problem (A84) and h(x) is different from g(x, (γ, u, v)) restricted
on supp(ζ). Then by uniqueness of the solution,

L(h) < L(g(·, (γ, u, v))). (A85)

Now our goal is to find out another (γ, u, v) with smaller cost in problem (18). Then (γ, u, v) is not
the solution of (18), which is a contradiction. We set

γ(W (1), c) =
h′′(c)|W (1)|

pC(c)E(W2|C = c)
, c ∈ supp(ζ). (A86)

Then according to (17),

g′′(x, γ) = p(x)

∫
R
γ(W (1), x)

∣∣∣W (1)
∣∣∣ dνW|C=x(W (1))

= p(x)

∫
R

h′′(x)|W (1)|
p(x)E(W2|C = x)

∣∣∣W (1)
∣∣∣ dνW|C=x(W (1))

=
h′′(x)

E(W2|C = x)

∫
R

∣∣∣W (1)
∣∣∣2 dνW|C=x(W (1))

=
h′′(x)

E(W2|C = x)
E(W2|C = x)

= h′′(x), x ∈ supp(ζ).

(A87)

It means that we can find u, v ∈ R such that ux + v + g(x, γ) ≡ h(x). Then we find out (γ, u, v)
such that g(x, (γ, u, v)) = ux+ v + g(x, γ) = h(x) on supp(ζ). So g(xj , (γ, u, v)) = h(xj) = yj .
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It means that (γ, u, v) satisfies the condition in problem (18). Next we compute the cost of (γ, u, v):∫
R2

γ2(W (1), c) dν(W (1), c)

=

∫
R2

(
h′′(c)|W (1)|

pC(c)E(W2|C = c)

)2

dν(W (1), c)

=

∫
supp(ζ)

(∫
R

(
h′′(c)|W (1)|

pC(c)E(W2|C = c)

)2

dνW|C=c(W
(1))

)
dνC(c)

=

∫
supp(ζ)

(
h′′(c)

pC(c)E(W2|C = c)

)2(∫
R
|W (1)|2 dνW|C=c(W

(1))

)
pC(c)dc

=

∫
supp(ζ)

(
h′′(c)

pC(c)E(W2|C = c)

)2(∫
R
|W (1)|2 dνW|C=c(W

(1))

)
pC(c)dc

=

∫
supp(ζ)

(h′′(c))2

pC(c)E(W2|C = c)
dx

=L(h).

(A88)

On the other hand, the cost of (γ, u, v) is∫
R2

γ2(W (1), c) dν(W (1), c)

=

∫
supp(ζ)

(∫
R
γ2(W (1), c) dνW|C=c(W

(1))

)
pC(c)dc

≥
∫

supp(ζ)

(∫
R γ(W (1), c)|W (1)| dνW|C=c

)2∫
R |W (1)|2 dνW|C=c

pC(c)dc (Cauchy-Schwarz inequality)

=

∫
supp(ζ)

(g′′(c, γ)/pC(c)))
2∫

R |W (1)|2 dνW|C=c
pC(c)dc (according to (17))

=

∫
supp(ζ)

(g′′(c, γ))
2

pC(c)E(W2|C = c)
dc

=L(g(·, γ))

=L(g(·, (γ, u, v))) (g(·, (γ, u, v)) has the same second derivative as g(·, γ)).

(A89)

Then∫
R2

γ2(W (1), c) dν(W (1), c) = L(h) (according to (A88))

< L(g(·, (γ, u, v))) (according to (A85))

≤
∫
R2

γ2(W (1), c) dν(W (1), c) (according to (A89)).

(A90)

It means that the cost of (γ, u, v) is smaller than the cost of (γ, u, v). So (γ, u, v) is not the solution
of (18), which is a contradiction. So our assumption is wrong. So h(x) ≡ g(x, (γ, u, v)) on supp(ζ),
and g(x, (γ, u, v)) is the solution of problem (A84). In the last step we prove that g′′(x, (γ, u, v)) = 0
when x 6∈ [mini xi,maxi xi] and g(x, (γ, u, v)) restricted on supp(ζ) ∩ [mini xi,maxi xi] is the
solution of (21). We only need to prove these statements for h(x), which is the solution of (A84).

Since |xi| ∈ [mini xi,maxi xi], the function values on (−∞,mini xi) and (maxi xi,∞) are not
related to constraints of problem (21), so h(x) can be replaced by following h̃(x) which also satisfies
the constraints of problem (21):

h̃(x) =


h(x) x ∈ [mini xi,maxi xi]

h′(mini xi)(x−mini xi) + h(mini xi) x ∈ (−∞,mini xi)

h′(maxi xi)(x−maxi xi) + h(maxi xi) x ∈ (maxi xi,∞).

(A91)
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Then

h̃′′(x) =


h′′(x) x ∈ [mini xi,maxi xi]

0 x ∈ (−∞,mini xi)

0 x ∈ (maxi xi,∞).

(A92)

So the cost of h̃(x) is less than that of h(x). Then the fact h(x) is the minimizer of (A84) tell us
that h(x) ≡ h̃(x). So h(x) should be linear on (−∞,mini xi) and (maxi xi,∞). Then h′′(x) = 0
when x 6∈ [mini xi,maxi xi]. Let h(x)|S denote the function h(x) restricted on S = supp(ζ) ∩
[mini xi,maxi xi]. Since h(x) is the solution of the problem (A84), we get h(x)|S is the solution of
the problem (21).

In the case of not using ASI, problem (18) becomes:

min
γ∈C(R2),u∈R,v∈R

∫
R2

γ2(W (1), c) dν(W (1), c)

subject to uxj + v +

∫
R2

γ(W (1), c)[W (1)(xj − c)]+ dν(W (1), c) = yj − f(xj , θ0),

j = 1, . . . ,M.
(A93)

Then Theorem 6 without ASI is stated as follows.

Theorem A13 (Theorem 6 without ASI). Suppose (γ, u, v) is the solution of (A93), and consider
the corresponding output function

g(x, (γ, u, v)) = ux+ v +

∫
R2

γ(W (1), c)[W (1)(x− c)]+ dν(W (1), c) + f(x, θ0). (A94)

Then g(x, (γ, u, v)) satisfies g′′(x, (γ, u, v)) = f ′′(x, θ0) for x 6∈ S and for x ∈ S it is the solution
of the following problem:

min
h∈C2(S)

∫
S

(h′′(x)− f ′′(x, θ0))2

ζ(x)
dx

subject to h(xj) = yj , j = 1, . . . ,M.

(A95)

J Proof of Proposition 7 and remarks on Proposition 8

Proof of Proposition 7. Let pW,C and pW,B denote the joint density functions of (W, C) and (W,B),
respectively. We have

pW,C(W,C) =

∣∣∣∣∂(W,−WC)

∂(W,C)

∣∣∣∣ pW,B(W,−WC) = |W |pW,B(W,−WC), (A96)

and

E(W 2|C = x)pC(x) =

∫
R
W 2pW,C(W |C = x) dWpC(x)

=

∫
R
W 2pW,C(W,x) dW

=

∫
R
|W |3pW,B(W,−Wx) dW.

(A97)

Proof of Proposition 8. The construction is given in the statement of the proposition.

Remark A14 (Remark to Proposition 8, sampling the initial parameters). The variables (W,B) can be
sampled by first sampling C from pC(x) = 1

Z
1

%(x) , then independently sampling W from a standard
Gaussian distribution and setting B = −WC. In this construction, in general W and B are not
independent.
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Intuitively, if we want the output function to be smooth at a certain point x0, we can let the conditional
distribution of W given C be concentrated around zero for C = x0, or we can let the probability
density function of C to be small at C = x0. Note that pC is the breakpoint density at initialization.
The form of this has been studied for uniform initialization by Sahs et al. (2020). We provide the
explicit form of the smoothness penalty function for several types of initialization in Appendix K.
Remark A15 (Remark to Proposition 8, independent initialization). Note that constructing an arbitrary
curvature penalty function will necessitate in general a non-independent joint distribution ofW and
B. IfW and B are required to be independent random variables, (A97) gives

ζ(x) = E(W 2|C = x)pC(x) =

∫
R
|W |3pW(W )pB(−Wx) dW.

Given a desired function for the left hand side, we can still try to solve for the parameter densities.
This type of integral equation problem has been studied (Nasim, 1973) and one can write a formal
solution, although it is not always clear whether it will be a density.

K Proof of Theorem 9

We prove the statement for the three considered types of initialization distributions in turn.

Proof of Theorem 9. Gaussian initialization. Using (A97), we have

E(W 2|C = x)pC(x) =

∫
R
|W |3pW(W )pB(−Wx)dW

=

∫
R
|W |3 1√

2πσw
e
− W2

2σ2
w

1√
2πσb

e
−W2x2

2σ2
b dW

=
1

2πσwσb

∫
R
|W |3e

−( 1
2σ2
w

+ x2

2σ2
b

)W 2

dW

=
1

2πσwσb

∫
R
|W |3e

−( 1
2σ2
w

+ x2

2σ2
b

)W 2

dW

(A98)

Let σ2 = 1/
(

1
σ2
w

+ x2

σ2
b

)
, then

E(W 2|C = x)pC(x) =
σ√

2πσwσb

∫
R
|W |3 1√

2πσ
e−

W2

2σ2 dW

=
σ√

2πσwσb
σ3 · 2 ·

√
2

π

=
σ√

2πσwσb
σ3 · 2 ·

√
2

π

=
2σ4

πσwσb

=
2σ3

wσ
3
b

π(σ2
b + x2σ2

w)2
.

(A99)

Then
ζ(x) = E(W 2|C = x)pC(x)

=
2σ3

wσ
3
b

π(σ2
b + x2σ2

w)2
.

(A100)

Proof of Theorem 9. Binary-uniform initialization. SinceW is either −1 or 1, E(W2|C = x) = 1
for any x ∈ supp(νC). Since B ∼ U(−ab, ab), it is easy to check −B/W ∼ U(−ab, ab). So
ζ(x) = 1/2ab, x ∈ [−ab, ab].
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Proof of Theorem 9. Uniform initialization. According to Theorem 1 in Sahs et al. (2020), the den-
sity function pC(c) of νC is

pC(c) =
1

4awab

(
min

{
ab
|c|
, aw

})2

, c ∈ supp(νC). (A101)

When |c| ≤ ab
aw

, then pC(c) = 1
4awab

(aw)
2. It means that pC(c) is constant when |c| ≤ ab

aw
.

Let pW,B(W (1), b) denote the density function of µ, pW,C(W (1), c) denote the density function of ν,
so

pW,C(W
(1), c) = pW,B(W (1),−cW (1))

∂b

∂c

=
1

4awab
1W (1)∈[−aw,aw] · 1−cW (1)∈[−ab,ab] · (−W

(1))
(A102)

Here 1a is the indicator function which equals to 1 when condition a is true, and 0 otherwise. Then
density function pW|C(W (1)|c) of the conditional distribution νW|C=c is

pW|C(W
(1)|c) =

pW,C(W
(1), c)

pC(c)

=
1

4awab
1W (1)∈[−aw,aw] · 1−cW (1)∈[−ab,ab] · (−W

(1))

pC(c)

(A103)

When |c| ≤ ab
aw

, |−cW (1)| ≤ ab
aw
aw = ab. So−cW (1) ∈ [−ab, ab] is true and 1−cW (1)∈[−ab,ab] = 1.

Combined with the fact that pC(c) is constant when |c| ≤ ab
aw

, we have pW|C(W (1)|c) is independent
of c when |c| ≤ ab

aw
. So E(W2|C = c) is constant when |c| ≤ ab

aw
. Since ab

aw
≥ L, E(W2|C = c)

and pC(c) are constant when c ∈ [−L,L]. Then ζ(x) = E(W 2|C = x)pC(x) is constant when
c ∈ [−L,L].

L Equivalence of our characterization and NTK norm minimization

In this section we demonstrate that NTK norm minimization (Zhang et al., 2019), which characterizes
the implicit bias of training a linearized model by gradient descent, is equivalent to our characterization
in Section 4. Following Jacot et al. (2018), Zhang et al. (2019) show that gradient descent can be
regarded as a kernel gradient descent in function space, whereby the kernel is given by the NTK. Then
for a linearized model, gradient descent finds the global minimum that is closest to the initial output
function in the corresponding reproducing kernel Hilbert space (RKHS). Let Θ̃n be the empirical
neural tangent kernel of training only the output layer, i.e.

Θ̃n(x1, x2) =
1

n
∇W (2)f(x1, θ0)∇W (2)f(x2, θ0)T

=
1

n

n∑
i=1

∇
W

(2)
i
f(x1, θ0)∇

W
(2)
i
f(x2, θ0)

=
1

n

n∑
i=1

[W
(1)
i x1 + b

(1)
i ]+[W

(1)
i x2 + b

(1)
i ]+.

(A104)

As n→∞, Θ̃n → Θ̃, where

Θ̃(x1, x2) =

∫
R2

[W (1)x1 + b(1)]+[W (1)x2 + b(1)]+ dµ(W (1), b). (A105)

Equivalently, using the notation in Section 4.2, we have

Θ̃(x1, x2) =

∫
R2

[W (1)(x1 − c)]+[W (1)(x2 − c)]+ dν(W (1), c). (A106)
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Next, Zhang et al. (2019) construct a RKHSHΘ̃(S) by kernel Θ̃, and the inner product of the RKHS
is denoted by 〈·, ·〉Θ̃. ThenHΘ̃(S) satisfies:

(i) ∀x ∈ S, Θ̃(·, x) ∈ HΘ̃(S); (A107)

(ii) ∀x ∈ S, ∀f ∈ HΘ̃, 〈f(·), Θ̃(·, x)〉Θ̃ = f(x); (A108)

(iii) ∀x, y ∈ S, 〈Θ̃(·, x), Θ̃(·, y)〉Θ̃ = Θ̃(x, y). (A109)

Here the domain is S = supp(ζ) ∩ [mini xi,maxi xi], which is the same as in Theorem 1 and
Theorem 6. Using the reproducing kernel Hilbert space, Zhang et al. (2019) prove that f lin(x, ω̃∞)
(defined in Section 3.3) is the solution of the following optimization problem:

min
g∈HΘ̃(S)

‖g‖Θ̃n s.t. g(xj) = yj , j = 1, . . . ,M. (A110)

As the width n tends to infinity, the above optimization problem becomes

min
g∈HΘ̃(S)

‖g‖Θ̃ s.t. g(xj) = yj , j = 1, . . . ,M. (A111)

In Section 4, we show that f lin(x, ω̃∞) is the solution of the optimization problem (15) in function
space. As width n tends to infinity, the optimization problem (15) becomes (A62), which we repeat
below:

min
α∈C(R2)

∫
R2

α2(W (1), b) dµ(W (1), b)

subject to
∫
R2

α(W (1), b)[W (1)xj + b]+ dµ(W (1), b) = yj , j = 1, . . . ,M.

(A112)

Since optimization problems (A111) and (A112) both characterize the implicit bias of training a
linearized model by gradient descent, they must have the same solution in function space. We express
this formally in the following theorem:

Theorem A16 (Equivalence of our variational problem and NTK norm minimization). Assume that
optimization problems (A111) and (A112) are both feasible. Suppose α is the solution of (A112),
and consider the corresponding output function:

g(x) =

∫
R2

α(W (1), b)[W (1)x+ b]+ dµ(W (1), b). (A113)

Then g(x) restricted on S is the solution of the optimization problem (A111).

Next, we give a standalone proof of this theorem using the property of kernel norm. The proof gives
us an idea of what the kernel norm actually looks like.

Proof of Theorem A16. Since α(W (1), b) is the solution of (A112), according to (A70) in the proof
of Theorem 5,

α(W (1), b) = −1

2

M∑
j=1

λj [W
(1)xj + b]+ ∀(W (1), b) ∈ R2 (A114)

for some constants λj , j = 1, . . . ,M . Then we write α(W (1), b) in the following form:

α(W (1), b) =

∫
S

h(x)[W (1)x+ b]+dx, (A115)

where h(x) can be a combination of Dirac delta functions. Then substitute (A115) into the expression
of g(x) (A113) to obtain

g(x) =

∫
R2×S

h(x̃)[W (1)x̃+ b]+[W (1)x+ b]+ dµ(W (1), b)dx̃

=

∫
S

h(x̃)Θ̃(x, x̃)dx̃,

(A116)
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where we use the expression of the NTK in equation (A105). Then

〈g(x), g(x)〉Θ̃ = 〈g(x),

∫
S

h(x̃)Θ̃(x, x̃)dx̃〉Θ̃dx̃

=

∫
S

h(x̃)〈g(x), Θ̃(x, x̃)〉Θ̃dx̃

=

∫
S

h(x̃)g(x̃)dx̃ (here we use the property of RKHS norm (A108))

=

∫
S×S

h(x̃)h(x̄)Θ̃(x̃, x̄)dx̃dx̄ (use (A116)).

(A117)

On the other hand, using (A115), the objective of (A112) becomes∫
S2

α2(W (1), b) dµ(W (1), b)

=

∫
S×S×R2

h(x̃)[W (1)x̃+ b]+h(x̄)[W (1)x̄+ b]+ dx̃dx̄dµ(W (1), b)

=

∫
S×S

h(x̃)h(x̄)

∫
R2

[W (1)x̃+ b]+[W (1)x̄+ b]+dµ(W (1), b) dx̃dx̄

=

∫
S×S

h(x̃)h(x̄)Θ̃(x̄, x̃) dx̃dx̄ (use (A105)).

(A118)

Comparing (A117) and (A118), we have that optimization problems (A111) and (A112) are equiva-
lent if α(W (1), b) has the form (A115) and g(x) has the form (A116). Moreover, if every function
g ∈ HΘ̃(S) can be approximated by the shallow network, we can find α(W (1), b) in form of (A115)
such that g(x) is expressed in the form of (A116). In this sense we show that optimization problems
(A111) and (A112) are equivalent.

In Section 4.2, we relax the optimization problem (16) to (18) in order to characterize the implicit
bias in function space. This relaxation can also be done in the NTK norm minimization setting. It
means that we can equivalently relax the problem (A111) to the following problem:

min
g∈HΘ̃(S),u∈R,v∈R

‖g − ux− v‖Θ̃ s.t. g(xj) = yj , j = 1, . . . ,M. (A119)

Then the optimization problems (18) and (A119) are equivalent. Theorem 6 shows that (18) and (21)
have the same solution on the set S = supp(ζ)∩ [mini xi,maxi xi]. Then we have that optimization
problems (A119) and (21) are equivalent, which means that

min
u∈R,v∈R

‖g − ux− v‖Θ̃ =

∫
S

(g′′(x))2

ζ(x)
dx, ∀g ∈ HΘ̃(S). (A120)

Next, we directly prove the above equation (A120). Given function g ∈ HΘ̃(S), let h =
argminh∈HΘ̃(S) ‖h‖Θ̃, s.t. h = g − ux − v for some u ∈ R, v ∈ R. Then according to opti-
mality of h, we have 〈h, x〉Θ̃ = 0 and 〈h, 1〉Θ̃ = 0. Consider the space W = {h ∈ HΘ̃(S) :
〈h, x〉Θ̃ = 0, 〈h, 1〉Θ̃ = 0}, which is the orthogonal complement of span{1, x}. Then h is the
projection of g on W . Since h = g − ux− v, h′′ = g′′. So we can reformulate the equation (A120)
which we want to prove in the following theorem:
Theorem A17 (Explicit form of the kernel norm). The kernel norm on the spaceW = {h ∈ HΘ̃(S) :
〈h, x〉Θ̃ = 0, 〈h, 1〉Θ̃ = 0} is given as follows:

‖h‖2
Θ̃

=

∫
S

(h′′(x))2

ζ(x)
dx, ∀h ∈W. (A121)

This theorem gives the explicit form of the kernel norm in a subspace ofHΘ̃(S). Next we prove the
above theorem using the property of kernel norm.

Proof of Theoem A17. Let Θ̃x(·) = Θ̃(·, x). We can find the orthogonal projection of Θ̃x on space

W , which we denote by Θ̃x,W . Then we only need to prove that 〈h, Θ̃x,W 〉Θ̃ =
∫
S

h′′(y)Θ̃′′x,W (y)

ζ(y) dy

for any h ∈W and x ∈ S.
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First, Θ̃x,W = Θ̃x−ux−v for some constant u, v ∈ R. Since h ∈W , 〈h, 1〉Θ̃ = 0 and 〈h, x〉Θ̃ = 0.
Then

〈h, Θ̃x,W 〉Θ̃ = 〈h, Θ̃x − ux− v〉Θ̃
= 〈h, Θ̃x〉Θ̃ − u〈h, x〉Θ̃ − v〈h, 1〉Θ̃
= 〈h, Θ̃x〉Θ̃
= h(x) (use the reproducing property of the kernel (A108)).

(A122)

Next, using the notation from Section 4.2 we have

Θ̃′′x,W (y) = (Θ̃x(y)− uy − v)′′

= Θ̃x(y)′′

=
∂2

∂y2
Θ̃(x, y)

=
∂2

∂y2

∫
R2

[W (1)(x− c)]+[W (1)(y − c)]+ dν(W (1), c) (use (A106))

=
∂2

∂y2

∫
R2

(W (1))2[sign(W (1))(x− c)]+[sign(W (1))(y − c)]+ dνW|C=c(W
(1))dνC(c)

=
∂2

∂y2

∫
R

(
E(W2

1(W ≥ 0)|C = c)[x− c]+[y − c]+

+E(W2
1(W < 0)|C = c)[c− x]+[c− y]+

)
pC(c) dc

=

∫
R

(
E(W2

1(W ≥ 0)|C = c)[x− c]+
∂2

∂y2
[y − c]+

+E(W2
1(W < 0)|C = c)[c− x]+

∂2

∂y2
[c− y]+

)
pC(c) dc

=

∫
R

(
E(W2

1(W ≥ 0)|C = c)[x− c]+δ(y − c)

+E(W2
1(W < 0)|C = c)[c− x]+δ(y − c)

)
pC(c) dc

=
(
E(W2

1(W ≥ 0)|C = y)[x− y]+ + E(W2
1(W < 0)|C = y)[y − x]+

)
pC(y).

(A123)
Then

∫
S

h′′(y)Θ̃′′x,W (y)

ζ(y)
dy

=

∫
S

h′′(y)
(
E(W2

1(W ≥ 0)|C = y)[x− y]+ + E(W2
1(W < 0)|C = y)[y − x]+

)
pC(y)

ζ(y)
dy

=

∫
S

h′′(y)
(
E(W2

1(W ≥ 0)|C = y)[x− y]+ + E(W2
1(W < 0)|C = y)[y − x]+

)
E(W2|C = y)

dy

=

∫
S

E(W2
1(W ≥ 0)|C = y)

E(W2|C = y)
h′′(y)[x− y]+ +

E(W2
1(W < 0)|C = y)

E(W2|C = y)
h′′(y)[y − x]+ dy.

(A124)
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Now we regard
∫
S

h′′(y)Θ̃′′x,W (y)

ζ(y) dy as a function of x, then

∂2

∂x2

∫
S

h′′(y)Θ̃′′x,W (y)

ζ(y)
dy

=
∂2

∂x2

∫
S

E(W2
1(W ≥ 0)|C = y)

E(W2|C = y)
h′′(y)[x− y]+ +

E(W2
1(W < 0)|C = y)

E(W2|C = y)
h′′(y)[y − x]+ dy

=

∫
S

E(W2
1(W ≥ 0)|C = y)

E(W2|C = y)
h′′(y)δ(x− y) +

E(W2
1(W < 0)|C = y)

E(W2|C = y)
h′′(y)δ(y − x) dy

=
E(W2

1(W ≥ 0)|C = x)

E(W2|C = x)
h′′(x) +

E(W2
1(W < 0)|C = x)

E(W2|C = x)
h′′(x)

=h′′(x).
(A125)

From the definition of the spaceW , we see that the second derivative uniquely determines the element

in W . Since h ∈ W , in order to show that
∫
S

h′′(y)Θ̃′′x,W (y)

ζ(y) dy = h(x), we only need to show∫
S

h′′(y)Θ̃′′x,W (y)

ζ(y) dy ∈ W , i.e. 〈
∫
S

h′′(y)Θ̃′′x,W (y)

ζ(y) dy, 1〉Θ̃ = 0 and 〈
∫
S

h′′(y)Θ̃′′x,W (y)

ζ(y) dy, x〉Θ̃ = 0.
Then

〈
∫
S

h′′(y)Θ̃′′x,W (y)

ζ(y)
dy, 1〉Θ̃ =〈

∫
S

h′′(y) ∂
2

∂y2 Θ̃(x, y)

ζ(y)
dy, 1〉Θ̃

=〈
∫
S

h′′(y) limh→0
Θ̃(x,y+h)−2Θ̃(x,y)+Θ̃(x,y−h)

h2

ζ(y)
dy, 1〉Θ̃

= lim
h→0
〈
∫
S

h′′(y) Θ̃(x,y+h)−2Θ̃(x,y)+Θ̃(x,y−h)
h2

ζ(y)
dy, 1〉Θ̃

= lim
h→0

∫
S

h′′(y)
〈Θ̃(x,y+h),1〉Θ̃−2〈Θ̃(x,y),1〉Θ̃+〈Θ̃(x,y−h),1〉Θ̃

h2

ζ(y)
dy

= lim
h→0

∫
S

h′′(y)y+h−2y+y−h
h2

ζ(y)
dy

=0.
(A126)

Similarly we can show that 〈
∫
S

h′′(y)Θ̃′′x,W (y)

ζ(y) dy, x〉Θ̃ = 0. This concludes the proof.

M Gradient descent trajectory and trajectory of smoothing splines

In the following we discuss the relation between the trajectory of functions obtained by gradient
descent training of a neural network and a trajectory of solutions to the variational problem with the
data fitting constraints replaced by a MSE for decreasing smoothness regularization strength. This
Lagrange version of the variational problem is solved by so-called smoothing splines. Smoothing
splines have been studied intensively in the literature and in particular they can be written explicitly.
We give the explicit form of the solution for the trajectory in the context of our discussion.

M.1 Regularized regression and early stopping

Bishop (1995) shows that for linear regression with quadratic loss, early stopping and L2 regulariza-
tion lead to similar solutions. Let us recall some details of his analysis, before proceeding with our
particular setting. He considers the loss function E(w) = ‖Xw − y‖22, where X = [x1, . . . ,xM ]T

is the matrix of training inputs, y = [y1, . . . , yM ]T is the vector of training outputs, and w is the
weight vector of the linear model. Next the loss function can be written in the form of a quadratic
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function:
E(W ) = ‖Xw − y‖22

= wTXTXw − 2yTXw + yTy

= wTXTXw − 2yTXw + yTy

=
1

2
(w −w∗)TH(w −w∗) + E0,

(A127)

where H = 2XTX , E0 is the minimum of the loss function, and w∗ is the minimizer. The
eigenvalues and eigenvectors of H are as follows:

Huj = λjuj . (A128)

Then expand w and w∗ in terms of the eigenvectors of H:

w =
∑
j

wjuj , w∗ =
∑
j

w∗juj . (A129)

For the L2 regularized regression problem, consider the regularized loss function Ẽ(w) = E(w) +
c‖w‖22. Denote the minimizer by w = w̃ and consider its expansion as w̃ =

∑
j w̃juj . Bishop

(1995) shows that

w̃j =
λj

λj + c
w∗j . (A130)

For early stopping, consider the gradient descent on E(w) with zero initial weight vector:

w(τ) = w(τ−1) − η∇E
= w(τ−1) − ηH(w(τ−1) −w∗),

w(0) = 0.

(A131)

Writing w(τ) =
∑
j w

(τ)
j uj , then

w
(τ)
j = (1− (1− ηλj)τ )w∗j . (A132)

Note that 1− (1− ηλj)τ → 1− e−ητλj as η → 0. Hence choosing a sufficiently small learning rate,
approximately we have

w
(τ)
j = (1− e−ητλj )w∗j . (A133)

From (A130) and (A133), Bishop (1995) observes that if c is much larger than λj , then the regularized
solution has coordinate w̃j close to 0, and similarly if 1/(ητ) is much larger than λj , then the early-
stopping solution has coordinate w(τ)

j close to the initial value 0. We note that analogous observations
apply when the regularization term has a reference point different from zero, c‖w −w‖22, and the
gradient descent iteration is initialized at a point different from zero, w(0) = w.

Now we want to take a closer look at the trajectories. Consider the following two functions:

h1(x) =
λj

λj + x
, h2(x) = 1− e−λj/x. (A134)

Actually we can verify that h1(0) = h2(0) = 1 and limx→∞
h1(x)
h2(x) = 1. It implies that these two

functions are close to each other on [0,∞). Figure A7 shows the plot of functions h1(x) and h2(x).

Now we choose the coefficient of regularization c = 1
ητ . Comparing (A130) and (A133), and using

the fact that h1(x) and h2(x) are close to each other on [0,∞), we show that early stopping and L2

regularization lead to similar solutions across different values of c = 1
ητ .

Back to our problem, we repeat the gradient descent procedures (10) here:

W̃
(2)
0 = W

(2)
, W̃

(2)
t+1 = W̃

(2)
t − η∇W (2)Llin(ω̃t). (A135)

It is actually minimizing the following loss function of W (2) −W :

E(W (2) −W ) =

M∑
j=1

(
n∑
i=1

(W
(2)
i −W (2)

i )[W
(1)
i xj + bi]+ − (yj − f(xj , θ0))

)2

. (A136)
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Figure A7: Plot of functions h1(x) and h2(x). The left panel plots the two function when λj = 1.
The right panel plots the two function when λj = 5.

Here we change the variable from W (2) to W (2) −W . Then W (2)
t −W = 0 when t = 0, so that

gradient descent start from the zero initial weight vector. Since the above model is linear with respect
to W (2) −W , we can apply the above argument about early stopping and L2 regularization. Suppose
that we use learning rate µn for the neural network of width n. We show that the solution W̃ (2)

t at
iteration t is close to the minimizer of the following regularized optimization problem:

min
W (2)

M∑
j=1

(
n∑
i=1

(W
(2)
i −W (2)

i )[W
(1)
i xj + bi]+ − (yj − f(xj , θ0))

)2

+ c‖W (2) −W‖22, (A137)

where c = 1
ηnt

. Using the same approach and notation as in Section 4, the optimization problem
(A137) is equivalent to

min
αn∈C(R2)

M∑
j=1

(∫
R2

αn(W (1), b)[W (1)xj + b]+ dµn(W (1), b)− yj
)2

+
1

nηnt

∫
R2

α2
n(W (1), b) dµn(W (1), b),

(A138)

where we use the ASI trick (see Appendix C.2). Here (A138) has an extra factor 1
n compared to

(A137). This is because we define αn(W
(1)
i , bi) = n(W

(2)
i −W (2)

i ). According to Theorem 2,
ηn ≤ 1

Kn
√
Mλmax(Θ̂n)

is sufficient in order to ensure convergence. Then we suppose that ηn = η̄/n,
where η̄ is a constant so that the requirement on the learning rate in Theorem 2 is satisfied. The limit
of the optimization problem (A138) as the width n tends to infinity is:

min
α∈C(R2)

M∑
j=1

(∫
R2

α(W (1), b)[W (1)xj + b]+ dµ(W (1), b)− yj
)2

+
1

η̄t

∫
R2

α2(W (1), b) dµ(W (1), b).

(A139)

Following the same reasoning of Section 4.2, we relax the optimization problem (A139) to the
following one:

min
α∈C(R2),u∈R,v∈R

M∑
j=1

(
uxj + v +

∫
R2

α(W (1), b)[W (1)xj + b]+ dµ(W (1), b)− yj
)2

+
1

η̄t

∫
R2

α2(W (1), b) dµ(W (1), b).

(A140)

Using the same technique and notation as in Theorem 6, we can prove that the solution of (A140)
actually solves the following optimization problem:

min
h∈C2(S)

M∑
j=1

[h(xj)− yj ]2 +
1

η̄t

∫
S

(h′′(x))2

ζ(x)
dx. (A141)

37



-6 -4 -2 0 2 4 6
-1

0

1

2

3

x

training data

smoothing splines

NN trained with GD

-6 -4 -2 0 2 4 6 8
-1.5

-1

-0.5

0

0.5

1

1.5

smoothing splines

NN trained with GD

Trajectories of functions 2D PCA of the trajectories

Figure A8: Trajectories of functions obtained by gradient descent training a neural network and by
smoothing splines of the training data with decreasing regularization strength (from dark to bright).
The left panel plots 20 functions along each trajectory. The right panel shows the same functions in a
two dimensional PCA representation. With asymmetric initialization of the network parameters and
adjusting the training data by ordinary linear regression, both trajectories start at the zero function.
The trajectories are not equivalent, but are close, and both converge to the same (spatially adaptive)
cubic spline interpolation of the training data (in the limit of infinite wide networks). Here we used a
large network with n = 2000 hidden units and Gaussian initializationW ∼ N(0, 1), B ∼ N(0, 1).
The results are similar for smaller networks and different initializations.

Then in order to study the trajectory of gradient descent, we can study the optimization problem
(A141) with varying t. Figure A8 illustrates smoothing spline and gradient descent trajectories. The
solution of (A141) is called spatially adaptive smoothing spline. Here the curvature penalty function
is 1

η̄t
1

ζ(x) , with time dependent smoothness regularization coefficient 1
η̄t . Next, we give out the

solution of (A141) in the following two cases: (1) uniform case (ζ is constant over domain S); (2)
spatially adaptive case (ζ is not constant over domain S).
Remark A18 (Spectral bias). We have thus that the gradient descent optimization trajectory can be
described approximately by a trajectory of smoothing splines which gradually relaxes the smoothness
regularization (relative to initialization) until perfectly fitting the training data. If the function at
initialization is at the zero function, e.g. by ASI, then the regularization is on the function itself.
Hence the result provides a theoretical explanation for the spectral bias phenomenon that has been
observed by Rahaman et al. (2019). The spectral bias is that lower frequencies are learned first.

M.2 Trajectory of smoothing splines with uniform curvature penalty

Suppose the reciprocal curvature penalty is constant ζ(x) ≡ z on the domain S. Let λ = 1
η̄tz . Then

(A141) becomes the following optimization problem:

min
h∈C2(S)

M∑
j=1

[h(xj)− yj ]2 + λ

∫
S

(h′′(x))2 dx. (A142)

German (2001) gives the explicit form of the minimizer ĥ of (A142), which is called a smoothing
spline. The minimizer ĥ is a natural cubic spline with knots at the sample points x1, . . . , xM . The
smoothing spline does not fit the training data exactly, but rather it balances fitting and smoothness.
The smoothing parameter λ ≥ 0 controls the trade off between fitting and roughness. The values of
the smoothing spline at the knots can be obtained as

(ĥ(x1), . . . , ĥ(xM ))> = (I + λA)−1Y. (A143)

The matrix A has entries Aij =
∫
S
h′′i (x)h′′j (x) dx, where hi are spline basis functions which satisfy

hi(xj) = 0 for j 6= i and hi(xj) = 1 for j = i. German (2001) gives out a rather explicit form of
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matrix A, which is an M ×M matrix given by A = ∆TW−1∆. Here ∆ is an (M − 2)×M matrix
of second differences with elements:

∆ii =
1

hi
, ∆i,i+1 = − 1

hi
− 1

hi+1
, ∆i,i+2 =

1

hi+1
.

And W is an (M − 2)× (M − 2) symmetric tri-diagonal matrix with elements:

Wi−1,i = Wi,i−1 =
hi
6
, Wi,i =

hi + hi+1

3
, here hi = xi+1 − xi.

As λ→ 0, the smoothing spline converges to the interpolating spline, and as λ→∞, it converges to
the linear least squares estimate.

M.3 Trajectory of spatially adaptive smoothing splines

Let the curvature penalty ρ(x) = 1
η̄t

1
ζ(x)

1
M . Then (A141) can be written as

min
h∈W2(S)

1

M

M∑
i=1

[h(xj)− yj ]2 +

∫
S

ρ(x)(h′′(x))2 dx, (A144)

where W2(S) = {f : f, f ′ absolutely continuous and f ′′ ∈ L2(S)}, with L2(S) the square inte-
grable functions over the domain S. Abramovich and Steinberg (1996); Pintore et al. (2006) give out
the solution of (A144) explicitly, which is called a spatially adaptive smoothing spline.

According to Pintore et al. (2006), the solution can be derived in terms of an appropriate RKHS
representation of W 0

2 with inner product 〈f, g〉ρ =
∫
f ′′(x)g′′(x)ρ(x) dx. Here W 2

0 (S) = W2(S)∩
B2(S), where W2(S) is defined above, and B2(S) = {f : f(0) = f ′(0) = 0}. Notice that when
defining B2(S) we need 0 ∈ S. Actually we can choose any point in S. Pintore et al. (2006) define
B2(S) in this way just for simplicity. Then the kernel of the space W 2

0 (S) is given by

Kρ(x1, x2) =

∫
S

ρ(u)−1[x1 − u]+[x2 − u]+du. (A145)

Then the minimizer ĥ of (A144) is given by

ĥ(x) =

M∑
j=1

cjKρ(xj , x) + a+ bx. (A146)

Now define the M ×M matrix

Σρ = {Kρ(xi, xj)}i,j=1,...,M , (A147)

and the M × 2 matrix

T =


1 x1

1 x2

...
...

1 xM

 . (A148)

Denote the vector of coefficients c = (c1, . . . , cM )T and the vector of output values y =
(y1, . . . , yM )T . Then the coefficients in (A146) satisfy the following conditions:

Σρ

[
(Σρ +MI)c + T

(
a
b

)]
= Σρy and T>

[
Σρc + T

(
a
b

)]
= T>y. (A149)

After solving for (A149), we get the values of c, a and b. Plug them into (A146), then we get the
exact form of the minimizer of (A144).

N Solution to the variational problems after training

N.1 Interpolating splines with uniform curvature penalty

Theorem 9 (b) and (c) show that for certain distributions of (W,B), ζ is constant. In this case
problem (21) is solved by the cubic spline interpolation of the data with natural boundary conditions
(Ahlberg et al., 1967).

39



Theorem A19 (Ahlberg et al. 1967). For training samples {(xi, yi)}Mi=1, suppose xj ∈ S, j =
1, . . . ,M . Then cubic spline interpolation of data {(xi, yi)}Mi=1 with natural boundary condition is
the solution of

min
h∈C2(S)

∫
S

(h′′(x))2dx

subject to h(xj) = yj , j = 1, . . . ,m.

(A150)

As already mentioned in Appendix M, cubic spline interpolation is a finite dimensional linear problem
and can be solved exactly. A cubic spline is a piecewise polynomial of order 3 with (M − 1) pieces.
The j-th piece has the form Sj(x) = aj+bjx+cjx

2+djx
3, j = 1, · · · ,M−1. These (M−1) pieces

satisfy equations Si(xi) = yi, Si(xi+1) = yi+1, i = 1, · · · ,M − 1 and S′i(xi+1) = S′i+1(xi+1),
S′′i (xi+1) = S′′i+1(xi+1), i = 1, · · · ,M − 2, and S′′1 (x1) = S′′M−1(xM ) = 0. Hence computing the
spline amounts to solving a linear system in 4(M − 1) indeterminates.

N.2 Spatially adaptive interpolating splines

In the case that ζ is not constant, we can still give out the form of the solution to the variational
problem (21) by using the result in Appendix M.3. We add a coefficient λ before the regularization
term in the optimization problem (A144) and choose ρ(x) = 1

ζ(x) . Then we get

min
h∈W2(S)

1

M

M∑
i=1

[h(xj)− yj ]2 + λ

∫
S

1

ζ(x)
(h′′(x))2 dx. (A151)

As λ→ 0, the minimizer of (A151) converges to the solution of the following optimization problem:

min
h∈W 2(S)

∫
S

(h′′(x))2

ζ(x)
dx s.t. h(xj) = yj , j = 1, . . . ,m, (A152)

which is exactly the variational problem (21). According to Appendix M, the solution of (A151) is
given by:

ĥ(λ)(x) =

M∑
j=1

c
(λ)
j Kλ

ζ
(xj , x) + a(λ) + b(λ)x. (A153)

And the vector c(λ) = (c
(λ)
1 , · · · , c(λ)

M )T , a(λ) and b(λ) satisfy the following conditions:

Σλ
ζ

[
(Σλ

ζ
+MI)c(λ) + T

(
a(λ)

b(λ)

)]
= Σλ

ζ
y and T>

[
Σλ
ζ
c(λ) + T

(
a(λ)

b(λ)

)]
= T>y,

(A154)
where Kλ

ζ
, Σλ

ζ
and T are defined in (A145), (A147) and (A148). Since

Kλ
ζ

(x1, x2) =

∫
S

(
λ

ζ

)−1

[x1 − u]+[x2 − u]+du

= λ−1

∫
S

(
1

ζ

)−1

[x1 − u]+[x2 − u]+du

= λ−1K 1
ζ
(x1, x2)

(A155)

Also Σλ
ζ

= λ−1Σ 1
ζ

. Then we let c̄(λ)
j = λ−1c

(λ)
j and c̄(λ) = λ−1c(λ). So we can rewrite (A153)

and (A154) as

ĥ(λ)(x) =

M∑
j=1

c̄
(λ)
j K 1

ζ
(xj , x) + a(λ) + b(λ)x, (A156)

where c̄(λ), a(λ) and b(λ) satisfy the following conditions:

Σ 1
ζ

[
(Σ 1

ζ
+ λMI)c̄(λ) + T

(
a(λ)

b(λ)

)]
= Σ 1

ζ
y and T>

[
Σ 1
ζ
c̄(λ) + T

(
a(λ)

b(λ)

)]
= T>y,

(A157)
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Now as λ→ 0, (A156) and (A157) become:

ĥ(0+)(x) =

M∑
j=1

c̄
(0+)
j K 1

ζ
(xj , x) + a(0+) + b(0

+)x, (A158)

where c̄(0+), a(0+) and b(0
+) satisfy the following conditions:

Σ 1
ζ

[
Σ 1
ζ
c̄(0+) + T

(
a(0+)

b(0
+)

)]
= Σ 1

ζ
y and T>

[
Σ 1
ζ
c̄(λ) + T

(
a(0+)

b(0
+)

)]
= T>y, (A159)

(A158) and (A159) give out the solution of (A151) as λ → 0, which is also the solution to the
variational problem (21).

O Possible generalizations

O.1 Multi-dimensional inputs

We have focused on 1D regression problems, but of course we are also interested in describing the
implicit bias of gradient descent for multi-dimensional regression problems. Some of our results
are independent of the input space dimension, and others can be generalized as we discuss in the
following.

Consider a shallow neural network with d inputs. Use the same notation as in Section 4, and let W(1)

be the d-dimensional vector sampled from a d-dimensional random vector W . Then optimization
problem (15) becomes:

min
αn∈C(Rd×R)

∫
Rd×R

α2
n(W(1), b) dµn(W(1), b)

subject to
∫
Rd×R

αn(W(1), b)[〈W(1),xj〉+ b]+ dµn(W(1), b) = yj , j = 1, . . . ,M,

(A160)
where W(1) becomes a d-dimensional vector. The limit of the problem (A160) as width n→∞ is

min
α∈C(Rd×R)

∫
Rd×R

α2(W(1), b) dµ(W(1), b)

subject to
∫
Rd×R

α(W(1), b)[〈W(1),xj〉+ b]+ dµ(W(1), b) = yj , j = 1, . . . ,M,

(A161)

Similar to Section 4, we can relax the optimization problem (A161) to

min
α∈C(Rd×R),

u∈Rd+1,v∈R

∫
Rd×R

α2(W(1), b) dµ(W(1), b)

subject to
∫
Rd×R

α(W(1), b)[〈W(1),xj〉+ b]+ dµ(W(1), b) + 〈u,xj〉+ v = yj , j = 1, . . . ,M

(A162)
Let g(x, α) =

∫
Rd×R α(W(1), b)[〈W(1),x〉 + b]+ dµ(W(1), b) + 〈u,xj〉 + v be the function

represented by the infinite-width network. Then the Laplacian ∆g(x, α) =
∑d
i=1 ∂

2
xig(x, α) is

given by

∆g(x, α) =

∫
Rd+1

α(W(1), b)‖W(1)‖22 δ(〈W(1),x〉+ b) dµ(W(1), b)

=

∫
R

(∫
Rd
α(W(1), b)‖W(1)‖22 δ(〈W(1),x〉+ b) dµW|B=b(W

(1))

)
dµB(b)

(A163)

where δ denotes the Dirac delta function; µB denote the distribution of B which has a density function
pB(b), and µW|B=b the conditional distribution of W given B = b. If we assume that W and B are
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independent, we can further simplify (A163):

∆g(x, α) =

∫
R

(∫
Rd
α(W(1), b)‖W(1)‖22 δ(〈W(1),x〉+ b) dµW(W(1))

)
dµB(b)

=

∫
Rd

(∫
R
α(W(1), b)‖W(1)‖22 δ(〈W(1),x〉+ b)pB(b)db

)
dµW(W(1))

=

∫
Rd
α(W(1),−〈W(1),x〉)‖W(1)‖22 pB(−〈W(1),x〉) dµW(W(1)),

(A164)

where µW denote the distribution of W . If we further assume that ‖W(1)‖2 = 1, which means we
sample from the sphere Sd−1 when doing initialization. Also assume that µW has a density function
pW(W(1)) on Sd−1. Then (A164) becomes

∆g(x, α) =

∫
Sd−1

α(W(1),−〈W(1),x〉) pB(−〈W(1),x〉)pW(W(1)) dW(1), (A165)

Let β(W(1), b) = α(W(1),−b) pB(−b) pW(W(1)), then

∆g(x, α) =

∫
Sd−1

β(W(1), 〈W(1),x〉) dW(1), (A166)

Actually the right-hand side of (A166) is precisely the dual Radon transform of β. According to
(Ongie et al., 2020, Lemma 3),

β = − 1

2(2π)d−1
R{(−∆)(d+1)/2g(·, α)}, (A167)

whereR is the Radon transform which is defined by

R{f}(ω, b) :=

∫
〈ω,x〉=b

f(x)ds(x), (ω, b) ∈ Sd−1 × R, (A168)

where ds(x) represents integration with respect to (d − 1)-dimensional surface measure on the
hyperplane 〈ω,x〉 = b. The power of the negative Laplacian (−∆)(d+1)/2 in (A167) is the operator
defined in Fourier domain by

̂(−∆)(d+1)/2f(ξ) = ‖ξ‖d+1f̂(ξ) (A169)

When d+ 1 is a even number, (−∆)(d+1)/2 is the same as applying the negative Laplacian (d+ 1)/2
times, while if d+ 1 is odd it is a pseudo-differential operator given by convolution with a singular
kernel.

Then according to (A167) and the definition of β, we have

α(W(1), b) = −R{(−∆)(d+1)/2g(·, α)}(W(1),−b)
2(2π)d−1pB(b) pW(W(1))

, (A170)

Then plug (A170) into the objective of (A162),∫
Rd×R

α2(W(1), b) dµ(W(1), b)

=

∫
Rd×R

(
R{(−∆)(d+1)/2g(·, α)}(W(1),−b)

2(2π)d−1pB(b) pW(W(1))

)2

dµ(W(1), b)

=

∫
Sd−1×R

(
R{(−∆)(d+1)/2g(·, α)}(W(1),−b)

2(2π)d−1pB(b) pW(W(1))

)2

pB(b) pW(W(1)) dW(1)db

=

∫
Sd−1×R

(
R{(−∆)(d+1)/2g(·, α)}(W(1),−b)

)2
4(2π)2(d−1)pB(b) pW(W(1))

dW(1)db

(A171)

Then similar to Theorem 6, we show that under the assumptions that: (1) W and B are independent;
(2) distribution of B which has a density function pB(b); (3) P(‖W‖2 = 1) = 1; (4) µW has a
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density function pW(W(1)) on Sd−1, the solution of (A162) in function space actually solves the
following optimization problem:

min
g∈C(Rd)

∫
Sd−1×R

(
R{(−∆)(d+1)/2g}(W(1),−b)

)2
4(2π)2(d−1)pB(b) pW(W(1))

dW(1)db

subject to g(xj) = yj , j = 1, . . . ,M,

(A172)

The optimization problem (A172) characterizes the implicit bias of the gradient descent in function
space for multi-dimensional setting. The details of Radon transform and how to make it well-defined
are shown in the work of Ongie et al. (2020). We omit the details here.

Zhang et al. (2019) obtained a characterization in terms of the minimization of a kernel norm in
function space. This result is also valid for multidimensional inputs. In Appendix L we proved the
equivalence between kernel norm minimization and our results in the one-dimensional setting. In
the multi-dimensional setting, it will be interesting to show that the kernel norm is equivalent to the
objective in (A172) under some conditions.

Lastly, in the multi-dimensional setting the breakpoint density in one-dimensional setting is replaced
by a density of the locus of non-linearity of the represented functions, which has been studied by
Hanin and Rolnick (2019).

O.2 Other activation functions

We have focused on networks with ReLUs. The ReLU is special in that the second derivative of
ReLU is a delta function. For other activation functions the variational problem on function space
will look different.

The paper by Parhi and Nowak (2019) considers different types of activation functions σ. These are
then related to different types of linear operators L in the definition of the smoothness regularizer.
Here L and σ satisfy Lσ = δ, i.e. σ is a Green’s function of L. Suppose σ is homogeneous. Then
Parhi and Nowak (2019) show that minimizing the weight “norm”3 of two-layer neural networks
with activation function σ is actually minimizing 1-norm of Lf where f is the output function of the
neural network.

The approach in Parhi and Nowak (2019) can be combined with our analysis. So if for example we
replace the ReLU by another homogeneous activation, we can replace the operator accordingly and
get an analogous result. Use the same notation as in Section 4, and let σ be the activation function,
where we assume that σ is a Green’s function of a linear operator L. Then optimization problem (15)
becomes:

min
αn∈C(R2)

∫
R2

α2
n(W (1), b) dµn(W (1), b)

subject to
∫
R2

αn(W (1), b)σ(W (1)xj + b) dµn(W (1), b) = yj , j = 1, . . . ,M.

(A173)

The limit of the problem (A173) as width n→∞ is

min
α∈C(R2)

∫
R2

α2(W (1), b) dµ(W (1), b)

subject to
∫
R2

α(W (1), b)σ(W (1)xj + b) dµ(W (1), b) = yj , j = 1, . . . ,M.

(A174)

As in Section 4.2, we can change the variables and relax the optimization problem (A174) to

min
γ∈C(R2),
p∈C(R)

∫
R2

γ2(W (1), c) dν(W (1), c)

subject to p(xj) +

∫
R2

γ(W (1), c)σ
(
W (1)(xj − c)

)
dν(W (1), c) = yj , j = 1, . . . ,M

L p ≡ 0.
(A175)

3Here the form of "norm" depends on the degree of homogeneity of the activation σ. We use quotation marks
here because the weight "norm" is a generalized notion of norm. It may not satisfy the property of norm.
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If the activation function σ is ReLU, p is a linear function. Then (A175) becomes the optimization
problem (18). Define the output function g of the neural network by

g(x, (γ, p)) = p(x) +

∫
R2

γ(W (1), c)[W (1)(x− c)]+ dν(W (1), c).

Assume that the activation function σ is homogeneous of degree k, i.e. σ(ax) = akσ(x) for all a > 0.
Similar to (A82), we have

(Lg)(x, (γ, p)) = L

(∫
R2

γ(W (1), c)
∣∣∣W (1)

∣∣∣k σ (sign(W (1)) · (x− c)
)

dν(W (1), c)

)
=

∫
R2

γ(W (1), c)
∣∣∣W (1)

∣∣∣k δ(x− c) dν(W (1), c)

=

∫
supp(νC)

(∫
R
γ(W (1), c)

∣∣∣W (1)
∣∣∣k dνW|C=c(W

(1))

)
δ(x− c) dνC(c)

=

∫
supp(νC)

(∫
R
γ(W (1), c)

∣∣∣W (1)
∣∣∣k dνW|C=c(W

(1))

)
δ(x− c)pC(c)dc

= pC(x)

∫
R
γ(W (1), x)

∣∣∣W (1)
∣∣∣k dνW|C=x(W (1)).

(A176)

Then similar to Theorem 6, we show that the solution of (A175) in function space actually solves the
following optimization problem:

min
h∈C2(S)

∫
S

((Lh)(x))
2

ζ(x)
dx s.t. h(xj) = yj , j = 1, . . . ,m, (A177)

where ζ(x) = pC(x)E(W2k|C = x) and S = supp(ζ) ∩ [mini xi,maxi xi].

O.3 Deep networks and other architectures

For deep networks of L layers, if we only train the output layer, then we actually train a linear
model. We can construct a two-layer neural network with activation σ which is a (L − 1)-layer
neural network. Then training this two-layer network is equivalent to training only the output layer of
the deep network. So we can use the arguments in Section O.2 about the other activation functions.
However, it remains unclear how we can find out the operator L corresponding to this activation σ.

In the case of shallow networks, we show that training only the output layer is similar to training
all parameters. Our analysis of shallow networks is based on this. However, in the case of a deep
network, training only the output layer is no longer similar to training all parameters. If we train all
model parameters, the results from Lee et al. (2019) show that the model still is approximated by a
linearized model. The result on kernel norm minimization (Zhang et al., 2019) holds in this case. It
will be interesting to study the explicit form of the kernel norm, and extensions of our analysis to the
case of training all parameters of deep networks.

O.4 Other loss functions

We have focused on the implicit bias of gradient descent for regression. For this type of problems, one
often considers a loss function (per example) which has a single finite minimum. Roughly speaking,
our description of the bias is in terms of smoothness properties of the solution functions. There are
various works on the implicit bias of gradient descent for classification problems, e.g. Soudry et al.
(2018). The implicit bias is often formulated in terms of maximum margins.

In our analysis, some theorems require that the loss function is mean square error (MSE). In Theorem
3, the gradient flow is a linear differential equation if we use MSE. If we use a different loss, this will
be more complicated. However, we think that the result will generalize. We are also using the result
from Lee et al. (2018), which is based on MSE. According to them it is not clear whether their result
will still apply for other loss functions. Theorem 5 and Theorem 6 are about a variational problem
that is derived from Theorem 2, in relation to the minimization of ‖θ − θ2‖2. Theorem 2 remains
valid for other loss functions beside MSE. To sum up, if we can generalize the Theorem 3 and the
result of Lee et al. (2018) to other loss functions, we can generalize our main result in Theorem 1 to
other loss functions.
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O.5 Other optimization procedures

It would be interesting to extend the analysis to modifications of the basic gradient descent optimiza-
tion procedure. The implicit bias of different optimization methods has been studied by Gunasekar
et al. (2018a) covering some instances of mirror descent, natural gradient descent, Adam, and steepest
descent with respect to different potentials and norms. In particular, they show that the implicit
bias of coordinate descent corresponds to the minimization of the 1-norm of the weights. It will be
interesting to work out the explicit form of these descriptions in function space.

The implicit bias of SGD has been studied in a series of articles, taking a different perspective to the
implicit bias of gradient descent. This has been linked to the shape of the optimization landscape,
with smaller mini-batch or larger step size leading to a bias towards wider minima of the objective
function (Keskar et al., 2017; Wu et al., 2017; Dinh et al., 2017). Further, this is related to stability and
robustness. Here again, it will be interesting to take an NTK perspective to analyze SGD (Allen-Zhu
et al., 2019) and explore kernel norm minimization and explicit forms of the regularization in function
space under SGD.
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