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Abstract
The success of deep neural networks is in part
due to the use of normalization layers. Normaliza-
tion layers like Batch Normalization, Layer Nor-
malization and Weight Normalization are ubiqui-
tous in practice, as they improve generalization
performance and speed up training significantly.
Nonetheless, the vast majority of current deep
learning theory and non-convex optimization liter-
ature focuses on the un-normalized setting, where
the functions under consideration do not exhibit
the properties of commonly normalized neural net-
works. In this paper, we bridge this gap by giving
the first global convergence result for two-layer
neural networks with ReLU activations trained
with a normalization layer, namely Weight Nor-
malization. Our analysis shows how the introduc-
tion of normalization layers changes the optimiza-
tion landscape and can enable faster convergence
as compared with un-normalized neural networks.

1. Introduction
Dynamic normalization in the training of neural networks
amounts to the application of an intermediate normaliza-
tion procedure between layers of the network. Such meth-
ods have become ubiquitous in the training of neural nets
since in practice they significantly improve the convergence
speed and stability. This type of approach was popular-
ized with the introduction of Batch Normalization (BN)
(Ioffe and Szegedy, 2015) which implements a dynamic
re-parametrization normalizing the first two moments of
the outputs at each layer over mini-batches. A plethora
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of additional normalization methods followed BN, notably
including Layer Normalization (LN) (Ba et al., 2016) and
Weight Normalization (WN) (Salimans and Kingma, 2016).
Despite the impressive empirical results and massive popu-
larity of dynamic normalization methods, explaining their
utility and proving that they converge when training with
non-smooth, non-convex loss functions has remained an
unsolved problem. In this paper we provide sufficient con-
ditions on the data, initialization, and over-parametrization
for dynamically normalized ReLU networks to converge
to a global minimum of the loss function. For the theory
we present we focus on WN, which is a widely used nor-
malization layer in training of neural networks. WN was
proposed as a method that emulates BN. It normalizes the
input weight vector of each unit and separates the scale into
an independent parameter. The WN re-parametrization is
very similar to BN (see Section 2) and benefits from similar
stability and convergence properties. Moreover, WN has the
advantage of not requiring a batch setting, therefore consid-
erably reducing the computational overhead that is imposed
by BN (Gitman and Ginsburg, 2017).

When introducing normalization methods, the function
parametrization defined by the network becomes scale in-
variant in the sense that re-scaling of the weights does not
change the represented function. This re-scaling invari-
ance changes the geometry of the optimization landscape
drastically. To better understand this we analyze weight
normalization in a given layer.

We consider the class of 2-layer ReLU neural networks
which represent functions f : Rd → R parameterized by
(W, c) ∈ Rm×d × Rm as

f(x; W, c) =
1√
m

m∑
k=1

ckσ(w>k x). (1.1)

Here we use the ReLU activation function σ(s) =
max{s, 0} (Nair and Hinton, 2010), m denotes the width of
the hidden layer, and the output is normalized accordingly
by a factor

√
m. We investigate gradient descent training

with WN for (1.1), which re-parametrizes the functions in



terms of (V,g, c) ∈ Rm×d × Rm × Rm as

f(x; V,g, c) =
1√
m

m∑
k=1

ckσ

(
gk ·

v>k x

‖vk‖2

)
. (1.2)

This gives a similar parametrization to (Du et al., 2018) that
study convergence of gradient optimization of convolutional
filters on Gaussian data. We consider a regression task, the
L2 loss, a random parameter initialization, and focus on the
over-parametrized regime, meaning that m > n, where n is
the number of training samples. Further, we make little to
no assumptions about the data.

The neural network function class (1.1) has been studied in
many papers including (Arora et al., 2019a; Du et al., 2019b;
Wu et al., 2019; Zhang et al., 2019) along with other similar
over-parameterized architectures (Allen-Zhu et al., 2019a;
Du et al., 2018; Li and Liang, 2018). An exuberant series
of recent works prove that feed-forward ReLU networks
converge to zero training error when trained with gradient
descent from random initialization. Nonetheless, to the
best of our knowledge, there are no proofs that ReLU net-
works trained with normalization on general data converge
to a global minimum. This is in part because normaliza-
tion methods completely change the optimization landscape
during training. Here we show that neural networks of
the form given above converge at linear rate when trained
with gradient descent and WN. The analysis is based on
the over-parametrization of the networks, which allows for
guaranteed descent while the gradient is non-zero.

For regression training, a group of papers studied the tra-
jectory of the networks’ predictions and showed that they
evolve via a “neural tangent kernel” (NTK) as introduced by
Jacot et al. (2018). The latter paper studies neural network
convergence in the continuous limit of infinite width over-
parametrization, while the works of (Arora et al., 2019a; Du
et al., 2019b; Oymak and Soltanolkotabi, 2019; Wu et al.,
2019; Zhang et al., 2019) analyze the finite width setting.
For finite-width over-parameterized networks, the training
evolution also exhibits a kernel that takes the form of a Gram
matrix. In these works, the convergence rate is dictated by
the least eigenvalue of the kernel. We build on this fact, and
also on the general ideas of the proof of (Du et al., 2019b)
and the refined work of (Arora et al., 2019a).

In this work we analyze neural network optimization with
weight normalization layers. We rigorously derive the dy-
namics of weight normalization training and its convergence
from the perspective of the neural tangent kernel. Com-
pared with un-normalized training, we prove that normal-
ized networks follow a modified kernel evolution that fea-
tures a “length-direction” decomposition of the NTK. This
leads to two convergence regimes in WN training and ex-
plains the utility of WN from the perspective of the NTK.
In the settings considered, WN significantly reduces the

amount of over-parametrization needed for provable conver-
gence, as compared with un-normalized settings. Further,
we present a more careful analysis that leads to improved
over-parametrization bounds as compared with (Du et al.,
2019b).

The main contributions of this work are:

• We prove the first general convergence result for 2-layer
ReLU networks trained with a normalization layer and
gradient descent. Our formulation does not assume the
existence of a teacher network and has only very mild
assumptions on the training data.

• We hypothesize the utility of normalization methods via
a decomposition of the neural tangent kernel. In the
analysis we highlight two distinct convergence regimes
and show how Weight Normalization can be related to
natural gradients and enable faster convergence.

• We show that finite-step gradient descent converges for
all weight magnitudes at initialization. Further, we sig-
nificantly reduce the amount of over-parametrization re-
quired for provable convergence as compared with un-
normalized training.

The paper is organized as follows. In Section 2 we provide
background on WN and derive key evolution dynamics of
training in Section 3. We present and discuss our main
results, alongside with the idea of the proof, in Section 4.
We discuss related work in Section 5, and offer a discussion
of our results and analysis in Section 6. Proofs are presented
in the Appendix.

2. Weight Normalization
Here we give an overview of the WN procedure and review
some known properties of normalization methods.

Notation We use lowercase, lowercase boldface, and up-
percase boldface letters to denote scalars, vectors and ma-
trices respectively. We denote the Rademacher distribu-
tion as U{1,−1} and write N(µ,Σ) for a Gaussian with
mean µ and covariance Σ. Training points are denoted
by x1, . . . ,xn ∈ Rd and parameters of the first layer by
vk ∈ Rd, k = 1, . . . ,m. We use σ(x) := max{x, 0}, and
write ‖ · ‖2, ‖ · ‖F for the spectral and Frobenius norms for
matrices. λmin(A) is used to denote the minimum eigen-
value of a matrix A and 〈·, ·〉 denotes the Euclidean inner
product. For a vector v denote the `2 vector norm as ‖v‖2
and for a positive definite matrix S define the induced vec-
tor norm ‖v‖S :=

√
v>Sv. The projections of x onto u

and u⊥ are defined as xu := uu>x
‖u‖22

, xu⊥ :=
(
I − uu>

‖u‖22

)
x.

Denote the indicator function of event A as 1A and for a
2



weight vector at time t, vk(t), and data point xi we denote
1ik(t) := 1{vk(t)>xi≥ 0}.

WN procedure For a single neuron σ(w>x), WN re-
parametrizes the weight w ∈ Rd in terms of v ∈ Rd, g ∈ R
as

w(v, g) = g · v

‖v‖2
, σ

(
g · v>x

‖v‖2

)
. (2.1)

This decouples the magnitude and direction of each weight
vector (referred as the “length-direction” decomposition).
In comparison, for BN each output w>x is normalized
according to the average statistics in a batch. We can draw
the following analogy between WN and BN if the inputs xi
are centered (Ex = 0) and the covariance matrix is known
(Exx> = S). In this case, batch training with BN amounts
to

σ

(
γ · w>x√

Ex

(
w>xx>w

)
)

= σ

(
γ · w>x√

w>Sw

)
(2.2)

= σ

(
γ · w>x

‖w‖S

)
.

From this prospective, WN is a special case of (2.2) with
S = I (Kohler et al., 2019; Salimans and Kingma, 2016).

Properties of WN We start by giving an overview of
known properties of WN that will be used to derive the
gradient flow dynamics of WN training.

For re-parametrization (2.1) of a network function f that is
initially parameterized with a weight w, the gradient∇wf
relates to the gradients∇vf,

∂f
∂g by the identities

∇vf =
g

‖v‖2
(∇wf)v⊥ ,

∂f

∂g
= (∇wf)v.

This implies that∇vf ·v = 0 for each input x and parameter
v. For gradient flow, this orthogonality results in ‖v(0)‖2 =
‖v(t)‖2 for all t. For gradient descent (with step size η)
the discretization in conjunction with orthogonality leads
to increasing parameter magnitudes during training (Arora
et al., 2019b; Hoffer et al., 2018; Salimans and Kingma,
2016), as illustrated in Figure 1,

‖v(s+ 1)‖22 = ‖v(s)‖22 + η2‖∇vf‖22 ≥ ‖v(s)‖22. (2.3)

vk(0)

dvk

dt (0)

vk(t)

αα

vk(0)

−∇vk
L

vk(s)

Figure 1. WN updates for gradient flow and gradient descent.
For gradient flow, the norm of the weights are preserved, i.e.,
‖vk(0)‖2 = ‖vk(t)‖2 for all t > 0. For gradient descent, the
norm of the weights ‖vk(s)‖2 is increasing with s.

Problem Setup We analyze (1.1) with WN training (1.2),
so that

f(x; V, c,g) =
1√
m

m∑
k=1

ckσ

(
gk ·

v>k x

‖vk‖2

)
.

We take an initialization in the spirit of (Salimans and
Kingma, 2016):

vk(0) ∼ N(0, α2I), ck ∼ U{−1, 1},
and gk(0) = ‖vk(0)‖2/α.

(2.4)

Where α2 is the variance of vk at initialization. The
initialization of gk(0) is therefore taken to be indepen-
dent of α. We remark that the initialization (2.4) gives
the same initial output distribution as in methods that
study the un-normalized network class (1.1). The param-
eters of the network are optimized using the training data
{(x1, y1), . . . , (xn, yn)} with respect to the square loss

L(f) =
1

2

n∑
i=1

(f(xi)− yi)2 =
1

2
‖f − y‖22, (2.5)

where f = (f1, . . . , fn)> = (f(x1), . . . , f(xn))> and y =
(y1, . . . , yn)>.

3. Evolution Dynamics
We present the gradient flow dynamics of training (2.5) to
illuminate the modified dynamics of WN as compared with
vanilla gradient descent. In Appendix C we tackle gradient
descent training with WN where the predictions’ evolution
vector dfdt is replaced by the finite difference f(s+ 1)− f(s).
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For gradient flow, each parameter is updated in the negative
direction of the partial derivative of the loss with respect to
that parameter. The optimization dynamics give

dvk
dt

= − ∂L

∂vk
,

dgk
dt

= − ∂L
∂gk

. (3.1)

We consider the case where we fix the top layer parameters
ck during training. In the over-parameterized settings we
consider, the dynamics of ck and gk turn out to be equiva-
lent.
To quantify convergence, we monitor the time derivative of
the i-th prediction, which is computed via the chain rule as

∂fi
∂t

=

m∑
k=1

∂fi
∂vk

dvk
dt

+
∂fi
∂gk

dgk
dt

.

Substituting (3.1) into the i-th prediction evolution and
grouping terms yields

∂fi
∂t

= −
m∑
k=1

∂fi
∂vk

∂L

∂vk︸ ︷︷ ︸
T i
v

−
m∑
k=1

∂fi
∂gk

∂L

∂gk︸ ︷︷ ︸
T i
g

. (3.2)

The gradients of fi and L with respect to vk are written
explicitly as

∂fi
∂vk

(t) =
1√
m

ck · gk(t)

‖vk(t)‖2
· xvk(t)

⊥

i 1ik(t),

∂L

∂vk
(t) =

1√
m

n∑
i=1

(fi(t)− yi)
ck · gk(t)

‖vk(t)‖2
x

vk(t)
⊥

i 1ik(t).

Defining the v-orthogonal Gram matrix V(t) as

Vij(t) =

1

m

m∑
k=1

(
αck · gk(t)

‖vk(t)‖2

)2〈
x

vk(t)
⊥

i , x
vk(t)

⊥

j

〉
1ik(t)1jk(t),

(3.3)

we can compute T iv as

T iv(t) =

n∑
j=1

Vij(t)

α2
(fj(t)− yj).

Note that V(t) is the induced neural tangent kernel (Jacot
et al., 2018) for the parameters v of WN training. While
it resembles the Gram matrix H(t) studied in (Arora et al.,
2019a), here we obtain a matrix that is not piece-wise con-
stant in v since the data points are projected onto the orthog-
onal component of v. We compute T ig in (3.2) analogously.
The associated derivatives with respect to gk are

∂fi
∂gk

(t) =
1√
m

ck
‖vk(t)‖2

σ(vk(t)>xi),

∂L

∂gk
(t) =

1√
m

n∑
j=1

(fj(t)− yj)
ck

‖vk(t)‖2
σ(vk(t)>xj),

and we obtain

T ig(t) =
m∑
k=1

1

m

n∑
j=1

c2k(fj(t)− yj)
‖vk(t)‖22

σ(vk(t)>xj)σ(vk(t)>xi).

Given that c2k = 1, define G(t) as

Gij(t) =
1

m

m∑
k=1

σ(vk(t)>xi)σ(vk(t)>xj)

‖vk(t)‖22
(3.4)

hence we can write

T ig(t) =

n∑
j=1

Gij(t)(fj(t)− yj).

Combining Tv and Tg, the full evolution dynamics are given
by

df

dt
= −

(
V(t)

α2
+ G(t)

)
(f(t)− y). (3.5)

Denote Λ(t) := V(t)
α2 +G(t) and write df

dt = −Λ(t)(f(t)−
y). We note that V(0),G(0), defined in (3.3), (3.4), are
independent of α:

Observation 1 (α independence). For initialization (2.4)
and α > 0 the Gram matrices V(0),G(0) are independent
of α.

This fact is proved in Appendix A. When training the neural
network in (1.1) without WN (see Arora et al., 2019a; Du
et al., 2019b; Zhang et al., 2019), the corresponding neural
tangent kernel H(t) is defined by ∂fi

∂t =
∑m
k=1

∂fi
∂wk

dwk

dt =

−
∑m
k=1

∂fi
∂wk

∂L
∂wk

= −
∑n
j=1 Hij(t)(fj − yj) and takes

the form

Hij(t) =
1

m

m∑
k=1

x>i xj1ik(t)1jk(t). (3.6)

The analysis presented above shows that vanilla and WN
gradient descent are related as follows.

Proposition 1. Define V(0), G(0), and H(0) as in (3.3),
(3.4), and (3.6) respectively. then for all α > 0,

V(0) + G(0) = H(0).

Thus, for α = 1,

∂f

∂t
= −Λ(0)(f(0)− y) = −H(0)(f(0)− y).

That is, WN decomposes the NTK in each layer into a length
and a direction component. We refer to this as the “length-
direction decoupling” of the NTK, in analogy to (2.1). From
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the proposition, normalized and un-normalized training ker-
nels initially coincide if α = 1. We hypothesize that the
utility of normalization methods can be attributed to the
modified NTK Λ(t) that occurs when the WN coefficient,
α, deviates from 1. For α� 1 the kernel Λ(t) is dominated
by G(t), and for α � 1 the kernel Λ(t) is dominated by
V(t). We elaborate on the details of this in the next section.
In our analysis we will study the two regimes α > 1 and
α < 1 in turn.

4. Main Convergence Theory
In this section we discuss our convergence theory and main
results. From the continuous flow (3.5), we observe that
the convergence behavior is described by V(t) and G(t).
The matrices V(t) and G(t) are positive semi-definite since
they can be shown to be covariance matrices. This implies
that the least eigenvalue of the evolution matrix Λ(t) =
1
α2 V(t) + G(t) is bounded below by the least eigenvalue
of each kernel matrix,

λmin(Λ(t)) ≥ max{λmin(V(t))/α2, λmin(G(t))}.

For finite-step gradient descent, a discrete analog of evolu-
tion (3.5) holds. However, the discrete case requires addi-
tional care in ensuring dominance of the driving gradient
terms. For gradient flow, it is relatively easy to see linear
convergence is attained by relating the rate of change of the
loss to the magnitude of the loss. Suppose that for all t ≥ 0,

λmin

(
Λ(t)

)
≥ ω/2, with ω > 0. (4.1)

Then the change in the regression loss is written as

d

dt
‖f(t)− y‖22 = 2(f(t)− y)>

df(t)

dt

= −2(f(t)− y)>Λ(t)(f(t)− y)

(4.1)
≤ −ω‖f(t)− y‖22.

Integrating this time derivative and using the initial condi-
tions yields

‖f(t)− y‖22 ≤ exp(−ωt)‖f(0)− y‖22,

which gives linear convergence. The focus of our proof is
therefore showing that (4.1) holds throughout training.

By Observation 1 we have that V and G are independent of
the WN coefficient α (α only appears in the 1/α2 scaling of
Λ). This suggests that the kernel Λ(t) = 1

α2 V(t) + G(t)
can be split into two regimes: When α < 1 the kernel is
dominated by the first term 1

α2 V, and when α > 1 the
kernel is dominated by the second term G. We divide our
convergence result based on these two regimes.

In each regime, (4.1) holds if the corresponding dominant
kernel, V(t) or G(t), maintains a positive least eigenvalue.

Having a least eigenvalue that is bounded from 0 gives a
convex-like property that allows us to prove convergence.
To ensure that condition (4.1) is satisfied, for each regime we
show that the corresponding dominant kernel is “anchored”
(remains close) to an auxiliary Gram matrix which we define
in the following for V and G.

Define the auxiliary v-orthogonal and v-aligned Gram ma-
trices V∞,G∞ as

V∞ij := Ev∼N(0,α2I) 〈xv⊥

i ,xv⊥

j 〉1ik(0)1jk(0), (4.2)

G∞ij := Ev∼N(0,α2I) 〈xv
i ,x

v
j 〉1ik(0)1jk(0). (4.3)

For now, assume that V∞ and G∞ are positive definite with
a least eigenvalue bounded below by ω (we give a proof
sketch below). In the convergence proof we will utilize over-
parametrization to ensure that V(t),G(t) concentrate to
their auxiliary versions so that they are also positive definite
with a least eigenvalue that is greater than ω/2. The precise
formulations are presented in Lemmas B.4 and B.5 that are
relegated to Appendix B.

To prove our convergence results we make the assumption
that the xis have bounded norm and are not parallel.

Assumption 1 (Normalized non-parallel data). The data
points (x1, y1), . . . , (xn, yn) satisfy ‖xi‖2 ≤ 1 and for
each index pair i 6= j, xi 6= β · xj for all β ∈ R \ {0}.

In order to simplify the presentation of our results, we as-
sume that the input dimension d is not too small, whereby
d ≥ 50 suffices. This is not essential for the proof. Specific
details are provided in Appendix A.

Assumption 2. For data xi ∈ Rd assume that d ≥ 50.

Both assumptions can be easily satisfied by pre-processing,
e.g., normalizing and shifting the data, and adding zero
coordinates if needed.

Given Assumption 1, V∞,G∞ are shown to be positive
definite.

Lemma 4.1. Fix training data {(x1, y1), . . . , (xn, yn)} sat-
isfying Assumption 1. Then the v-orthogonal and v-aligned
Gram matrices V∞ and G∞, defined as in (4.2) and (4.3),
are strictly positive definite. We denote the least eigenvalues
λmin(V∞) =: λ0, λmin(G∞) =: µ0.

Proof sketch Here we sketch the proof of Lemma 4.1.
The main idea, is the same as (Du et al., 2019b), is to regard
the auxiliary matrices V∞,G∞ as the covariance matrices
of linearly independent operators. For each data point xi,
define φi(v) := xv⊥

i 1{x>i v≥0}. The Gram matrix V∞ is
the covariance matrix of {φi}i=1:n taken over Rd with the
measure N(0, α2I). Hence showing that V∞ is strictly
positive definite is equivalent to showing that {φi}i=1,...n

are linearly independent. Unlike (Du et al., 2019b), the
5



functionals under consideration are not piecewise constant
so a different construction is used to prove independence.
Analogously, a new set of operators, θi(v) := σ(xv

i ), is
constructed for G∞. Interestingly, each φi corresponds to
dθi
dv . The full proof is presented in Appendix D. As already
observed from evolution (3.5), different magnitudes of α
can lead to two distinct regimes that are discussed below.
We present the main results for each regime.

V-dominated convergence

For α < 1 convergence is dominated by V(t) and
λmin(Λ(t)) ≥ 1

α2λmin(V(t)). We present the convergence
theorem for the V-dominated regime here.

Theorem 4.1 (V-dominated convergence). Suppose a neu-
ral network of the form (1.2) is initialized as in (2.4)
with α ≤ 1 and that Assumptions 1,2 hold. In addition,
suppose the neural network is trained via the regression
loss (2.5) with targets y satisfying ‖y‖∞ = O(1). If
m = Ω

(
n4 log(n/δ)/λ40

)
, then with probability 1− δ,

1. For iterations s = 0, 1, . . ., the evolution matrix Λ(s)
satisfies λmin(Λ(s)) ≥ λ0

2α2 .

2. WN training with gradient descent of step-size η =

O
(

α2

‖V∞‖2

)
converges linearly as

‖f(s)− y‖22 ≤
(

1− ηλ0
2α2

)s
‖f(0)− y‖22.

The proof of Theorem 4.1 is presented in Appendix C. We
will provide a sketch below. We make the following obser-
vations about our V-dominated convergence result.

The required over-parametrization m is independent of α.
Further, the dependence of m on the failure probability
is log(1/δ). This improves previous results that require
polynomial dependence of order δ3. Additionally, we reduce
the dependence on the sample size from n6 (as appears in
(Arora et al., 2019a)) to n4 log(n).

In Theorem 4.1, smaller α leads to faster convergence, since
the convergence is dictated by λ0/α2. Nonetheless, smaller
α is also at the cost of smaller allowed step-sizes, since
η = O(α2/‖V∞‖2). The trade-off between step-size and
convergence speed is typical. For example, this is implied
in Chizat et al. (Chizat et al., 2019), where nonetheless
the authors point out that for gradient flow training, the
increased convergence rate is not balanced by a limitation
on the step-size. The works (Arora et al., 2019b; Hoffer
et al., 2018; Wu et al., 2018) define an effective step-size
(adaptive step-size) η′ = η/α2 to avoid the dependence of
η on α.

G-dominated convergence

For α > 1 our convergence result for the class (1.2) is based
on monitoring the least eigenvalue of G(t). Unlike V-
dominated convergence, α does not affect the convergence
speed in this regime.

Theorem 4.2 (G-dominated convergence). Suppose a net-
work of the form (1.2) is initialized as in (2.4) with α ≥
1 and that Assumptions 1, 2 hold. In addition, sup-
pose the neural network is trained via the regression loss
(2.5) with targets y satisfying ‖y‖∞ = O(1). If m =
Ω
(

max
{
n4 log(n/δ)/α4µ4

0, n
2 log(n/δ)/µ2

0

})
, then with

probability 1− δ,

1. For iterations s = 0, 1, . . ., the evolution matrix Λ(s)
satisfies λmin(Λ(s)) ≥ µ0

2 .

2. WN training with gradient descent of step-size η =

O
(

1
‖Λ(t)‖

)
converges linearly as

‖f(s)− y‖22 ≤
(

1− ηµ0

2

)s
‖f(0)− y‖22.

We make the following observations about our G-dominated
convergence result, and provide a proof sketch further be-
low.

Theorem 4.2 holds for α ≥ 1 so long as m =
Ω
(

max
{
n4 log(n/δ)/µ4

0α
4, n2 log(n/δ)/µ2

0

})
. Taking

α =
√
n/µ0 gives an optimal required over-parametrization

of order m = Ω
(
n2 log(n/δ)/µ2

0

)
. This significantly

improves on previous results (Du et al., 2019b) for un-
normalized training that have dependencies of order 4 in
the least eigenvalue, cubic dependence in 1/δ, and n6 de-
pendence in the number of samples n. In contrast to V-
dominated convergence, here the rate of convergence µ0

is independent of α but the over-parametrization m is α-
dependent. We elaborate on this curious behavior in the
next sections.

Proof sketch of main results The proof of Theorems 4.1
and 4.2 is inspired by a series of works including (Arora
et al., 2019a; Du et al., 2019a;b; Wu et al., 2019; Zhang et al.,
2019). The proof has the following steps: (I) We show that
at initialization V(0),G(0) can be viewed as empirical esti-
mates of averaged data-dependent kernels V∞,G∞ that are
strictly positive definite under Assumption 1. (II) For each
regime, we prove that the corresponding kernel remains pos-
itive definite if vk(t) and gk(t) remain near initialization for
each 1 ≤ k ≤ m. (III) Given a uniformly positive definite
evolution matrix Λ(t) and sufficient over-parametrization
we show that each neuron, vk(t), gk(t) remains close to its
initialization. The full proof is presented in Appendix B
for gradient flow and Appendix C for finite-step gradient
descent. Next we interpret the main results and discuss how
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the modified NTK in WN can be viewed as a form of natural
gradient.

Connection with natural gradient Natural gradient
methods define the steepest descent direction in the parame-
ter space of a model from the perspective of function space.
This amounts to introducing a particular geometry into the
parameter space which is reflective of the geometry of the
corresponding functions. A re-parametrization of a model,
and WN in particular, can also be interpreted as choosing a
particular geometry for the parameter space. This gives us
a perspective from which to study the effects of WN. The
recent work of (Zhang et al., 2019) studies the effects of nat-
ural gradient methods from the lens of the NTK and shows
that when optimizing with the natural gradient, one is able
to get significantly improved training speed. In particular,
using the popular natural gradient method K-FAC improves
the convergence speed considerably.

Natural gradients transform the NTK from JJ> to JG†J>,
where J is the Jacobian with respect to the parameters and
G is the metric. The WN re-parametrization transforms the
NTK from JJ> to JS>SJ>. To be more precise, denote the
un-normalized NTK as H = JJ>, where J is the Jacobian
matrix for x1, . . .xn written in a compact tensor as J =[
J1, . . .Jn

]>
with Ji =

[
∂f(xi)
∂w1

. . . ∂f(xi)
∂wm

]
, where matrix

multiplication is a slight abuse of notation. Namely J ∈
Rn×m×d and we define multiplication of A ∈ Rn×m×d ×
B ∈ Rd×m×p → AB ∈ Rn×p as

(AB)ij =

m∑
k=1

〈Aik:,B:kj〉.

For any re-parametrization w(r), we have that

Λ = KK>,

where K = JS> and S corresponds to the Jacobian of the
re-parametrization w(r). By introducing WN layers the
reparameterized NTK is compactly written as

Λ = JS>SJ>.

Here S = [S1, . . . , tSm] with

Sk =

[
gk
‖vk‖2

(
I− vkv

>
k

‖vk‖2

)
,

vk
‖vk‖2

]
.

The term N(α) := SS> leads to a family of different
gradient re-parametrizations depending on α. The above
representation of the WN NTK is equivalent to Λ(α) =
1
α2 V + G = JN(α)J>. For different initialization mag-
nitudes α, N(α) leads to different NTKs with modified
properties.

For α = 1 the term corresponds to training without nor-
malization, yet over α ∈ (0,∞), N(α) leads to a family
NTKs with different properties. In addition there exists
an α∗ that maximizes the convergence rate. Such α∗ is
either a proper global maximum or is attained at one of
α→ 0, α→∞. For the latter, one may fix α∗ with α∗ � 1
or α∗ � 1 respectively so that there exists α∗ that outpaces
un-normalized convergence (α = 1). This leads to equal or
faster convergence of WN as compared with un-normalized
training:

Proposition 2 (Fast Convergence of WN). Suppose a neu-
ral network of the form (1.2) is initialized as in (2.4) and
that Assumptions 1,2 hold. In addition, suppose the net-
work is trained via the regression loss (2.5) with targets
y satisfying ‖y‖∞ = O(1). Then, with probability 1 − δ
over the initialization, there exists α∗ such that WN train-
ing with α∗ initialization leads to faster convergence: If
m = Ω

(
n4 log(n/δ)/min{λ40, µ4

0}
)
,

1. WN training with gradient descent of step-size ηα∗ =

O
(

1
‖V∞/(α∗)2+G∞‖2

)
converges linearly as

‖f(s)− y‖22 ≤(
1− ηα∗

(
λ0/2(α∗)2 + µ0/2

))s
‖f(0)− y‖22.

2. The convergence rate of WN is faster than un-
normalized convergence,(

1− ηα∗λmin(Λ(s))
)
≤
(
1− ηλmin(H(s))

)
.

This illustrates the utility of WN from the perspective of the
NTK, guaranteeing that there exists an α∗ that leads to faster
convergence in finite-step gradient descent as compared with
un-normalized training.

5. Related Work
Normalization methods theory A number of recent
works attempt to explain the dynamics and utility of vari-
ous normalization methods in deep learning. The original
works on BN (Ioffe and Szegedy, 2015) and WN (Salimans
and Kingma, 2016) suggest that normalization procedures
improve training by fixing the intermediate layers’ output
distributions. The works of Bjorck et al. (2018) and San-
turkar et al. (2018) argue that BN may improve optimization
by improving smoothness of the Hessian of the loss, there-
fore allowing for larger step-sizes with reduced instability.
Hoffer et al. (2017) showed that the effective step-size in
BN is divided by the magnitude of the weights. This fol-
lowed the work on WNgrad (Wu et al., 2018) that introduces
an adaptive step-size algorithm based on this fact. Follow-
ing the intuition of WNGrad, Arora et al. (2019b) proved
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that for smooth loss and network functions, the diminish-
ing “effective step-size” of normalization methods leads to
convergence with optimal convergence rate for properly ini-
tialized step-sizes. The work of Kohler et al. (2019) explains
the accelerated convergence of BN from a “length-direction
decoupling” perspective. The authors along with Cai et al.
(2019) analyze the linear least squares regime, with Kohler
et al. (2019) presenting a bisection method for finding the
optimal weights. Robustness and regularization of Batch
Normalization is investigated by Luo et al. (2018) and im-
proved generalization is analyzed empirically. Shortly after
the original work of WN, (Yoshida et al., 2017) showed that
for a single precptron WN may speed-up training and em-
phasized the importance of the norm of the initial weights.
Additional stability properties were studied by Yang et al.
(2019) via mean-field analysis. The authors show that gra-
dient instability is inevitable even with BN as the number
of layers increases; this is in agreement with Balduzzi et al.
(2017) for networks with residual connections. The work
of Arpit and Bengio (2019) suggests initialization strategies
for WN and derives lower bounds on the width to guarantee
same order gradients across the layers.

Over-parametrized neural networks There has been a
significant amount of recent literature studying the conver-
gence of un-normalized over-parametrized neural networks.
In the majority of these works the analysis relies on the
width of the layers. These include 2-layer networks trained
with Gaussian inputs and outputs from a teacher network
(Li and Yuan, 2017; Tian, 2017) and (Du et al., 2018) (with
WN). Assumptions on the data distribution are relaxed in
(Du et al., 2019b) and the works that followed (Arora et al.,
2019a; Wu et al., 2019; Zhang et al., 2019). Our work is
inspired by the mechanism presented in this chain of works.
Wu et al. (2019) extend convergence results to adaptive step-
size methods and propose AdaLoss. Recently, the global
convergence of over-parameterized neural networks was
also extended to deep architectures (Allen-Zhu et al., 2019b;
Du et al., 2019a; Zou and Gu, 2019; Zou et al., 2020). In the
context of the NTK, Zhang et al. (2019) have proved fast
convergence of neural networks trained with natural gradi-
ent methods and the K-FAC approximation (Martens and
Grosse, 2015). In the over-parameterized regimes, Arora
et al. (2019a) develop generalization properties for the net-
works of the form (1.1). In addition, in the context of gen-
eralization, Allen-Zhu et al. (2019a) illustrates good gen-
eralization for deep neural networks trained with gradient
descent. Cao and Gu (2020) and (Cao and Gu, 2019) derive
generalization error bounds of gradient descent and stochas-
tic gradient descent for learning over-parametrization deep
ReLU neural networks.

6. Discussion
Dynamic normalization is the most common optimization
set-up of current deep learning models, yet understanding
the convergence of such optimization methods is still an
open problem. In this work we present a proof giving suffi-
cient conditions for convergence of dynamically normalized
2-layer ReLU networks trained with gradient descent. To
the best of our knowledge this is the first proof showcasing
convergence of gradient descent training of neural networks
with dynamic normalization and general data, where the
objective function is non-smooth and non-convex. To un-
derstand the canonical behavior of each normalization layer,
we study the shallow neural network case, that enables us
to focus on a single layer and illustrate the dynamics of
weight normalization. Nonetheless, we believe that using
the techniques presented in (Allen-Zhu et al., 2019b; Du
et al., 2019a) can extend the proofs to the deep network set-
tings. Through our analysis notion of “length-direction de-
coupling” is clarified by the neural tangent kernel Λ(t) that
naturally separates in our analysis into “length”, G(t), and
“direction”, V(t)/α2, components. For α = 1 the decom-
position initially matches un-normalized training. Yet we
discover that in general, normalized training with gradient
descent leads to 2 regimes dominated by different pieces of
the neural tangent kernel. Our improved analysis is able to
reduce the amount of over-parametrization that was needed
in previous convergence works in the un-normalized set-
ting and in the G-dominated regime, we prove convergence
with a significantly lower amount of over-parametrization
as compared with un-normalized training.
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Appendix
We present the detailed proofs of the main results of the paper below. The appendix is organized as follows. We provide
proofs to the simple propositions regarding the NTK presented in the paper in Appendix A, and prove the main results
for V-dominated and G-dominated convergence in the settings of gradient flow and gradient descent in Appendices B
and C. The proofs for gradient flow and gradient descent share the same main idea, yet the proof for gradient descent has
a considerate number of additional technicalities. In Appendices D and E we prove the lemmas used in the analysis of
Appendices B and C respectively.

Distinctive aspects of the WN analysis The main ideas of our proof are familiar and structured similarly to the work
by Du et al. (2019b) on the un-normalized setting. However, the details are modified significantly to account for WN. To
the best of our knowledge, the finite-step analysis that we present in Appendix C is new, incorporating updates of both v
and g. The proof of Theorem C.1 is crucially dependent on the geometry of WN gradient descent and the orthogonality
property, in particular (2.3). Updates of the weights in both the numerator and denominator require additional analysis
that is presented in Lemma B.10. In Appendix E we prove Theorems 4.1, 4.2 based on the general Theorem C.1 and
Property 1 which is based on new detailed decomposition of the finite-step difference between iterations. In contrast to the
un-normalized setting, the auxiliary matrices V∞,G∞ that we have in the WN analysis are not piece-wise constant in v. To
prove they are positive definite, we prove Lemma 4.1 based on two new constructive arguments. We develop the technical
Lemma D.1 and utilize Bernstein’s inequality to reduce the amount of required over-parametrization in our final bounds on
the width m. The amount of over-parametrization in relation to the sample size n is reduced (from n6 to n4) through more
careful arguments in Lemmas B.3 and B.4, which introduce an intermediate matrix V̂(t) and follow additional geometrical
identities. Lemma B.9 reduces the polynomial dependence on the failure probability δ to logarithmic dependence based on
sub-Gaussian concentration. The denominator in the WN architecture necessities worst bound analysis in Lemma B.10 that
is used extensively throughout the proofs.

A. Weight Normalization Dynamics Proofs
In this section we provide proofs for Proposition 1, which describes the relation between vanilla and WeightNorm NTKs
and Observation 1 of the paper.

Proof of Proposition 1:
We would like to show that V(0) + G(0) = H(0). For each entry, consider

(V(0) + G(0))ij =
1

m

m∑
k=1

〈
x

vk(0)
⊥

i , xj
vk(0)

⊥〉
1ik(0)1jk(0) +

1

m

m∑
k=1

〈
x

vk(0)
i , xj

vk(0)
〉
1ik(0)1jk(0).

Note that 〈
xi, xj

〉
=
〈
x

vk(0)
i + x

vk(0)
⊥

i , x
vk(0)
j + x

vk(0)
⊥

j

〉
=
〈
x

vk(0)
⊥

i , xj
vk(0)

⊥〉
+
〈
x

vk(0)
i , xj

vk(0)
〉
.

This gives

(V(0) + G(0))ij =
1

m

m∑
k=1

〈
xi, xj

〉
1ik(0)1jk(0) = Hij(0)

which proves the claim.

Proof of Observation 1:
We show that the initialization of the network is independent of α. Take α, β > 0, and for each k, initialize vαk ,v

β
k as

vαk (0) ∼ N(0, α2I), vβk (0) ∼ N(0, β2I).

Then

vαk (0)

‖vαk (0)‖2
∼

vβk (0)

‖vβk (0)‖2
∼ Unif(Sd−1) (in distribution).
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Hence the distribution of each neuron σ
( vk(0)
‖vk(0)‖2

)
at initialization is independent of α. Next for gk(0), we note that

‖vαk (0)‖2 ∼
α

β
‖vβk (0)‖2.

Initializing gαk (0), gβk (0) as in (2.4),

gαk (0) =
‖vk(0)‖2

α
, gβk (0) =

‖vk(0)‖2
β

,

gives

gαk (0), gβk (0) ∼ χd, and
gαk (0)vαk (0)

‖vαk (0)‖2
∼
gβk (0)vβk (0)

‖vβk (0)‖2
∼ N(0, I),

for all α, β. This shows that the network initialization is independent of α and is equivalent to the initialization of the
un-normalized setting. Similarly, inspecting the terms in the summands of V(0),G(0) shows that they are also independent
of α. For

Vij(0) =
1

m

m∑
k=1

1ik(0)1jk(0)

(
αck · gk(0)

‖vk(0)‖2

)2〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉
the terms 1ik(0), x

vk(0)
⊥

i are independent of scale, and the fraction in the summand is identically 1. G(0) defined as

Gij(0) =
1

m

m∑
k=1

1ik(0)1jk(0)
〈
x

vk(0)
i , x

vk(0)
j

〉
is also invariant of scale since the projection onto a vector direction vk(0) is independent of scale.

B. Convergence Proof for Gradient Flow
In this section we derive the convergence results for gradient flow.

The main results are analogous to Theorems 4.1, 4.2 but by considering gradient flow instead of gradient descent the proofs
are simplified. In Appendix C we prove the main results from Section 4 (Theorem 4.1, 4.2) for finite step gradient descent.

We state our convergence results for gradient flow.

Theorem B.1 (V-dominated convergence). Suppose a network from the class (1.2) is initialized as in (2.4) with α < 1 and
that assumptions 1,2 hold. In addition, suppose the neural network is trained via the regression loss (2.5) with target y
satisfying ‖y‖∞ = O(1). Then if m = Ω

(
n4 log(n/δ)/λ40

)
, WeightNorm training with gradient flow converges at a linear

rate, with probability 1− δ, as

‖f(t)− y‖22 ≤ exp(−λ0t/α2)‖f(0)− y‖22.

This theorem is analogous to Theorem 4.1 but since here, the settings are of gradient flow there is no mention of the step-size.
It is worth noting that smaller α leads to faster convergence and appears to not affect the other hypotheses of the flow
theorem. This “un-interuptted” fast convergence behavior does not extend to finite-step gradient descent where the increased
convergence rate is balanced by decreasing the allowed step-size.

The second main result for gradient flow is for G-dominated convergence.

Theorem B.2 (G-dominated convergence). Suppose a network from the class (1.2) is initialized as in (2.4) with α > 1
and that assumptions 1, 2 hold. In addition, suppose the neural network is trained on the regression loss (2.5) with target
y satisfying ‖y‖∞ = O(1). Then if m = Ω

(
max

{
n4 log(n/δ)/α4µ4

0, n
2 log(n/δ)/µ2

0

})
, WeightNorm training with

gradient flow converges at a linear rate, with probability 1− δ, as

‖f(t)− y‖22 ≤ exp(−µ0t)‖f(0)− y‖22.12



B.1. Proof Sketch

To prove the results above we follow the steps introduced in the proof sketch of Section 4. The main idea of the proofs
for V and G dominated convergence are analogous and a lot of the proofs are based of Du et al. (2019b). We show that
in each regime, we attain linear convergence by proving that the least eigenvalue of the evolution matrix Λ(t) is strictly
positive. For the V-dominated regime we lower bound the least eigenvalue of Λ(t) as λmin(Λ(t)) ≥ λmin(V(t))/α2 and
in the G-dominated regime we lower bound the least eigenvalue as λmin(Λ(t)) ≥ λmin(G(t)).

The main part of the proof is showing that λmin(V(t)), λmin(G(t)) stay uniformly positive. We use several lemmas to show
this claim.

In each regime, we first show that at initialization the kernel under consideration, V(0) or G(0), has a positive least
eigenvalue. This is shown via concentration to an an auxiliary kernel (Lemmas B.1, B.2), and showing that the auxiliary
kernel is also strictly positive definite (Lemma 4.1).

Lemma B.1. Let V(0) and V∞ be defined as in (3.3) and (4.2), assume the network width m satisfies m = Ω
(n2 log(n/δ)

λ2
0

)
.

Then with probability 1− δ,

‖V(0)−V∞‖2 ≤
λ0
4
.

Lemma B.2. Let G(0) and G∞ be defined as in (3.4) and (4.3), assume m satisfies m = Ω
(n2 log(n/δ)

µ2
0

)
. Then with

probability 1− δ,

‖G(0)−G∞‖2 ≤
µ0

4
.

After showing that V(0),G(0) have a positive least-eigenvalue we show that V(t),G(t) maintain this positive least
eigenvalue during training. This part of the proof depends on the over-parametrization of the networks. The main idea is
showing that if the individual parameters vk(t), gk(t) do not change too much during training, then V(t),G(t) remain
close enough to V(0),G(0) so that they are still uniformly strictly positive definite. We prove the results for V(t) and G(t)
separately since each regime imposes different restrictions on the trajectory of the parameters.

For now, in Lemmas B.3, B.4, B.5, we make assumptions on the parameters of the network not changing “too much”;
later we show that this holds and is the result of over-parametrization. Specifically, over-parametrization ensures that the
parameters stay at a small maximum distance from their initialization.

V-dominated convergence To prove the least eigenvalue condition on V(t), we introduce the surrogate Gram matrix
V̂(t) defined entry-wise as

V̂ij(t) =
1

m

m∑
k=1

〈
x

vk(t)
⊥

i , x
vk(t)

⊥

j

〉
1ik(t)1jk(t). (B.1)

This definition aligns with V(t) if we replace the scaling term
(αckgk(t)
‖vk(t)‖2

)2
in each term in the sum Vij(t) by 1.

To monitor V(t)−V(0) we consider V̂(t)−V(0) and V(t)− V̂(t) in Lemmas B.3 and B.4 respectively:

Lemma B.3 (Rectifier sign-changes). Suppose v1(0), . . . ,vk(0) are sampled i.i.d. as (2.4). In addition assume we have

m = Ω
( (m/δ)1/dn log(n/δ)

αλ0

)
and ‖vk(t)− vk(0)‖2 ≤ αλ0

96n(m/δ)1/d
=: Rv . Then with probability 1− δ,

‖V̂(t)−V(0)‖2 ≤
λ0
8
.

Lemma B.4. Define

Rg =
λ0

48n(m/δ)1/d
, Rv =

αλ0
96n(m/δ)1/d

. (B.2)
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Suppose the conditions of Lemma B.3 hold, and that ‖vk(t)− vk(0)‖2 ≤ Rv, ‖gk(t)− gk(0)‖2 ≤ Rg for all 1 ≤ k ≤ m.
Then with probability 1− δ,

‖V(t)−V(0)‖2 ≤
λ0
4
.

G-dominated convergence We ensure that G(t) stays uniformly positive definite if the following hold.

Lemma B.5. Given v1(0), . . . ,vk(0) generated i.i.d. as in (2.4), suppose that for each k, ‖vk(t)−vk(0)‖2 ≤
√
2παµ0

8n(m/δ)1/d
=:

R̃v , then with probability 1− δ,

‖G(t)−G(0)‖2 ≤
µ0

4
.

After deriving sufficient conditions to maintain a positive least eigenvalue at training, we restate the discussion of linear
convergence from Section 4 formally.

Lemma B.6. Consider the linear evolution df
dt = −

(
G(t)+ V(t)

α2

)
(f(t)−y) from (3.5). Suppose that λmin

(
G(t)+ V(t)

α2

)
≥

ω
2 for all times 0 ≤ t ≤ T . Then

‖f(t)− y‖22 ≤ exp(−ωt)‖f(0)− y‖22
for all times 0 ≤ t ≤ T .

Using the linear convergence result of Lemma B.6, we can now bound the trajectory of the parameters from their initialization.

Lemma B.7. Suppose that for all 0 ≤ t ≤ T , λmin

(
G(t) + 1

α2 V(t)

)
≥ ω

2 and |gk(t) − gk(0)| ≤ Rg ≤ 1/(m/δ)1/d.

Then with probability 1− δ over the initialization

‖vk(t)− vk(0)‖2 ≤
4
√
n‖f(0)− y‖2
αω
√
m

=: R′v (B.3)

for each k and all times 0 ≤ t ≤ T .

Lemma B.8. Suppose that for all 0 ≤ t ≤ T , λmin

(
G(t) + 1

α2 V(t)

)
≥ ω

2 . Then with probability 1 − δ over the

initialization

|gk(t)− gk(0)| ≤ 4
√
n‖f(0)− y‖2√

mω
=: R′g

for each k and all times 0 ≤ t ≤ T.

The distance of the parameters from initialization depends on the convergence rate (which depends on λmin(Λ(t))) and the
width of the network m. We therefore are able to find sufficiently large m for which the maximum parameter trajectories are
not too large so that we have that the least eigenvalue of Λ(t) is bounded from 0; this proves the main claim.

Before proving the main results in the case of gradient flow, we use two more technical lemmas.
Lemma B.9. Suppose that the network is initialized as (2.4) and that y ∈ Rn has bounded entries |yi| ≤ M . Then
‖f(0)− y‖2 ≤ C

√
n log(n/δ) for some absolute constant C > 0.

Lemma B.10 (Failure over initialization). Suppose v1(0), . . . ,vk(0) are initialized i.i.d. as in (2.4) with input dimension d.
Then with probability 1− δ,

max
k∈[m]

1

‖vk(0)‖2
≤ (m/δ)

α

1/d

.

In addition by (2.3), for all t ≥ 0, with probability 1− δ,

max
k∈[m]

1

‖vk(t)‖2
≤ (m/δ)

α

1/d

.
14



Remark (Assumption 2). Predominately, machine learning applications reside in the high dimensional regime with d ≥ 50.
Typically d� 50. This therefore leads to an expression (m/δ)1/d that is essentially constant. For example, if d = 50, for
maxk∈[m]

1
‖vk(0)‖2 ≥ 10, one would need m/δ ≥ 1080 (the tail of χ2

d also has a factor of (d/2)! · 2d/2 which makes the

assumption even milder). The term (m/δ)1/d therefore may be taken as a constant for practicality,

max
k∈[m]

1

‖vk(0)‖2
≤ C

α
.

While we make Assumption 2 when presenting our final bounds, for transparency we do not use Assumption 2 during our
analysis and apply it only when we present the final over-parametrization results to avoid the overly messy bound. Without
the assumption the theory still holds yet the over-parametrization bound worsens by a power 1 + 1/(d− 1). This is since
the existing bounds can be modified, replacing m with m1− 1

d .

Proof of Theorem B.1:
By substituting m = Ω

(
n4 log(n/δ)/λ40

)
and using the bound on ‖f(0)− y‖2 of Lemma B.9, a direct calculation shows

that

‖vk(t)− vk(0)‖2
B.7
≤ α
√
n‖f(0)− y‖2√

mλ0
≤ Rv.

Similarly m ensures that

|gk(t)− gk(0)|
B.8
≤ α2

√
n‖f(0)− y‖2√

mλ0
≤ Rg.

The over-parametrization of m implies that the parameter trajectories stay close enough to initialization to satisfy the
hypotheses of Lemmas B.3, B.4 and that λmin(Λ(t)) ≥ λmin(V(t))/α2 ≥ λ0

2α2 . To prove that λmin(Λ(t)) ≥ λ0

2α2 holds for
all 0 ≤ t ≤ T , we proceed by contradiction and suppose that one of Lemmas B.7, B.8 does not hold. Take T0 to be the
first failure time. Clearly T0 > 0 and for 0 < t < T0 the above conditions hold, which implies that λmin(V(t)) ≥ λ0

2 for
0 ≤ t ≤ T0; this contradicts one of Lemmas B.7, B.8 at time T0. Therefore we conclude that Lemmas B.7, B.8 hold for
t > 0 and we can apply B.6 to guarantee linear convergence.

Here we consider the case where the convergence is dominated by G. This occurs when α > 1.
Proof of Theorem B.2:
By substituting m = Ω

(
n4 log(n/δ)/α4µ4

0

)
and using the bound on ‖f(0)− y‖2 of Lemma B.9 we have that

‖vk(t)− vk(0)‖2
B.7
≤ 4
√
n‖f(0)− y‖2
αµ0
√
m

B.9
≤
Cn
√

log(n/δ)

αµ0
√
m

≤ R̃v.

Where the inequality is shown by a direct calculation substituting m.

This means that the parameter trajectories stay close enough to satisfy the hypotheses of Lemma B.5 if m =
Ω
(
n4 log(n/δ)/α4µ4

0

)
. Using the same argument as Theorem B.1, we show that this holds for all t > 0. We pro-

ceed by contradiction, supposing that one of Lemmas B.7, B.8 do not hold. Take T0 to be the first time one of the
conditions of Lemmas B.7, B.8 fail. Clearly T0 > 0 and for 0 < t < T0 the above derivation holds, which implies that
λmin(G(t)) ≥ µ0

2 . This contradicts Lemmas B.7 B.8 at time T0, therefore we conclude that Lemma B.6 holds for all t > 0
and guarantees linear convergence.

Note that if α is large, the required complexity on m is reduced. Taking α = Ω(
√
n/µ0) gives the improved bound

m = Ω

(
n2 log (n/δ)

µ2
0

)
.
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C. Finite Step-size Training
The general technique of proof for gradient flow extends to finite-step gradient descent. Nonethless, proving convergence
for WeightNorm gradient descent exhibits additional complexities arising from the discrete updates and joint training with
the new parametrization (1.2). We first introduce some needed notation.

Define Si(R) as the set of indices k ∈ [m] corresponding to neurons that are close to the activity boundary of ReLU at
initialization for a data point xi,

Si(R) := {k ∈ [m] : ∃ v with ‖v − vk(0)‖2 ≤ R and 1ik(0) 6= 1{v>xi ≥ 0}}.

We upper bound the cardinality of |Si(R)| with high probability.
Lemma C.1. With probability 1− δ, we have that for all i

|Si(R)| ≤
√

2mR√
πα

+
16 log(n/δ)

3
.

Next we review some additional lemmas needed for the proof of Theorems 4.1, 4.2. Analogous to Lemmas B.7, B.8, we
bound the finite-step parameter trajectories in Lemmas C.2, C.3.
Lemma C.2. Suppose the norm of ‖f(s)− y‖22 decreases linearly for some convergence rate ω during gradient descent
training for all iteration steps s = 0, 1, . . . ,K with step-size η as ‖f(s)− y‖22 ≤ (1− ηω

2 )s‖f(0)− y‖22 . Then for each k
we have

|gk(s)− gk(0)| ≤ 4
√
n‖f(0)− y‖2√

mω

for iterations s = 0, 1, . . . ,K + 1.
Lemma C.3. Under the assumptions of Lemma C.2, suppose in addition that |gk(s) − gk(0)| ≤ 1/(m/δ)1/d for all
iterations steps s = 0, 1, . . .K . Then for each k,

‖vk(s)− vk(0)‖2 ≤
8
√
n‖f(0)− y‖2
α
√
mω

for s = 0, 1, . . . ,K + 1.

To prove linear rate of convergence we analyze the s + 1 iterate error ‖f(s + 1) − y‖2 relative to that of the s iterate,
‖f(s)− y‖2. Consider the network’s coordinate-wise difference in output between iterations, fi(s+ 1)− fi(s), writing this
explicitly based on gradient descent updates yields

fi(s+ 1)− fi(s) =
1√
m

m∑
k=1

ckgk(s+ 1)

‖vk(s+ 1)‖2
σ(vk(s+ 1)>xi)−

ckgk(s)

‖vk(s)‖2
σ(vk(s)>xi). (C.1)

We now decompose the summand in (C.1) looking at the updates in each layer, fi(s+ 1)− fi(s) = ai(s) + bi(s) with

ai(s) =
1√
m

m∑
k=1

ckgk(s+ 1)

‖vk(s+ 1)‖2
σ(vk(s)>xi)−

ckgk(s)

‖vk(s)‖2
σ(vk(s)>xi),

bi(s) =
1√
m

m∑
k=1

ckgk(s+ 1)

‖vk(s+ 1)‖2
(
σ(vk(s+ 1)>xi)− σ(vk(s)>xi)

)
.

Further, each layer summand is then subdivided into a primary term and a residual. ai(s), corresponding to the difference in

the first layer
(

ckgk(s+1)
‖vk(s+1)‖2 −

ckgk(s)
‖vk(s)‖2

)
, is subdivided into aIi (s) and aIIi (s) as follows:

aIi (s) =
1√
m

m∑
k=1

(
ckgk(s+ 1)

‖vk(s)‖2
− ckgk(s)

‖vk(s)‖2

)
σ(vk(s)>xi), (C.2)

aIIi (s) =
1√
m

m∑
k=1

(
ckgk(s+ 1)

‖vk(s+ 1)‖2
− ckgk(s+ 1)

‖vk(s)‖2

)
σ(vk(s)>xi). (C.3)
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bi(s) is sub-divided based on the indices in the set Si that monitor the changes of the rectifiers. For now, Si = Si(R) with
R to be set later in the proof. bi(s) is partitioned to summands in the set Si and the complement set,

bIi (s) =
1√
m

∑
k 6∈Si

ckgk(s+ 1)

‖vk(s+ 1)‖2
(
σ(vk(s+ 1)>xi)− σ(vk(s)>xi)

)
,

bIIi (s) =
1√
m

∑
k∈Si

ckgk(s+ 1)

‖vk(s+ 1)‖2
(
σ(vk(s+ 1)>xi)− σ(vk(s)>xi)

)
.

With this sub-division in mind, the terms corresponding to convergence are aI(s),bI(s) whereas aII(s),bII(s) are
residuals that are the result of discretization. We define the primary and residual vectors p(s), r(s) as

p(s) =
aI(s) + bI(s)

η
, r(s) =

aII + bII(s)

η
. (C.4)

If the residual r(s) is sufficiently small and p(s) may be written as p(s) = −Λ(s)(f(s)− y) for some iteration dependent
evolution matrix Λ(s) that has

λmin(Λ(s)) = ω/2 (C.5)

for ω > 0 then the neural network (1.2) converges linearly when trained with WeightNorm gradient descent of step size η.
We formalize the condition on r(s) below and later derive the conditions on the over-parametrization (m) ensuring that r(s)
is sufficiently small.

Property 1. Given a network from the class (1.2) initialized as in (2.4) and trained with gradient descent of step-size η,
define the residual r(s) as in (C.4) and take ω as in (C.5). We specify the “residual condition” at iteration s as

‖r(s)‖2 ≤ cω‖f(s)− y‖2

for a sufficiently small constant c > 0 independent of the data or initialization.

Here we present Theorem C.1 which is the backbone of Theorems 4.1 and 4.2.

Theorem C.1. Suppose a network from the class (1.2) is trained via WeightNorm gradient descent with an evolution matrix
Λ(s) as in (C.5) satisfying λmin(Λ(s)) ≥ ω/2 for s = 0, 1, . . .K. In addition if the data meets assumptions 1, 2, the
step-size η of gradient descent satisfies η ≤ 1

3‖Λ(s)‖2 and that the residual r(s) defined in (C.4) satisfies Property 1 for
s = 0, 1, . . . ,K then we have that

‖f(s)− y‖22 ≤
(

1− ηω

2

)s
‖f(0)− y‖22

for s = 0, 1, . . . ,K.

Proof of Theorem C.1:
This proof provides the foundation for the main theorems. In the proof we also derive key bounds to be used in Theorems
4.1, 4.2. We use the decomposition we described above and consider again the difference between consecutive terms
f(s+ 1)− f(s),

fi(s+ 1)− fi(s) =
1√
m

m∑
k=1

ckgk(s+ 1)

‖vk(s+ 1)‖2
σ(vk(s+ 1)>xi)−

ckgk(s)

‖vk(s)‖2
σ(vk(s)>xi). (C.6)
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Following the decomposition introduced in (C.2), aIi (s) is re-written in terms of G(s),

aIi (s) =
1√
m

m∑
k=1

ck
‖vk(s)‖2

(
− η ∂L(s)

∂gk

)
σ(vk(s)>xi)

= − η

m

m∑
k=1

ck
‖vk(s)‖2

n∑
j=1

(fj(s)− yj)
ck

‖vk(s)‖2
σ(v>k (s)xj)σ(v>k (s)xi)

= −η
n∑
j=1

(fj(s)− yj)
1

m

m∑
k=1

(ck)2σ

(
vk(s)>xi
‖vk(s)‖2

)
σ

(
vk(s)>xj
‖vk(s)‖2

)

= −η
n∑
j=1

(fj(s)− yj)Gij(s),

where the first equality holds by the gradient update rule gk(s + 1) = gk(s) − η∇gkL(s). In this proof we also derive
bounds on the residual terms of the decomposition which we will aid us in the proofs of Theorems 4.1, 4.2. aIi (s) is the
primary term of ai(s), now we bound the residual term aIIi (s). Recall aIIi (s) is written as

aIIi (s) =
1√
m

m∑
k=1

(
ckgk(s+ 1)

‖vk(s+ 1)‖2
− ckgk(s+ 1)

‖vk(s)‖2

)
σ(vk(s)>xi),

which corresponds to the difference in the normalization in the second layer. Since∇vk
L(s) is orthogonal to vk(s) we have

that

ckgk(s+ 1)

(
1

‖vk(s+ 1)‖2
− 1

‖vk(s)‖2

)
σ(vk(s)>xi)

= ckgk(s+ 1)

(
1√

‖vk(s)‖22 + η2‖∇vk
L(s)‖22

− 1

‖vk(s)‖2

)
σ(vk(s)>xi)

=
−ckgk(s+ 1)η2‖∇vk

L(s)‖22
‖vk(s+ 1)‖2‖vk(s)‖2(‖vk(s)‖2 + ‖vk(s+ 1)‖2)

σ(vk(s)>xi)

≤ −ckgk(s+ 1)η2‖∇vk
L(s)‖22

2‖vk(s)‖2‖vk(s+ 1)‖2
σ

(
vk(s)>xi
‖vk(s)‖2

)
,

where the first equality above is by completing the square, and the inequality is due to the increasing magnitudes of ‖vk(s)‖2.

Since 0 ≤ σ
(

vk(s)
>xi

‖vk(s)‖2

)
≤ 1, the above can be bounded as

|aIIi (s)| ≤ 1√
m

m∑
k=1

∣∣∣∣gk(s+ 1)η2‖∇vk
L(s)‖22

2‖vk(s)‖2‖vk(s+ 1)‖2

∣∣∣∣
≤ 1√

m

m∑
k=1

η2
(
1 +Rg(m/δ)

1/d
)3
n‖f(s)− y‖22(m/δ)1/d

α4m

=
η2n
(
1 +Rg(m/δ)

1/d
)3‖f(s)− y‖22(m/δ)1/d

α4
√
m

. (C.7)

The second inequality is the result of applying the bound in equation (E.1) on the gradient norm ‖∇vk
L(s)‖2 and using

Lemma B.10.

Next we analyze bi(s) and sub-divide it based on the sign changes of the rectifiers. Define the set Si := Si(R) as in Lemma
C.1 with R taken to be such that ‖vk(s+ 1)− vk(0)‖2 ≤ R for all k. Take bIIi (s) as the sub-sum of bi(s) with indices k
from the set Si.

bIi (s) corresponds to the sub-sum with the remaining indices. By the definition of Si, for k 6∈ Si we have that 1ik(s+ 1) =
1ik(s). This enables us to factor 1ik(s) and represent bIi (s) as a Gram matrix similar to V(s) with a correction term from
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the missing indices in Si.

bIi (s) = − 1√
m

∑
k 6∈Si

(
ckgk(s+ 1)

‖vk(s+ 1)‖2

)(
η
〈
∇vk

L(s), xi
〉)
1ik(s)

= − η

m

∑
k 6∈Si

(
ckgk(s+ 1)

‖vk(s+ 1)‖2

)(
ckgk(s)

‖vk(s)‖2

) n∑
j=1

(fj(s)− yj)1ik(s)1jk(s)
〈
x

vk(s)
⊥

j , xi
〉
.

Note that
〈
x

vk(s)
⊥

j , xi
〉

=
〈
x

vk(s)
⊥

j , x
vk(s)

⊥

i

〉
therefore,

bIi (s) = − η

m

∑
k 6∈Si

(
ckgk(s+ 1)

‖vk(s+ 1)‖2

)(
ckgk(s)

‖vk(s)‖2

) n∑
j=1

(fj(s)− yj)1ik(s)1jk(s)
〈
x

vk(s)
⊥

j , x
vk(s)

⊥

i

〉
.

Define Ṽ(s) as

Ṽij(s) =
1

m

m∑
k=1

(
αckgk(s+ 1)

‖vk(s+ 1)‖2

)(
αckgk(s)

‖vk(s)‖2

)
1jk(s)1ik(s)

〈
x

vk(s)
⊥

i , x
vk(s)

⊥

j

〉
.

This matrix is identical to V(s) except for a modified scaling term
( c2kgk(s+1)gk(s)
‖vk(s)‖2‖vk(s+1)‖2

)
. We note however that

min

((
ckgk(s)

‖vk(s)‖2

)2

,

(
ckgk(s+ 1)

‖vk(s+ 1)‖2

)2
)
≤
(
ckgk(s)

‖vk(s)‖2

)(
ckgk(s+ 1)

‖vk(s+ 1)‖2

)

≤ max

((
ckgk(s)

‖vk(s)‖2

)2

,

(
ckgk(s+ 1)

‖vk(s+ 1)‖2

)2
)

because gk(s), c2k are positive. Hence the matrix Ṽ(s) satisfies the hypothesis of Lemma B.4 entirely. We write bIi (s) as

bIi (s) = −η/α2
n∑
j=1

(fj(s)− yj)(Ṽij(s)− Ṽ⊥ij(s)),

where we have defined

Ṽ⊥ij(s) =
1

m

∑
k∈Si

(
αckgk(s)

‖vk(s)‖2

)(
αckgk(s+ 1)

‖vk(s+ 1)‖2

)
1ik(s)1jk(s)

〈
x

vk(s)
⊥

i , x
vk(s)

⊥

j

〉
. (C.8)

We then bound the magnitude of each entry Ṽ⊥ij(s):

Ṽ⊥ij(s) =
1

m

∑
k∈Si

(
αckgk(s)

‖vk(s)‖2

)(
αckgk(s+ 1)

‖vk(s+ 1)‖2

)
1ik(s)1jk(s)

〈
x

vk(s)
⊥

i , x
vk(s)

⊥

j

〉
≤ (1 +Rg(m/δ)

1/d)2|Si|
m

. (C.9)

Lastly we bound the size of the residual term bIIi (s),

|bIIi (s)| =
∣∣∣∣− 1√

m

∑
k∈Si

ckgk(s+ 1)

‖vk(s+ 1)‖2

(
σ(vk(s+ 1)>xi)− σ(vk(s)>xi)

)∣∣∣∣
≤ gk(s+ 1)η|Si| · ‖∇vk

L(s)‖2√
m‖vk(s+ 1)‖2

≤ η|Si|(1 + (m/δ)1/dRg)‖∇vk
L(s)‖2

α
√
m

.
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Where we used the Lipschitz continuity of σ in the first bound, and took Rg > 0 that satisfies |gk(s+ 1)− gk(0)| ≤ Rg in
the second inequality. Applying the bound (E.1),

|bIIi (s)| ≤ η|Si|
√
n(1 +Rg(m/δ)

1/d)2‖f(s)− y‖2
α2m

. (C.10)

The sum f(s+ 1)− f(s) = aI(s) + aII(s) + bI(s) + bII(s) is separated into the primary term ηp(s) = aI(s) + bI(s)
and the residual term ηr(s) = aII(s) + bII(s) which is a result of the discretization. With this, the evolution matrix Λ(s)
in (C.5) is re-defined as

Λ(s) := G(s) +
Ṽ(s)− Ṽ⊥(s)

α2

and

f(s+ 1)− f(s) = −ηΛ(s)(f(s)− y) + ηr(s).

Now we compare ‖f(s+ 1)− y‖22 with ‖f(s)− y‖22,

‖f(s+ 1)− y‖22 =‖f(s+ 1)− f(s) + f(s)− y‖22
=‖f(s)− y‖22 + 2

〈
f(s+ 1)− f(s), f(s)− y

〉
+
〈
f(s+ 1)− f(s), f(s+ 1)− f(s)

〉
.

Substituting

f(s+ 1)− f(s) = aI(s) + bI(s) + aII(s) + bII(s) = −ηΛ(s)(f(s)− y) + ηr(s)

we obtain

‖f(s+ 1)− y‖22 =‖f(s)− y‖22 + 2(−ηΛ(s)(f(s)− y) + ηr(s))>(f(s)− y)

+ η2(Λ(s)(f(s)− y)− r(s))>(Λ(s)(f(s)− y)− r(s))

≤‖f(s)− y‖22 + (f(s)− y)>(−ηΛ(s) + η2Λ2(s))(f(s)− y)

+ ηr(s)>(I− ηΛ(s))(f(s)− y) + η2‖r(s)‖22.

Now as λmin(Λ(s)) ≥ ω/2 and η = 1
3‖Λ(s)‖2 , we have that

(f(s)− y)>(−ηΛ(s) + η2Λ2(s))(f(s)− y) = −η(f(s)− y)>(I− ηΛ(s))Λ(s)(f(s)− y) ≤ −3ηω

8
‖f(s)− y‖22.

Next we analyze the rest of the terms and group them as q(s),

q(s) := ηr(s)>(I− ηΛ(s))(f(s)− y) + η2‖r(s)‖22
≤ η‖r(s)‖2‖f(s)− y‖2 + η2‖r(s)‖22.

By Property 1 we have

q(s) ≤ ηcω‖f(s)− y‖22(1 + ηcω) ≤ 2cηω‖f(s)− y‖22,

so that

q(s) ≤ c′ηω‖f(s)− y‖22,

for c′ sufficiently small. Substituting, the difference f(s+ 1)− y is bounded as

‖f(s+ 1)− y‖22 ≤ ‖f(s)− y‖22 − ηω(1− η‖Λ(s)‖2)‖f(s)− y‖22 + c′ηω‖f(s)− y‖22
≤ (1− ηω(1− η‖Λ(s)‖2) + c′ηω)‖f(s)− y‖22
≤ (1− ηω/2)‖f(s)− y‖22,
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for well chosen absolute constant c. Hence for each s = 0, 1, . . . ,K,

‖f(s+ 1)− y‖22 ≤ (1− ηω/2)‖f(s)− y‖22,

so the prediction error converges linearly.

In what comes next we prove the necessary conditions for Property 1, and define the appropriate ω for the V and G
dominated regimes, in order to show λmin(Λ(s)) ≥ ω/2.

Proof of Theorem 4.1:
To prove convergence we would like to apply Theorem C.1 with ω/2 = λ0

2α2 . To do so we need to show that m =
Ω
(
n4 log(n/δ)/λ40

)
guarantees that Property 1 holds and that λmin(Λ(s)) ≥ λ0/2α2. For finite-step gradient training, take

Rv =
αλ0

192n(m/δ)1/d
, Rg =

λ0
96n(m/δ)1/d

. (C.11)

Note the residual r(s) and the other terms bI(s),bII(s) depend on the sets Si that we define here using Rv . We make the
assumption that ‖vk(s)−vk(0)‖2 ≤ Rv and |gk(s)−gk(0)| ≤ Rg for all k and that s = 0, 1, . . .K+1, this guarantees that
bI(s) and Λ(s) are well defined. Applying Lemmas B.1, B.4 with Rv, Rg defined above, we have that λmin(Ṽ(s)) ≥ 5λ0

8 .
Then the least eigenvalue of the evolution matrix Λ(s) is bounded below

λmin(Λ(s)) = λmin

(
G(s) +

Ṽ(s)− Ṽ⊥(s)

α2

)
≥ λmin

(
Ṽ(s)− Ṽ⊥(s)

α2

)
=
λmin(Ṽ(s)− Ṽ⊥(s))

α2

≥ 5λ0
8α2
− ‖Ṽ

⊥(s)‖2
α2

.

The first inequality holds since G(s) � 0 and the last inequality is since λmin(Ṽ(s)) ≥ 5λ0

8 .

To show λmin(Λ(s)) ≥ λ0

2α2 we bound ‖Ṽ⊥(s)‖2 ≤ λ0

8 . By (C.9), we have

|Ṽ⊥ij(s)| ≤
(1 +Rg(m/δ)

1/d)|Si|
m

≤ (1 +Rg(m/δ)
1/d)

(√
2R̃v√
πα

+
16 log(n/δ)

3m

)
.

Substituting Rv, Rg and m, a direct calculation shows that

|Ṽ⊥ij(s)| ≤
λ0
8n
,

which yields

‖Ṽ⊥(s)‖2 ≤ ‖Ṽ⊥(s)‖F ≤
λ0
8
.

Hence λmin(Λ(s)) ≥ λ0

2α2 for iterations s = 0, 1, . . .K.

We proceed by showing the residual r(s) satisfies property 1. Recall r(s) is written as

r(s) =
aII(s)

η
+

bII(s)

η
.

and Property 1 states that ‖r(s)‖2 ≤ cηλ0

α2 ‖f(s)− y‖2 for sufficiently small absolute constant c < 1. This is equivalent to
showing that both aII(s), bII(s) satisfy

‖aII(s)‖2 ≤
cηλ0
α2
‖f(s)− y‖2, (C.12)

‖bII(s)‖2 ≤
cηλ0
α2
‖f(s)− y‖2. (C.13)
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We consider each term at turn. By (C.10),

‖bII(s)‖2 ≤
√
nmax

i
bIIi (s)

≤ max
i

ηn(1 +Rg(m/δ)
1/d)2|Si|‖f(s)− y‖2
α2m

≤ CmRvηn‖f(s)− y‖2
α2m

≤ λ0η‖f(s)− y‖2
α2

· nCRv.

In the above we used the values of Rv, Rg defined in (C.11) and applied Lemma C.1 in the third inequality. Taking
m = Ω

(
n4 log(n/δ)/λ40

)
with large enough constant yields

‖bII(s)‖2 ≤
cλ0η‖f(s)− y‖2

α2
.

Next we analogously bound ‖aII(s)‖ via the bound (C.7),

‖aII(s)‖2 ≤
√
nmax

i
aIIi (s)

≤
η2n3/2

(
1 +Rg(m/δ)

1/d
)3‖f(s)− y‖22(m/δ)1/d

α4
√
m

≤ ηλ0‖f(s)− y‖2
α2

·
η
(
1 +Rg(m/δ)

1/d
)3
n3/2‖f(s)− y‖2(m/δ)1/d

λ0α2
√
m

≤ ηλ0‖f(s)− y‖2
α2

· η
α2
·
Cn2

√
log(n/δ)

λ0
√
m

≤ cηω‖f(s)− y‖2.

In the above we applied Lemma B.9 once again. The last inequality holds since m = Ω(n4 log(n/δ)/λ40) and η =

O

(
α2

‖V(s)‖2

)
, hence r(s) satisfies Property 1. Now since Theorem C.1 holds with ω = λ0/α

2 we have that the maximum

parameter trajectories are bounded as ‖vk(s) − vk(0)‖2 ≤ Rv and ‖gk(s) − gk(0)‖ ≤ Rg for all k and every iteration
s = 0, 1, . . . ,K + 1 via Lemmas C.2, C.3.

To finish the proof, we apply the same contradiction argument as in Theorems B.1, B.2, taking the first iteration s = K0

where one of Lemmas C.2, C.3 does not hold. We note that K0 > 0 and by the definition of K0, for s = 0, 1, . . . ,K0 − 1
the Lemmas C.2, C.3 hold which implies that by the argument above we reach linear convergence in iteration s = K0. This
contradicts one of Lemmas C.2, C.3 which gives the desired contradiction, so we conclude that we have linear convergence
with rate λ0/2α2 for all iterations.

Proof of Theorem 4.2:
For G-dominated convergence, we follow the same steps as in the proof of Theorem 4.1. We redefine the trajectory constants
for the finite step case

R̃v :=

√
2παµ0

64n(m/δ)1/d
, Rg :=

µ0

48n(m/δ)1/d
.

To use Theorem C.1 we need to show that m = Ω
(
n4 log(n/δ)/α4µ4

0

)
guarantees Property 1, and that λmin(Λ(s)) ≥ µ0/2.

We again note that the residual r(s) and bI(s),bII(s) depend on the sets Si that we define here using R̃v above as
Si := Si(R̃v).

We start by showing the property on the least eigenvalue. We make the assumption that we have linear convergence with
ω/2 = µ0/2 and step-size η for iterations s = 0, . . .K so that Lemmas C.2, C.3 hold. Via an analogous analysis of the
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continous case we reach that m = Ω
(
n4 log(n/δ)/µ4

0α
4
)

implies

‖vk(s)− vk(0)‖2 ≤
16α
√
n‖f(0)− y‖2
α
√
mµ0

≤ R̃v, |gk(s)− gk(0)| ≤ 8
√
n‖f(0)− y‖2√

mµ0
≤ Rg.

for s = 0, . . .K + 1 by Lemmas C.2, C.3 and that Λ(s),bI(s) are well defined. Using the bounds on the parameter
trajectories, Lemma B.5 and R̃v defined above yield λmin(G(s)) ≥ 5µ0

8 . The least eigenvalue of the evolution matrix Λ(s)
is bounded below as

λmin(Λ(s)) = λmin

(
G(s) +

Ṽ(s)− Ṽ⊥(s)

α2

)
≥ λmin(G(s))− ‖Ṽ⊥(s)‖2

since Ṽ(s) � 0 and α ≥ 1. We bound the spectral norm of ‖Ṽ⊥(s)‖2, for each entry i, j we have by (C.9) that

|Ṽ⊥ij(s)| ≤
(1 +Rg(m/δ)

1/d)|Si|
m

≤ (1 +Rg(m/δ)
1/d)

(√
2R̃v√
πα

+
16 log(n/δ)

3m

)
≤ 8R̃v√

2πα

≤ µ0

8n
.

where in the above inequalities we used our bounds on R̃v, Rg and m. Then the spectral norm is bounded as

‖Ṽ⊥(s)‖2 ≤ ‖Ṽ⊥(s)‖F ≤ µ0/8.

Hence we have that λmin(Λ(s)) ≥ µ0/2 for s = 0, 1, . . .K.

Next we show the residual r(s) satisfies Property 1. Recall r(s) is written as

r(s) =
aII(s)

η
+

bII(s)

η
.

Property 1 states the condition ‖r(s)‖2 ≤ cωη‖f(s)− y‖2 for sufficiently small c < 1 with ω = µ0. This is equivalent to
showing that both aII(s), bII(s) satisfy that

‖aII(s)‖2 ≤ cηµ0‖f(s)− y‖2, (C.14)

‖bII(s)‖2 ≤ cηµ0‖f(s)− y‖2, (C.15)

for sufficiently small absolute constant c. For bII(s) we have that (C.10) gives

‖bII(s)‖2 ≤
√
nmax

i
bIIi (s)

≤ max
i

η(1 +Rg(m/δ)
1/d)2|Si|n‖f(s)− y‖2
α2m

.

Next applying Lemmas C.1 and B.9 in turn yields

≤ CmR̃vηn‖f(s)− y‖2
α2m

≤ ηµ0‖f(s)− y‖2
R̃v
nα2

.

Substituting m = Ω
(
n4 log(n/δ)/µ4

0α
4
)

for a large enough constant and Rv we get

‖bII(s)‖2 ≤ cηµ0‖f(s)− y‖2.
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Analogously we bound ‖aII(s)‖2 using (C.7),

‖aII(s)‖2 ≤
√
nmax

i
aIIi (s)

≤
η2n3/2

(
1 +Rg(m/δ)

1/d
)3‖f(s)− y‖22(m/δ)1/d

α4
√
m

≤ ηµ0‖f(s)− y‖2 ·
η
(
1 +Rg(m/δ)

1/d
)3
n3/2‖f(s)− y‖2(m/δ)1/d

µ0α4
√
m

≤ ηµ0‖f(s)− y‖2 ·
η

α2
·
Cn2

√
log(n/δ)

α2µ2
0

√
m

≤ cηµ0‖f(s)− y‖2.

Where we have used Lemma B.9 in the third inequality and substituted m = Ω(n4 log(n/δ)/α4µ4
0) noting that η =

O
(

1
‖Λ(s)‖2

)
and that α ≥ 1 in the last inequality. Therefore we have that r(s) satisfies Property 1 so that Theorem C.1

holds. By the same contradiction argument as in Theorem 4.1 we have that this holds for all iterations.

D. Additional Technical Lemmas and Proofs of the Lemmas from Appendix B
Proof of Lemma 4.1:
We prove Lemma 4.1 for V∞, G∞ separately. V∞ can be viewed as the covariance matrix of the functionals φi defined as

φi(v) = xi

(
I− vv>

‖v‖22

)
1{v>xi ≥ 0} (D.1)

over the Hilbert space V of L2(N(0, α2I)) of functionals. Under this formulation, if φ1, φ2, . . . , φn are linearly independent,
then V∞ is strictly positive definite. Thus, to show that V∞ is strictly positive definite is equivalent to showing that

c1φ1 + c2φ2 + · · ·+ cnφn = 0 in V (D.2)

implies ci = 0 for each i. The φis are piece-wise continuous functionals, and equality in V is equivalent to

c1φ1 + c2φ2 + · · ·+ cnφn = 0 almost everywhere.

For the sake of contradiction, assume that there exist c1, . . . , cn that are not identically 0, satisfying (D.2). As ci are not
identically 0, there exists an i such that ci 6= 0. We show this leads to a contradiction by constructing a non-zero measure
region such that the linear combination

∑
i ciφi is non-zero.

Denote the orthogonal subspace to xi as Di := {v ∈ Rd : v>xi = 0}. By Assumption 1,

Di 6⊆
⋃
j 6=i

Dj

This holds since Di is a (d− 1)-dimensional space which may not be written as the finite union of sub-spaces Di ∩Dj

of dimension d− 2 (since xi and xj are not parallel). Thus, take z ∈ Di\
⋃
j 6=iDj . Since

⋃
j 6=iDj is closed in Rd, there

exists an R > 0 such that

B(z, 4R) ∩
⋃
j 6=i

Dj = ∅.

Next take y ∈ ∂B(z, 3R) ∩ Di (where ∂ denotes the boundary) on the smaller disk of radius 3R so that it satisfies
‖y‖2 = maxy′∈∂B(z,3R)∩Di

‖y′‖2. Now for any r ≤ R, the ball B(y, r) is such that for all points v ∈ B(y, r) we have
‖vx⊥i ‖2 ≥ 2R and ‖vxi‖2 ≤ R. Then for any r ≤ R, the points v ∈ B(y, r) ⊂ B(z, 4R) satisfy that

‖xv⊥

i ‖2 ≥ ‖xi‖2 −
xi · v
‖v‖2

≥ ‖xi‖2
(

1− R

2R

)
≥ ‖xi‖2

2
.
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Next we decompose the chosen ball B(y, r) = B+(r) ∨ B−(r) to the areas where the ReLU function at the point xi is
active and inactive

B+(r) = B(y, r) ∩ {x>i v ≥ 0}, B−(r) = B(y, r) ∩ {x>i v < 0}.

Note that φi has a discontinuity on Di and is continuous within each region B+(r) and B−(r). Moreover, for j 6= i, φj
is continuous on the entire region of B(y, r) since B(y, r) ⊂ B(z, 4R) ⊂ Dc

j . Since we have that φj is continuous in the
region, the Lebesgue differentiation theorem implies that for r → 0, φi satisfies on B+(r), B−(r):

lim
r→0

1

µ(B+(r))

∫
B+(r)

φi = xy⊥

i 6= 0, lim
r→0

1

µ(B−(r))

∫
B−(r)

φi = 0.

For j 6= i φj is continuous on the entire ball B(y, r) hence the Lebesgue differentiation theorem also gives

lim
r→0

1

µ(B+(r))

∫
B+(r)

φi = φj(y), lim
r→0

1

µ(B−(r))

∫
B−(r)

φi = φj(y).

We integrate c1φ1 + . . . cnφn over B−(r) and B+(r) separately and subtract the integrals. By the assumption, c1φ1 + · · ·+
cnφn = 0 almost everywhere so each integral evaluates to 0 and the difference is also 0,

0 =
1

µ(B+(r))

∫
B+(r)

c1φ1 + · · ·+ cnφn −
1

µ(B−(r))

∫
B−(r)

c1φ1 + · · ·+ cnφn. (D.3)

By the continuity of φj for j 6= i taking r → 0 we have that

1

µ(B+(r))
lim
r→0

∫
B+(r)

φj −
1

µ(B−(r))

∫
B−(r)

φj = φj(y)− φj(y) = 0.

For φi the functionals evaluate differently. For B−(r) we have that

1

µ(B−(r))
lim
r→0

∫
B−(r)

φi =
1

µ(B−(r))
lim
r→0

∫
B−(r)

0 = 0,

while the integral over the positive side, B+(r) is equal to

1

µ(B+(r))

∫
B+(r)

φi(z)dz =
1

µ(B+(r))

∫
B+(r)

xz⊥

i dz = xy⊥

i .

By construction, ‖xy⊥

i ‖2 > R and is non-zero so we conclude that for (D.3) to hold we must have ci = 0. This gives the
desired contradiction and implies that φ1, . . . φn are independent and V∞ is positive definite with λmin(V∞) = λ0.

Next we consider G∞ and again frame the problem in the context of the covariance matrix of functionals. Define

θi(v) := σ

(
v>xi
‖v‖2

)
for v 6= 0.

Now the statement of the theorem is equivalent to showing that the covariance matrix of {θi} does not have zero-eigenvalues,
that is, the functionals θis are linearly independent. For the sake of contradiction assume ∃ c1, . . . , cn such that

c1θ1 + c2θ2 + · · ·+ cnθn = 0 in V (equivalent to a.e).

Via the same contradiction argument we show that ci = 0 for all i. Unlike φi defined in (D.1), each θi is continuous and
non-negative so equality “a.e” is strengthened to “for all v”,

c1θ1 + c2θ2 + · · ·+ cnθn = 0.
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Equality everywhere requires that the derivatives of the function are equal to 0 almost everywhere. Computing derivatives
with respect to v yields

c1x
v⊥

1 1{v>x1 ≥ 0}+ c2x
v⊥

2 1{v>x2 ≥ 0}+ · · ·+ cnxv⊥

n 1{v>xn ≥ 0} = 0.

Which coincide with

c1φ1 + · · ·+ cnφn

By the first part of the proof, the linear combination c1φ1 + · · ·+ cnφn is non-zero around a ball of positive measure unless
ci = 0 for all i. This contradicts the assumption that the derivative is 0 almost everywhere; therefore G∞ is strictly positive
definite with λmin(G∞) =: µ0 > 0.

We briefly derive an inequality for the sum of indicator functions for events that are bounded by the sum of indicator
functions of independent events. This enables us to develop more refined concentration than in Du et al. (2019b) for
monitoring the orthogonal and aligned Gram matrices during training.

Lemma D.1. Let A1, . . . , Am be a sequence of events and suppose that Ak ⊆ Bk with B1, . . . , Bm mutually independent.
Further assume that for each k, P(Bk) ≤ p, and define S = 1

m

∑m
k=1 1Ak

. Then with probability 1− δ, S satisfies

S ≤ p
(

2 +
8 log(1/δ)

3mp

)
.

Proof of Lemma D.1:
Bound S as

S =
1

m

m∑
k=1

1Ak
≤ 1

m

m∑
k=1

1Bk
.

We apply Bernstein’s concentration inequality to reach the bound. Denote Xk =
1Bk

m and S̃ =
∑m
k=1Xk. Then

Var(Xk) ≤ EX2
k = (1/m)2P(Xk) + 0 ≤ p

m2
, ES̃ = E

m∑
k=1

Xk ≤ p.

Applying Bernstein’s inequality yields

P(S̃ − ES̃ ≥ t) ≤ exp

(
−t2/2∑m

k=1 EX2
k + t

3m

)
.

Fix δ and take the smallest t such that P(S̃ − ES̃ ≥ t) ≤ δ. Denote t = r · ES̃, either P(S̃ − ES̃ ≥ ES̃) ≤ δ, or t = rES̃
corresponds to r ≥ 1. Note that t = rES̃ ≤ rp. In the latter case, the bound is written as

P(S̃ − ES̃ ≥ rp) ≤ exp

(
−(pr)2/2

p/m+ pr
3m

)
≤ exp

(
−(pr)2/2
p
m (1 + r

3 )

)
≤ exp

(
−(pr)2/2
p
m ( 4r

3 )

)
= exp

(
−3prm

8

)
.

Solving for δ gives

rp ≤ 8 log(1/δ)

3m
.

Hence with probability 1− δ,

S ≤ S̃ ≤ max

{
p

(
1 +

8 log(1/δ)

3mp

)
, 2p

}
≤ p
(

2 +
8 log(1/δ)

3mp

)
.
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Proof of Lemma B.1:
We prove the claim by applying concentration on each entry of the difference matrix. Each entry Vij(0) is written as

Vij(0) =
1

m

m∑
k=1

〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉(αck · gk
‖vk‖2

)2

1ik(0)1jk(0).

At initialization gk(0) = ‖vk(0)‖2/α, c2k = 1 so Vij(0) simplifies to

Vij(0) =
1

m

m∑
k=1

〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉
1ik(0)1jk(0).

Since the weights vk(0) are initialized independently for each entry we have EvVij(0) = V∞ij . We measure the deviation

V(0) − V∞ via concentration. Each term in the sum 1
m

∑m
j=1

〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉
1ik(0)1jk(0) is independent and

bounded,

−1 ≤
〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉
1ik(0)1jk(0) ≤ 1.

Applying Hoeffding’s inequality to each entry yields that with probability 1− δ/n2, for all i, j,

|Vij(0)−V∞ij | ≤
2
√

log(n2/δ)√
m

.

Taking a union bound over all entries, with probability 1− δ,

|Vij(0)−V∞ij | ≤
4
√

log(n/δ)√
m

.

Bounding the spectral norm, with probability 1− δ,

‖V(0)−V∞‖22 ≤ ‖V(0)−V∞‖2F ≤
∑
i,j

|Vij(0)−V∞ij |2

≤ 16n2 log(n/δ)

m
.

Taking m = Ω
(n2 log(n/δ)

λ2
0

)
therefore guarantees

‖V(0)−V∞‖2 ≤
λ0
4
.

Proof of Lemma B.2:
This is completely analogous to B.1. Recall G(0) is defined as,

Gij(0) =
1

m

m∑
k=1

〈
x

vk(0)
i , x

vk(0)
j

〉
c2k1ik(0)1jk(0)

with c2k = 1 and vk(0) ∼ N(0, α2I) are initialized i.i.d. Since each term is bounded like B.1. The same analysis gives

‖Gij(0)−G∞ij ‖22 ≤
16n2 log(n/δ)

m
.
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Taking m = Ω
(
n2 log(n/δ)

µ2
0

)
therefore guarantees,

‖G(0)−G∞‖2 ≤
µ0

4
.

Proof of Lemma B.3:
For a given R, define the event of a possible sign change of neuron k at point xi as

Ai,k(R) = {∃v : ‖v − vk(0)‖2 ≤ R, and 1{vk(0)>xi ≥ 0} 6= 1{v>xi ≥ 0}}

Ai,k(R) occurs exactly when |vk(0)>xi| ≤ R, since ‖xi‖2 = 1 and the perturbation may be taken in the direction of −xi.
To bound the probability Ai,k(R) we consider the probability of the event

P(Ai,k(R)) = P(|vk(0)>xi| < R) = P(|z| < R).

Here, z ∼ N(0, α2) since the product vk(0)>xi follows a centered normal distribution. The norm of ‖xi‖2 = 1 which
implies that z computes to a standard deviation α. Via estimates on the normal distribution, the probability on the event is
bounded like

P(Ai,k(R)) ≤ 2R

α
√

2π
.

We use the estimate for P(Ai,k(R)) to bound the difference between the surrogate Gram matrix and the Gram matrix at
initialization V(0).
Recall the surrogate V̂(t) is defined as

V̂ij(t) =
1

m

m∑
k=1

〈
x

vk(t)
⊥

i , x
vk(t)

⊥

k

〉
1ik(t)1jk(t).

Thus for entry i, j we have

|V̂ij(t)−Vij(0)| =
∣∣∣∣ 1

m

m∑
k=1

〈
x

vk(t)
⊥

i , x
vk(t)

⊥

j

〉
1ik(t)1jk(t)− 〈xvk(0)

⊥

i , x
vk(0)

⊥

j 〉1ik(0)1jk(0)

∣∣∣∣
This sum is decomposed into the difference between the inner product and the difference in the rectifier patterns terms
respectively: (〈

x
vk(t)

⊥

i ,x
vk(t)

⊥

j

〉
−
〈
x

vk(0)
⊥

i ,x
vk(0)

⊥

j

〉)
,

(
1ik(t)1jk(t)− 1ik(0)1jk(0)

)
.

Define

Y kij =

(〈
x

vk(t)
⊥

i , x
vk(t)

⊥

j

〉
−
〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉)(
1ik(t)1jk(t)

)
,

Zkij =

(〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉)(
1ik(t)1jk(t)− 1ik(0)1jk(0)

)
.

Then

|V̂ij(t)−Vij(0)| =
∣∣∣∣ 1

m

m∑
k=1

Y kij + Zkij

∣∣∣∣ ≤ ∣∣∣∣ 1

m

m∑
k=1

Y kij

∣∣∣∣+

∣∣∣∣ 1

m

m∑
k=1

Zkij

∣∣∣∣.
To bound | 1m

∑m
k=1 Y

k
ij | we bound each |Y kij | as follows.
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|Y kij | =

∣∣∣∣∣
(〈

x
vk(t)

⊥

i , x
vk(t)

⊥

j

〉
−
〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉)(
1ik(t)1jk(t)

)∣∣∣∣∣
≤
∣∣∣∣〈xvk(t)

⊥

i , x
vk(t)

⊥

j

〉
−
〈
x

vk(0)
⊥

i , x
vk(0)

⊥

j

〉∣∣∣∣
=

∣∣∣∣〈xi,xj〉 − 〈xvk(t)
i , x

vk(t)
j

〉
+
〈
x

vk(0)
i , x

vk(0)
j

〉
− 〈xi,xj〉

∣∣∣∣
=

∣∣∣∣∣
〈

x>i vk(t)

‖vk(t)‖2
· vk(t)

‖vk(t)‖2
,

x>j vk(t)

‖vk(t)‖2
· vk(t)

‖vk(t)‖2

〉
−
〈
x

vk(0)
i , x

vk(0)
j

〉∣∣∣∣∣
=

∣∣∣∣∣ x>i vk(t)

‖vk(t)‖2
·

x>j vk(t)

‖vk(t)‖2
−
〈
x

vk(0)
i , x

vk(0)
j

〉∣∣∣∣∣
=

∣∣∣∣∣ x>i vk(0)

‖vk(0)‖2
·

x>j vk(0)

‖vk(0)‖2
+ x>i

(
vk(t)

‖vk(t)‖2
− vk(0)

‖vk(0)‖2

)
·

x>j vk(t)

‖vk(t)‖2

+ x>j

(
vk(t)

‖vk(t)‖2
− vk(0)

‖vk(0)‖2

)
· x>i vk(0)

‖vk(0)‖2
−
〈
x

vk(0)
i , x

vk(0)
j

〉∣∣∣∣∣
≤

∣∣∣∣∣x>i
(

vk(t)

‖vk(t)‖2
− vk(0)

‖vk(0)‖2

)
·

x>j vk(t)

‖vk(t)‖2

∣∣∣∣∣+

∣∣∣∣∣x>i
(

vk(t)

‖vk(t)‖2
− vk(0)

‖vk(0)‖2

)
·

x>j vk(t)

‖vk(t)‖2

∣∣∣∣∣
≤ 2

∥∥∥∥ vk(t)

‖vk(t)‖2
− vk(0)

‖vk(0)‖2

∥∥∥∥
2

.

Therefore, we have ∣∣∣∣ 1

m

m∑
k=1

Y kij

∣∣∣∣ ≤ 2

m

m∑
k=1

∥∥∥∥ vk(t)

‖vk(t)‖2
− vk(0)

‖vk(0)‖2

∥∥∥∥
2

≤ 4Rv(2m/δ)1/d

α

≤ 8Rv(m/δ)1/d

α
,

where the first inequality follows from Lemma B.10. Note that the inequality holds with high probability 1− δ/2 for all i, j.

For the second sum, | 1m
∑m
k=1 Z

k
ij | ≤ 1

m

∑m
k=1 1Aik(R)+

1
m

∑m
k=1 1Ajk(R) so we apply Lemma D.1 to get, with probability

1− δ/2n2 ∣∣∣∣ 1

m

m∑
k=1

Zkij

∣∣∣∣ ≤ 2Rv

α
√

2π

(
2 +

2
√

2πα log (2n2/δ)

3mRv

)
≤ 8Rv

α
√

2π
,

since m satisfies m = Ω
( (m/δ)1/dn2 log(n/δ)

αλ0

)
. Combining the two sums for Y kij and Zkij , with probability 1− δ

2n2 ,

|V̂ij(t)−Vij(0)| ≤ 8Rv

α
√

2π
+

8Rv(m/δ)
1/d

α
≤ 12Rv(m/δ)

1/d

α
.

Taking a union bound, with probability 1− δ/2,

‖V̂(t)−V(0)‖F =

√∑
i,j

|V̂ij(t)−Vij(0)|2 ≤ 12nRv(m/δ)
1/d

α
.
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Bounding the spectral norm by the Frobenous norm,

‖V̂(t)−V(0)‖2 ≤
12nRv(m/δ)

1/d

α
.

Taking Rv = αλ0

96n(m/δ)1/d
gives the desired bound.

‖V̂(t)−V(0)‖2 ≤
λ0
8
.

Proof of Lemma B.4:
To bound ‖V(t)−V(0)‖2 we now consider ‖V(t)− V̂(t)‖2. The entries of Vij(t) are given as

Vij(t) =
1

m

m∑
k=1

〈
x

vk(t)
⊥

i , x
vk(t)

⊥

j

〉
1ik(t)1jk(t)

(
αck · gk
‖vk(0)‖2

)2

.

The surrogate V̂(t) is defined as

V̂ij(t) =
1

m

m∑
k=1

〈
x

vk(t)
⊥

i , x
vk(t)

⊥

j

〉
1ik(t)1jk(t).

The only difference is in the second layer terms. The difference between each entry is written as

|Vij(t)− V̂ij(t)| =
∣∣∣∣ 1

m

m∑
k=1

〈
x

vk(t)
⊥

i , x
vk(t)

⊥

j

〉
1ik(t)1jk(t)

((
αck · gk
‖vk(t)‖2

)2

− 1

)∣∣∣∣∣
≤ max

1≤k≤m

(
α2gk(t)2

‖vk(t)‖22
− 1

)
.

Write 1 =
α2g2k(0)

‖vk(0)‖22
, since ‖vk(t)‖2 is increasing in t according to (2.3)

α2gk(t)2

‖vk(t)‖22
− 1 =

α2gk(t)2

‖vk(t)‖22
− α2gk(0)2

‖vk(0)‖22
≤ 3Rg(m/δ)

1/d + 3Rv(m/δ)
1/d/α.

The above inequality is shown by considering different cases for the sign of the difference gk(t)− gk(0). Now∣∣∣∣∣α2gk(t)2

‖vk(t)‖22
− α2gk(0)2

‖vk(0)‖22

∣∣∣∣∣ =

∣∣∣∣∣
(

αgk(t)

‖vk(t)‖2
+

αgk(0)

‖vk(0)‖2

)(
αgk(t)

‖vk(t)‖2
− αgk(0)

‖vk(0)‖2

)∣∣∣∣∣
≤

∣∣∣∣∣
(
αgk(0) + αRg
‖vk(0)‖2

+
αgk(0)

‖vk(0)‖2

)(
αgk(t)

‖vk(t)‖2
− αgk(0)

‖vk(0)‖2

)∣∣∣∣∣
≤ (2 +Rg(m/δ)

1/d)

∣∣∣∣∣
(

αgk(t)

‖vk(t)‖2
− αgk(0)

‖vk(0)‖2

)∣∣∣∣∣
≤ (2 +Rg(m/δ)

1/d) max

(∣∣∣∣α(gk(0) +Rg)

‖vk(0)‖2
− αgk(0)

‖vk(0)‖2

∣∣∣∣, ∣∣∣∣ α(gk(0)−Rg)
‖vk(0)‖2 +Rv

− αgk(0)

‖vk(0)‖2

∣∣∣∣
)

≤ (2 +Rg(m/δ)
1/d) max

(
Rg(m/δ)

1/d, Rg(m/δ)
1/d +Rv(m/δ)

1/d/α
)

≤ 3Rg(m/δ)
1/d + 3Rv(m/δ)

1/d/α,

where the second inequality holds due to Lemma B.10 with probability 1− δ over the initialization.
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Hence:

‖V̂(t)−V(t)‖2 ≤ ‖V̂(t)−V(t)‖F =

√∑
i,j

|V̂ij(t)−Vij(t)|2 ≤ 3nRg(m/δ)
1/d + 3nRv(m/δ)

1/d/α.

Substituting Rv, Rg gives

‖V̂(t)−V(t)‖2 ≤
λ0
8
.

Now we use Lemma B.3 to get that with probability 1− δ

‖V̂(t)−V(0)‖2 ≤
λ0
8
.

Combining, we get with probability 1− δ

‖V(t)−V(0)‖2 ≤
λ0
4
.

We note that the source for all the high probability uncertainty 1 − δ all arise from initialization and the application of
Lemma B.10.

Proof of Lemma B.5:
To prove the claim we consider each entry i, j of G(t)−G(0). We have,

|Gij(t)−Gij(0)| =

∣∣∣∣∣ 1

m

m∑
k=1

σ

(
vk(t)>xi
‖vk(t)‖2

)
σ

(
vk(t)>xj
‖vk(t)‖2

)
− σ

(
vk(0)>xi
‖vk(0)‖2

)
σ

(
vk(0)>xj
‖vk(0)‖2

)∣∣∣∣∣
≤ 1

m

∣∣∣∣∣
m∑
k=1

σ

(
vk(t)>xi
‖vk(t)‖2

)
σ

(
vk(t)>xj
‖vk(t)‖2

)
− σ

(
vk(t)>xi
‖vk(t)‖2

)
σ

(
vk(0)>xj
‖vk(0)‖2

)∣∣∣∣∣
+

1

m

∣∣∣∣∣
m∑
k=1

σ

(
vk(t)>xi
‖vk(t)‖2

)
σ

(
vk(0)>xj
‖vk(0)‖2

)
− σ

(
vk(0)>xi
‖vk(0)‖2

)
σ

(
vk(0)>xj
‖vk(0)‖2

)∣∣∣∣∣
≤ 2

∥∥∥∥ vk(t)

‖vk(t)‖2
− vk(0)

‖vk(0)‖2

∥∥∥∥
2

≤ 2R̃v(m/δ)
1/d

α
.

In the last inequality we used the fact that∥∥∥∥ vk(0)

‖vk(0)‖2
− vk(t)

‖vk(t)‖2

∥∥∥∥
2

≤ ‖vk(t)− vk(0)‖2
‖vk(0)‖2

≤ (m/δ)1/d

α
‖vk(t)− vk(0)‖2,

where the first inequality uses that ‖vk(0)‖2 ≤ ‖vk(t)‖2 and is intuitive from a geometrical standpoint. Algebraically given
vectors a,b, then for any c ≥ 1∥∥∥∥ ac

‖a‖2
− b

‖b‖2

∥∥∥∥2
2

=

∥∥∥∥ a

‖a‖2
− b

‖b‖2
+ (c− 1)

a

‖a‖2

∥∥∥∥2
2

=

∥∥∥∥ a

‖a‖2
− b

‖b‖2

∥∥∥∥2
2

+ (c− 1)2 + 2(c− 1)

〈
a

‖a‖2
− b

‖b‖2
,

a

‖a‖2

〉
≥
∥∥∥∥ a

‖a‖2
− b

‖b‖2

∥∥∥∥2
2

+ (c− 1)2 ≥
∥∥∥∥ a

‖a‖2
− b

‖b‖2

∥∥∥∥2
2

.

The first inequality in the line above is since 〈a,b〉
‖a‖2,‖b‖2 ≤ 1.

31



Hence,

‖G(t)−G(0)‖2 ≤ ‖G(t)−G(0)‖F =

√∑
i,j

|Gij(t)−Gij(0)|2 ≤ 2nR̃v(m/δ)
1/d

α
√

2π
.

Taking R̃v =
√
2παµ0

8n(m/δ)1/d
gives the desired bound. Therefore, with probability 1− δ,

‖G(t)−G(0)‖2 ≤
µ0

4
.

Now that we have established bounds on V(t),G(t) given that the parameters stay near initialization, we show that the
evolution converges in that case:

Proof of Lemma B.6:
Consider the squared norm of the predictions ‖f(t)− y‖22. Taking the derivative of the loss with respect to time,

d

dt
‖f(t)− y‖22 = −2(f(t)− y)>

(
G(t) +

V(t)

α2

)
(f(t)− y).

Since we assume that λmin

(
G(t) + V(t)

α2

)
≥ ω

2 , the derivative of the squared norm is bounded as

d

dt
‖f(t)− y‖22 ≤ −ω‖f(t)− y‖22.

Applying an integrating factor yields

‖f(t)− y‖22 exp(ωt) ≤ C.

Substituting the initial conditions, we get

‖f(t)− y‖22 ≤ exp(−ωt)‖f(0)− y‖22.

For now, assuming the linear convergence derived in Lemma B.6, we bound the distance of the parameters from initialization.
Later we combine the bound on the parameters and Lemmas B.4, B.5 bounding the least eigenvalue of Λ(t), to derive a
condition on the over-parametrization m and ensure convergence from random initialization.

Proof of Lemma B.7:
Denote f(xi) at time t as fi(t). Since ‖xvk(t)

⊥

i ‖2 ≤ ‖xi‖2 = 1, we have that∥∥∥∥dvk(t)

dt

∥∥∥∥
2

=

∥∥∥∥ n∑
i=1

(yi − fi(t))
1√
m
ckgk(t)

1

‖vk(t)‖2
xv⊥

i 1ik(t)

∥∥∥∥
2

≤ 1√
m

n∑
i=1

|yi − fi(t)|
ckgk(t)

‖vk(t)‖2
.

Now using (2.3) and the initialization ‖vk(0)‖ = αgk(0), we bound
∣∣∣∣ ckgk(t)‖vk(t)‖2

∣∣∣∣,∣∣∣∣ ckgk(t)

‖vk(t)‖2

∣∣∣∣ ≤ ∣∣∣∣ck(gk(0) +Rg
‖vk(0)‖2

)∣∣∣∣ ≤ 1

α

(
1 + αRg/‖vk(0)‖2

)
.
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By Lemma B.10, we have that with probability 1− δ over the initialization,

α/‖vk(0)‖2 ≤ C(m/δ)1/d.

Hence αRg/‖vk(0)‖2 ≤ 1. This fact bounds
∣∣∣∣ ckgk(t)‖vk(t)‖2

∣∣∣∣ with probability 1− δ for each k,

∣∣∣∣ ckgk(t)

‖vk(t)‖2

∣∣∣∣ ≤ 2/α.

Substituting the bound, ∥∥∥∥ ddtvk(t)

∥∥∥∥
2

≤ 2

α
√
m

n∑
i=1

|fi(t)− yi|

≤ 2
√
n

α
√
m
‖f(t)− y‖2

≤ 2
√
n

α
√
m

exp(−ωt/2)‖f(0)− y‖2.

Thus, integrating and applying Jensen’s inequality,

‖vk(t)− vk(0)‖2 ≤
∫ s

0

∥∥∥∥dvk(s)

dt

∥∥∥∥
2

ds ≤ 4
√
n‖f(0)− y‖2
αω
√
m

.

Note that the condition |gk(t)−gk(0)| ≤ Rg is stronger than needed and merely assuring that |gk(t)−gk(0)| ≤ 1/(m/δ)1/d

suffices.

Analogously we derive bounds for the distance of gk from initialization.

Proof of Lemma B.8:
Consider the magnitude of the derivative dgk

dt ,∣∣∣∣dgkdt
∣∣∣∣ =

∣∣∣∣ 1√
m

n∑
j=1

(fj − yj)
ck
‖vk‖2

σ(v>k xj)

∣∣∣∣.
Note ∣∣∣∣ ck

‖vk‖2
σ(v>k xj)

∣∣∣∣ =

∣∣∣∣σ( v>k xj
‖vk‖2

)∣∣∣∣ ≤ 1

Thus applying Cauchy Schwartz∣∣∣∣dgk(t)

dt

∣∣∣∣ ≤ 2
√
n√
m
‖f(t)− y‖2 ≤

2
√
n√
m

exp(−ωt/2)‖f(0)− y‖2,

and integrating from 0 to t yields

|gk(t)− gk(0)| ≤
∫ t

0

∣∣∣∣dgkdt (s)

∣∣∣∣ds ≤ ∫ t

0

2
√
n√
m

exp(−ωs/2)‖f(0)− y‖2ds ≤
4
√
n‖y − f(0)‖2√

mω
.

Proof of Lemma B.9:
Consider the ith entry of the network at initialization,

fi(0) =
1√
m

m∑
k=1

ckσ

(
gkv
>
k xi

‖vk‖2

)
.
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Since the network is initialized randomly and m is taken to be large we apply concentration to bound fi(0) for each i.

Define zk = ckσ

(
gk(0)vk(0)

>xi

‖vk(0)‖2

)
. Note that zk are independent sub-Gaussian random variables with

‖zk‖ψ ≤ ‖N(0, 1)‖ψ = C.

Here ‖ · ‖ψ denotes the 2-sub-Gaussian norm, (see (Vershynin, 2018) for example). Applying Hoeffding’s inequality bounds
fi(0) as

P(|
√
mfi(0)| > t) ≤ 2 exp

(
− t2/2∑m

k=1 ‖zk‖ψ2

)
= 2 exp

(
−t2

2mC

)
.

Which gives with probability 1− δ/n that

|fi(0)| ≤ C̃
√

log (n/δ).

Now with probability 1− δ we have that, for each i,

|fi(0)− yi| ≤ |yi|+ C̃
√

log(n/δ) ≤ C2

√
log(n/δ).

Since yi = O(1). Hence, with probability 1− δ,

‖f(0)− y‖2 ≤ C
√
n log(n/δ).

Proof of Lemma B.10:
At initialization vk ∼ N(0, α2I) so the norm behaves like ‖vk(0)‖22 ∼ α2χd. The cumulative density of a chi-squared
distribution with d degrees of freedom behaves like F (x) = Θ(xd/2) for small x so we have that with probability 1− δ

m , that
‖vk(0)‖2 ≥ α(m/δ)

1
d where d is the input dimension. Applying a union bound, with probability 1− δ, for all 1 ≤ k ≤ m,

1

‖vk(0)‖2
≤
(
m/δ

)
α

1/d

.

Now by (2.3) for t ≥ 0, ‖vk(t)‖2 ≥ ‖vk(0)‖2 so

1

‖vk(t)‖2
≤ 1

‖vk(0)‖2
≤
(
m/δ

)
α

1/d

.

E. Proofs of Lemmas from Appendix C and Proposition 2
Proof of Proposition 2:
The proof of proposition 2, follows the proofs of Theorems 4.1, 4.2, and relies on Theorem C.1. In particular for each α > 0
at initialization, take ωα(s) = λmin(Λ(s)) and define the auxiliary ωα,0 = λmin(V∞/α2 + G∞). Then we have that

ωα,0 ≥ λ0/α2 + µ0 > 0.

Hence, by the same arguments of Theorem 4.1, 4.2 for ωα(s) if m =
(
n4 log(n/δ)/α4ω4

α,0

)
, then we have that the

conditions of Theorem C.1 are satisfied, namely, λ(s) ≥ λ0

2 and µ(s) ≥ µ0

2 . Taking ηα = O

(
1

‖Λ(s)‖2

)
, then the required
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step-size for convergence is satisfied. This follows from the same argument of Theorems 4.1, 4.2 and depends on the fact
that ‖Λ(s)−Λ(0)‖2 ≤ 1

α2 ‖V(s)−V∞(0)‖2 + ‖G(s)−G(0)‖2. Now we consider the term, αωα,0. For α = 1,

αωα,0 = λmin(H∞).

Which matches the results of un-normalized convergence. In general, we have that

αωα,0 ≥ α(λ0/α
2 + µ0) ≥ min{λ0, µ0}.

Therefore the bound on m is taken to be independent of α as m = Ω

(
n4 log(n/δ)
min{µ4

0,λ
4
0}

)
which simplifies the presentation. Now

for each α the effective convergence rate is dictated by the least eigenvalue ωα and the allowed step-size ηα as,(
1− ηαωα

)
.

Then taking α∗ = argminα>0(1− ηαωα) we have that

(1− ηα∗ωα∗) ≤ (1− η1ω1).

which corresponds to the un-normalized converegence rate. Therefore as compared with un-normalized training we have
that for α∗, WN enables a faster convergence rate.

Proof of Lemma C.1:
Fix R, without the loss of generality we write Si for Si(R). For each k, vk(0) is initialized independently via ∼ N(0, α2I),
and for a given k, the event 1ik(0) 6= 1{v>xi ≥ 0} corresponds to |vk(0)>xi| ≤ R. Since ‖xi‖2 = 1, vk(0)>xi ∼
N(0, α2). Denoting the event that an index k ∈ Si as Ai,k, we have

P(Ai,k) ≤ 2R

α
√

2π
.

Next the cardinality of Si is written as

|Si| =
m∑
k=1

1Ai,k
.

Applying Lemma D.1, with probability 1− δ/n,

|Si| ≤
2mR

α
√

2π
+

16 log(n/δ)

3
.

Taking a union bound, with probability 1− δ, for all i we have that

|Si| ≤
2mR

α
√

2π
+

16 log(n/δ)

3
.

Proof of Lemma C.2:
To show this we bound the difference gk(s)− gk(0) as the sum of the iteration updates. Each update is written as∣∣∣∣∂L(s)

∂gk

∣∣∣∣ =

∣∣∣∣ 1√
m

n∑
i=1

(fi(s)− yi)
ck

‖vk(s)‖2
σ(vk(s)>xi)

∣∣∣∣.
As
∣∣∣∣ckσ(vk(s)

>xi

‖vk(s)‖2

)∣∣∣∣ ≤ 1,

∣∣∣∣∂L(s)

∂gk

∣∣∣∣ ≤ 1√
m

n∑
i

|fi(s)− yi| ≤
√
n√
m
‖f(s)− y‖2.
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By the assumption in the statement of the lemma,∣∣∣∣∂L(s)

∂gk

∣∣∣∣ ≤ √n(1− ηω
2 )s/2‖f(0)− y‖2√

m
.

Hence bounding the difference by the sum of the gradient updates:

|gk(K + 1)− gk(0)| ≤ η
K∑
s=0

∣∣∣∣∂L(s)

∂gk

∣∣∣∣ ≤ 4η
√
n‖f(0)− y‖2√

m

K∑
s=0

(1− ηω

2
)s/2.

The last term yields a geometric series that is bounded as

1

1−
√

1− ηω
2

≤ 4

ηω
,

Hence

|gk(K + 1)− gk(0)| ≤ 4
√
n‖f(0)− y‖2
ω
√
m

.

Proof of Lemma C.3:

To show this we write vk(s) as the sum of gradient updates and the initial weight vk(0). Consider the norm of the gradient
of the loss with respect to vk,

‖∇vk
L(s)‖2 =

∥∥∥∥ 1√
m

n∑
i=1

(fi(s)− yi)
ckgk(s)

‖vk(s)‖2
1ik(s)x

vk(s)
⊥

i

∥∥∥∥
2

.

Since ‖vk(s)‖2 ≥ ‖vk(0)‖2 ≥ α(δ/m)1/d with probability 1 − δ over the initialization, applying Cauchy Schwartz’s
inequality gives

‖∇vk
L(s)‖2 ≤

(1 +Rg(m/δ)
1/d)
√
n‖f(s)− y‖2

α
√
m

. (E.1)

By the assumption on ‖f(s)− y‖2 this gives

‖∇vk
L(s)‖2 ≤

2
√
n(1− ηω

2 )s/2‖f(0)− y‖2
α
√
m

.

Hence bounding the parameter trajectory by the sum of the gradient updates:

‖vk(K + 1)− vk(0)‖2 ≤ η
K∑
s=0

‖∇vk
L(s)‖2 ≤

2
√
n‖f(0)− y‖2
α
√
m

K∑
s=1

(
1− ηω

2

)s/2
yields a geometric series. Now the series is bounded as

1

1−
√

1− ηω
2

≤ 4

ηω
,

which gives

‖vk(K + 1)− vk(0)‖2 ≤
8
√
n‖f(0)− y‖2
α
√
mω

.
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