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Abstract

We investigate quantum teleportation in the two-copy setting based on GHZ measurement and

propose the detailed protocol. The output state after the teleportation is analyzed and the protocol

is proved to be trace preserving. The general expression of the optimal teleportation fidelity is

derived. The optimal teleportation fidelity is shown to be a linear function of two-copy fully

entangled fraction, which is invariant under local unitary transformations. At last, we show two-

copy teleportation based on GHZ measurement can be better than one copy teleportation by an

explicit example, which is amenable to demonstration in experiments. Our study is significant

for improving the fidelity of teleportation for some limited resource which cannot be significantly

distilled. Moreover, it can inspire us to find many other more efficient protocols for teleportation.

PACS numbers: 03.67.-a, 03.65.Ud, 03.65.Ta
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I. INTRODUCTION

Quantum teleportation plays an important role in quantum information processing [1],

which gives ways to transmit an unknown quantum state from a sender traditionally named

“Alice” to a receiver “Bob” who are spatially separated by using classical communication

and quantum resources [2–10]. In [11, 12], the authors considered the one copy optimal

teleportation: Alice and Bob previously share a pair of particles in an arbitrary mixed

entangled state χ. In order to teleport an unknown state to Bob, Alice performs a joint Bell

measurement on her particles and tells her results to Bob by classical communication. Bob

tries his best to choose a particular unitary transformation to get the maximal transmission

fidelity. The transmission fidelity of such optimal teleportation is given by the fully entangled

fraction [13, 14] of the quantum resource. It shows that when the resource χ is a maximally

entangled pure state, the corresponding optimal fidelity is equal to 1. However, Alice and

Bob usually share a mixed entangled state due to decoherence, and the fidelity is less than

1. In this sense, one goal of quantum teleportation or quantum information theory is to find

the optimal ways to make use of noisy resources or establish better entanglement [15].

For quantum teleportation, to gain better entanglement by distillation first[16], which

aims to converting mixed entanglement to singlets by using many copies of the entangled

resources, is one available way to increase quantum teleportation fidelity. The distillation of

pure states is often referred to as entanglement concentration [17]. For mixed states, since

the distillation protocol presented in [16], fruitful results have been obtained [18–21]. It has

been found that some entangled quantum mixed states, called bound entangled states, are

not distillable [22]. The distillation procedure is complicated and may have to be repeated

for infinitely many times to bring out a singlet. Moreover, in each round the desired results

are usually obtained probabilistically, sometimes with an extremely low possibility to get an

expected measurement outcome.

Another method to increase quantum teleportation fidelity is to improve the traditional

teleportation protocol. In Ref. [23], we have proposed a two-copy quantum teleportation

protocol based on Bell measurement. The corresponding optimal teleportation fidelity is

proved to be better than that in traditional one copy teleportation. Different teleportation

protocols give rises to different fidelities. Therefore it is interesting and meaningful to develop

novel teleportation protocols.
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In this paper, we design a teleportation protocol in two-copy setting. This teleportation

is based on three-particle GHZ measurement. We analyze the output state in this protocol

for arbitrary input state and show this protocol is trace preserving. After that, the corre-

sponding optimal teleportation fidelity is calculated, which is shown to be a linear function

of two-copy fully entangled fraction we defined in this corresponding protocol. Finally, this

two-copy teleportation protocol is demonstrated to be better than one copy traditional tele-

portation protocol in some cases, which is amenable to demonstration in experiments. Our

work could simulate further study on efficient teleportation protocols.

II. TWO-COPY TELEPORTATION PROTOCOL BASED ON GHZ MEASURE-

MENT

Suppose H is the Hilbert space. The picture of the protocol is like Figure 1: Alice

and Bob share two pairs of particles, which are both in the same mixed entangled state

χ. Alice wants to transmit an unknown state |ϕ⟩ to Bob. Firstly, Alice performs a joint

rotation W on particle 1 and particle 3, then she conducts a joint GHZ measurement on

her three particles. After that, her measurement results are delivered to Bob by classical

means. Secondly, according to the measurement results, Bob chooses corresponding unitary

transformations {T} : H ⊗H → H ⊗H to meet the maximum teleportation fidelity. Since

Bob’s two particles are in H ⊗H space, while the unknown state |ϕ⟩ Alice wants to deliver

is in H space, Bob also needs to take partial trace on his particles, then we can realize the

two-copy optimal teleportation based on GHZ measurement.

Let {|j⟩, j = 0, ..., n− 1, n < ∞} be an orthogonal normalized basis of an n-dimensional

Hilbert space H. A is an arbitrary linear operator: H → H, which can be defined by the

corresponding n × n matrix as A|j⟩ =
∑n−1

k=0 ajk|k⟩, aij ∈ C. Consider that W is a unitary

matrix: H⊗H → H⊗H defined as W |jk⟩ =
∑n−1

j′,k′=0W
jk
j′k′|j′k′⟩. One reason why we intro-

duce the unitary matrix W into this problem is to ensure that the two-copy fully entangled

fraction we defined in this protocol is an invariant under local unitary transformation, as it

can be seen from the final result.

We also need to introduce a set of unitary matrices Ust in H as follows: Ust = htgs, in

which both h and g are n×nmatrices: h|j⟩ = |(j+1)/ mod n⟩ and g|j⟩ = wj|j⟩, with w =

exp{−2iπ/n}. Then we have the following relations [24]: tr(U †
stUs′t′) = nδtt′δss′ , UstU

†
st =

3
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FIG. 1. Scheme of two-copy teleportation protocol based on GHZ measurement. Assume Alice and

Bob share two copies of entangled resources χ12 ⊗ χ34, with particles 1 and 3 in Alice’s side, while

particles 2 and 4 in Bob’s side. To teleport input state ρin in particle 0, firstly, Alice performs a

joint local unitary operation W on particles 1 and 3 to make these particles correlated. Then she

makes a joint GHZ measurement on particles 0, 1 and 3 and informs Bob the measurement results

by classical communication. According to these measurement results, Bob chooses corresponding

unitary transformations {T} on particles 2 and 4 to restore the input state ρin on particle 2.

In×n. The generalized Bell states [11] can be given as: |Φst⟩ = (1⊗Ust)|Φ⟩, where the usual

maximal entangled pure state |Φ00⟩ = |Φ⟩ = 1√
n

∑n−1
j=0 |jj⟩. The n2 generalized Bell states

{|Φst⟩} form a complete orthogonal normalized basis of H ⊗H space.

In the new protocol, we need to define a series of complete orthogonal normalized gener-

alized GHZ-states {|Φs
rm⟩} in H ⊗H ⊗H:

|Φs
rm⟩ = (I ⊗ U s

rm)|Φ0
00⟩ =

1√
n

n−1∑
j,k,l=0

(U s
rm)jkl|jkl⟩, (1)

where |Φ0
00⟩ = 1√

n

∑n−1
j=0 |jjj⟩, to realize Alice’s joint GHZ measurement of her three particles.

The corresponding unitary matrices {U s
rm} are given by: U s

rm = hrgs⊗hm, thus we have the

relation: tr(U s
rmU

s′†
r′m′) = n2δr,r′δm,m′δs,s′ , U s

rmU
s†
rm = In2×n2 . Then the explicit expressions

of the generalized GHZ-states {|Φs
rm⟩} read:

|Φs
rm⟩ =

1√
n

∑
j

wjs|j, j + r, j +m⟩. (2)
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Associated with the generalized GHZ-states {|Φs
rm⟩}, one can introduce a set of linear op-

erators {Ũ s†
rm}:

Ũ s†
rm|j⟩ =

∑
kl

(U s
rm)

∗
jkl|kl⟩ =

∑
j′,k,l

((U s
rm)

∗
j′kl|k, l⟩⟨j′|)|j⟩, (3)

which map H → H ⊗H. It is easy to show that the correspondence between {|Φs
rm⟩} and

{Ũ s†
rm} is indeed one to one . Moreover one can give the explicit expressions of the operators

:

Ũ s†
rm =

∑
j

w−js|j + r, j +m⟩⟨j| = (hrgs∗ ⊗ hm)E, (4)

where E =
∑

j |jj⟩⟨j|. These unitary operators {Ũ s†
rm} satisfy that: Ũ s

rmŨ
s†
rm = In×n, which

maps H → H; Ũ s†
rmŨ

s
rm = (In×n ⊗ hm−r)(

∑
j |jj⟩⟨jj|)(In×n ⊗ hm−r)†, which maps H ⊗H →

H ⊗H. Any operator A in H, satisfies the following relation:∑
r,m,s

Ũ s†
rmA Ũ

s
rm = ntr{A} In×n ⊗ In×n. (5)

Throughout this paper we adopt the standard notations: for any matrix A ∈ End(H),

Aj is an embedding operator in the tensor space H ⊗H ⊗ · · · ⊗H, which acts as A on the

j-th space and identity on the other factor spaces; for any matrix U ∈ End(H ⊗ H), Ujk

is an embedding operator in the tensor space, which acts as U on the j-th and k-th spaces

and identity on the factor spaces. The similar procedure can be generalized to any matrices

by embedding them in the tensor space. After some tedious calculation, we have:

Theorem 1. If Alice and Bob share two pairs of particles which are both in the same

arbitrary mixed entangled state χ, the quantum channel of the two-copy teleportation protocol

with the choices of W and {T s
rm} is:

Λ
{T s

rm,W}
(χ⊗2) (ρin) =

1

n3

∑
s1,t1

∑
s2,t2

∑
s′1,t

′
1

∑
s′2,t

′
2

⟨Φs1t1 |χ|Φs′1t
′
1
⟩⟨Φs2t2 |χ|Φs′2t

′
2
⟩

× tr4{
∑
r,m,s

(T s
rm)24(Us1t1)2(Us2t2)4(W )24(Ũ

s†
rm)2(ρin)2

(Ũ s
rm)24(W

†)24(Us′1t
′
1
)†2(Us′2t

′
2
)†4(T

s
rm)

†
24}.

where ρin is an arbitrary input state.

Proof. Suppose the unknown initial state that Alice wants to teleport is |ϕ⟩ =
∑

ν αν |ν⟩.

Next we divide the proof into two parts: pure state as input state and mixed state as input

state.
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1). Entangled pure state as resource

Let χ(2) be a two-copy of an arbitrary entangled pure state: χ(2) = |Ψ⟩⟨Ψ|, and |Ψ⟩

can be written as: |Ψ⟩ =
∑n−1

j,k=0

∑n−1
l,m=0 ajk|jk⟩ ⊗ alm|lm⟩, where

∑n−1
j,k=0 |ajk|2 = 1.

Alice acts unitary operator W on her two resource particles: |Ψ′⟩ = W13|Ψ⟩1234 =∑n−1
j,k=0

∑n−1
l,m=0

∑n−1
j′,l′=0 ajkalmW

j′l′

jl |j′kl′m⟩. Now the initial states that Alice and Bob share

together is: |ϕ⟩ ⊗ |Ψ′⟩ =
∑n−1

j,k=0

∑n−1
l,m=0

∑n−1
j′,l′,ν=0 ajkalmW

j′l′

jl αν |νj′kl′m⟩.

After Alice’s joint GHZ measurement based on |Φs
rm⟩, we get: ⟨Φs

rm|(|ϕ⟩ ⊗ |Ψ′⟩) =

1√
n
A2A4W24(Ũ

s†
rm)2|ϕ⟩2. Bob receives Alice’s measurement results through a classical chan-

nel, and according to the results, he acts unitary operators T s
rm ∈ {T} on his two re-

source particles to meet the maximum fidelity. Then the resulting state in Bob becomes

1√
n
(T s

rm)24A2A4W24(Ũ
s†
rm)2|ϕ⟩2. After Bob taking partial trace on particle 4, the resulting

quantum channel and the output state can be expressed as:

Λ
{T s

rm,W}
(χ⊗2) (ρin)

=
1

n
tr4{

∑
r,m,s

(T s
rm)24(A)2(A)4(W )24(Ũ

s†
rm)2(ρin)2(Ũ

s
rm)24(W

†)24(A)
†
2(A)

†
4(T

s
rm)

†
24}.

2). Entangled mixed state as resource

Let χ(2) be a two-copy of an arbitrary entangled mixed state χ(2) =
∑

α,β PαPβ|Ψαβ⟩⟨Ψαβ|,

|Ψαβ⟩ =
∑n−1

j,k=0

∑n−1
l,m=0 a

(α)
jk |jk⟩ ⊗ a

(β)
lm |lm⟩, where 0 ≤ Pα ≤ 1, and

∑
α Pα = 1. Following

the same procedure as that of the pure state case, we have

Λ
{T s

rm,W}
(χ⊗2) (ρin) =

1

n

∑
α,β

PαPβ tr4{
∑
r,m,s

(T s
rm)24(A

(α))2(A
(β))4(W )24(Ũ

s†
rm)2(ρin)2

(Ũ s
rm)24(W

†)24(A
(α))†2(A

(β))†4(T
s
rm)

†
24}.

Since each matrix A(α) can be decomposed in the basis of Ust: A
(α) =

∑
s,t a

(α)
st Ust, by

using the relation [11]: n
∑

α pαa
(α)
st a

(α)∗
s′t′ = ⟨Φst|χ|Φs′t′⟩, we find:

Λ
{T s

rm,W}
(χ⊗2) (ρin) =

1

n3

∑
s1,t1

∑
s2,t2

∑
s′1,t

′
1

∑
s′2,t

′
2

⟨Φs1t1 |χ|Φs′1t
′
1
⟩⟨Φs2t2 |χ|Φs′2t

′
2
⟩

× tr4{
∑
r,m,s

(T s
rm)24(Us1t1)2(Us2t2)4(W )24(Ũ

s†
rm)2(ρin)2

(Ũ s
rm)24(W

†)24(Us′1t
′
1
)†2(Us′2t

′
2
)†4(T

s
rm)

†
24}.

Despite that we have supposed the input state is pure, ρin = |ϕ⟩⟨ϕ|, in the above derivation,

the results can be generalized directly to arbitrary mixed state because the channel is linear.
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Remark The quantum channel of two-copy teleportation protocol based on GHZ mea-

surement is trace preserving. In fact,

tr[Λ
({T s

rm,W})
(χ⊗2) (ρin)]

=
1

n3

∑
s1,t1

∑
s2,t2

∑
s′1,t

′
1

∑
s′2,t

′
2

⟨Φs1t1 |χ|Φs′1t
′
1
⟩⟨Φs2t2 |χ|Φs′2t

′
2
⟩

× tr2{tr4{
∑
r,m,s

(T s
rm)24(Us1t1)2(Us2t2)4(W )24(Ũ

s†
rm)2(ρin)2

(Ũ s
rm)24(W

†)24(Us′1t
′
1
)†2(Us′2t

′
2
)†4(T

s
rm)

†
24}}

=
1

n3

∑
s1,t1

∑
s2,t2

∑
s′1,t

′
1

∑
s′2,t

′
2

⟨Φs1t1 |χ|Φs′1t
′
1
⟩⟨Φs2t2 |χ|Φs′2t

′
2
⟩

×{
∑
r,m,s

tr24

{
(Us1t1)2(Us2t2)4(W )24(Ũ

s†
rm)2(ρin)2(Ũ

s
rm)24(W

†)24(Us′1t
′
1
)†2(Us′2t

′
2
)†4

}
=

1

n2
tr{ρin}

∑
s1,t1

∑
s2,t2

∑
s′1,t

′
1

∑
s′2,t

′
2

⟨Φs1t1 |χ|Φs′1t
′
1
⟩⟨Φs2t2 |χ|Φs′2t

′
2
⟩ tr{Us1t1U

†
s′1t

′
1
} tr{Us2t2U

†
s′2t

′
2
}

= tr(χ) tr(χ) = 1. (6)

In the third equality, we have used the identity (5).

Based on Theorem 1, we are ready to obtain the optimal fidelity of the above telepor-

tation protocol. At first, we introduce two-copy fully entangled fraction based on GHZ

measurement as

F (χ⊗2) = 1
n
max{W,T s

rm}
∑

r,m,s,j{⟨Φ|12⟨Φ|34[W24(h
rgs∗)2(h

m)4(Mj)24(T
s
rm)24](χ12χ34)

[(T s†
rm)24(M

†
j )24(h

rgs∗)†2(h
m)†4W

†
24]|Φ⟩12|Φ⟩34}

(7)

where Mj =
∑

k |kk⟩⟨kj|.

Theorem 2. Two-copy fully entangled fraction F (χ⊗2) is invariant under local unitary

transformations.

Proof. Suppose unitary operator Ωa ∈ {Un×n ⊗Un×n} acts on Alice’s resource particles and
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Ωb ∈ {Un×n ⊗ Un×n} acts on Bob’s particles, then we have

F ((Ωa)13 ⊗ (Ωb)24χ
⊗2(Ωa)

†
13 ⊗ (Ωb)

†
24)

=
1

n
max

{W,T s
rm}

∑
r,m,s,j

{⟨Φ|12⟨Φ|34[W24(h
rgs∗)2(h

m)4(Mj)24(T
s
rm)24]((Ωa)13(Ωb)24χ12χ34

(Ωa)
†
13(Ωb)

†
24)[(T

s†
rm)24(M

†
j )24(h

rgs∗)†2(h
m)†4W

†
24]|Φ⟩12|Φ⟩34}

=
1

n
max

{W,T s
rm}

∑
r,m,s,j

{⟨Φ|12⟨Φ|34[(Ωa)
T
24W24(h

rgs∗)2(h
m)4(Mj)24(T

s
rm)24]((Ωb)24χ12χ34(Ωb)

†
24)

[(T s†
rm)24(M

†
j )24(h

rgs∗)†2(h
m)†4W

†
24(Ωa)

∗
24]|Φ⟩12|Φ⟩34}

= F (χ⊗2).

Theorem 3. The optimal teleportation fidelity fmax(χ
⊗2) for the two-copy teleportation

protocol based on GHZ measurement only depends on the fully entangled fraction F (χ⊗2) in

Eq. (7) as follow:

fmax(χ
⊗2) =

nF (χ⊗2)

(n+ 1)
+

1

n+ 1
. (8)

Proof. We first introduce U(n) as an irreducible n-dimensional representation of unitary

group denoted by G [11]. Using the Schur’s lemma, we can get the fidelity of our two-copy
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teleportation protocol by the method developed in [11]:

f(χ⊗2) = ⟨ϕin|Λ{T s
rm,W}

(χ) (ρin)|ϕin⟩

=
1

n3

∑
s1,t1

∑
s2,t2

∑
s′1,t

′
1

∑
s′2,t

′
2

⟨Φs1t1 |χ|Φs′1t
′
1
⟩⟨Φs2t2 |χ|Φs′2t

′
2
⟩

×
∑

r,m,s,j

⟨00|
∫
G

[U(g)† ⊗ U(g)†]⟨j|4[(T s
rm)24(Us1t1)2(Us2t2)4(W )24(Ũ

s†
rm)2]

⊗ [(Ũ s
rm)24(W

†)24(U
†
s′1t

′
1
)2(U

†
s′2t

′
2
)4(T

s†
rm)24]|j⟩4[U(g)⊗ U(g)]dg|00⟩

=
1

n4(n+ 1)

∑
s1,t1

∑
s2,t2

∑
s′1,t

′
1

∑
s′2,t

′
2

⟨Φs1t1 |χ|Φs′1t
′
1
⟩⟨Φs2t2 |χ|Φs′2t

′
2
⟩

×
∑

r,m,s,j

{tr24[(T s
rm)24(Us1t1)2(Us2t2)4(W )24(Ũ

s†
rm)2⟨j|4]

tr24[|j⟩4(Ũ s
rm)24W

†
24(U

†
s′1t

′
1
)2(U

†
s′2t

′
2
)4(T

s†
rm)24]

+ tr2[⟨j|4(T s
rm)24(Us1t1)2(Us2t2)4(W )24(Ũ

s†
rm)2

(Ũ s
rm)24(W

†)24(U
†
s′1t

′
1
)2(U

†
s′2t

′
2
)4(T

s†
rm)24|j⟩4]}

=
1

n4(n+ 1)

∑
s1,t1

∑
s2,t2

∑
s′1,t

′
1

∑
s′2,t

′
2

∑
r,m,s,j

{⟨Φ|12⟨Φ|34[(U †
s1t1)2(U

†
s2t2)4]

tr24[(Us1t1)2(Us2t2)4W24(h
rgs∗)2(h

m)4(Mj)24(T
s
rm)24](χ12χ34)

tr24[(T
s†
rm)24(M

†
j )24(h

rgs∗)†2(h
m)†4W

†
24(U

†
s′1t

′
1
)2(U

†
s′2t

′
2
)4][(Us′1t

′
1
)2(Us′2t

′
2
)4]|Φ⟩12|Φ⟩34

+
1

n2(n+ 1)

∑
s1,t1

∑
s2,t2

∑
s′1,t

′
1

∑
s′2,t

′
2

⟨Φs1t1 |χ|Φs′1t
′
1
⟩⟨Φs2t2 |χ|Φs′2t

′
2
⟩ tr{Us1t1U

†
s′1t

′
1
} tr{Us2t2U

†
s′2t

′
2
}

=
1

(n+ 1)

∑
r,m,s,j

{⟨Φ|12⟨Φ|34[W24(h
rgs∗)2(h

m)4(Mj)24(T
s
rm)24](χ12χ34)

[(T s†
rm)24(M

†
j )24(h

rgs∗)†2(h
m)†4W

†
24]|Φ⟩12|Φ⟩34}+

1

n+ 1
,

where we have used Eq. (5) in the fourth equation.

Employing the definition of fully entangled fraction in Eq. (7), the optimal teleportation

fidelity can be expressed as

fmax(χ
⊗2) =

nF (χ⊗2)

(n+ 1)
+

1

n+ 1
.

To reach the optimal teleportation fidelity, we need to run over all unitary operators W

and measurements {T s
rm} to achieve the maximum.
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The relation between optimal teleportation fidelity and fully entangled fraction in Eq.

(8) is consistent with the previous results[11, 12, 23]. In traditional one copy teleportation,

the optimal teleportation fidelity is given by [11, 12]

f (1)
max(χ) =

nF1(χ)

n+ 1
+

1

n+ 1
, (9)

where F1(χ) = maxU∈U(n){⟨Φ|12U †
2χ12U2|Φ⟩12} is the original fully entangled fraction. In

two-copy teleportation based on Bell measurement [23], the optimal teleportation fidelity is

f (2)
max(χ

⊗2) =
nF2(χ

⊗2)

(n+ 1)
+

1

n+ 1
, (10)

where F2(χ
⊗2) = maxΩ,V ∈U(n2){⟨Φ|12 tr34[Ω13V24χ12χ34Ω

†
13V

†
24]|Φ⟩12} is two-copy fully entan-

gled fraction based on Bell measurement. From Eq. (8), Eq. (9), and Eq. (10), one can

see that optimal teleportation fidelities for one copy and two-copy teleportation protocols

are all linear functions of the corresponding fully entangled fractions. These fully entangled

fractions characterize the usefulness of the entangled resource states in quantum teleporta-

tion.

Now let’s consider an explicit example in two-copy teleportation based on GHZ mea-

surement. For a general entangled pure state |ψ⟩ =
∑

j λj|jj⟩ with at least two nonzero

coefficients [25], where λj are non-negative real numbers satisfying
∑

j λ
2
j = 1 known

as Schmidt coefficients, its one copy fully entangled fraction has been given as [26–28]:

1 ≥ F1(|ψ⟩) = 1
n
(
∑

j λj)
2 > 1

n
.

From Eq.(7), we can further calculate that

F (χ⊗2) = n2 max
{U,V }

∑
j

{
⟨Φ|12⟨Φ|34[U24(Mj)24V24]χ12χ34[U24(Mj)24V24]

†|Φ⟩12|Φ⟩34
}
, (11)

where U, V are unitary matrices in H ⊗H. Suppose the extreme point of F (χ⊗2) is Mj(χ),

that is, F (χ⊗2) = n2
∑

j

{
⟨Φ|12⟨Φ|34(Mj(χ))24χ12χ34(Mj(χ))

†
24|Φ⟩12|Φ⟩34

}
. Let

Mj =
∑
k

|kk⟩⟨kj| =
∑

k1l1k2l2

mj
k1l1k2l2

|k1l1⟩⟨k2l2|,

Mj(χ) =
∑

k1l1k2l2

mj(χ)k1l1k2l2 |k1l1⟩⟨k2l2|,

where mj(χ)k1l1k2l2 is a parameter that is related to the channel χ. Then after some simple

calculation, one can find that the two-copy fully entangled fraction of |ψ⟩ is: F ((|ψ⟩⟨ψ|)⊗2) =∑
j |
∑

j1,j2
λj1λj2m

j(|ψ⟩⟨ψ|)j1j2j1j2 |2. For the two-dimension circumstance, λ0 and λ1 are

10



both positive real number. Suppose λ0 ≥ λ1, and we can calculate that F ((|ψ⟩⟨ψ|)⊗2) =∑
j |
∑

j1,j2
λj1λj2m

j(ψ⟩⟨ψ|)j1j2j1j2 |2 ≥ (λ20 + λ0λ1)
2. The one copy fully entangled fraction is

F1(|ψ⟩⟨ψ|) = (λ0+λ1)2

2
. One can easily find that

F (χ⊗2)− F1(|ψ⟩⟨ψ|) ≥ (λ20 + λ0λ1)
2 − (λ0 + λ1)

2

2
=

(λ20 − λ21)(λ0 + λ1)
2

2
> 0, (12)

which demonstrates that for all arbitrary 2-dimensional entangled pure state |ψ⟩, the trans-

mission fidelity of our two-copy optimal teleportation protocol based on GHZ measurement

is higher than that of one copy protocol. Evidence for that one can meet F ′((|ψ⟩⟨ψ|)⊗2)

with certain W and r,m, s is presented as follows, where I is 2 × 2 identity matrix and X

is Pauli X matrix.

TABLE I. Corresponding values to meet F ′((|ψ⟩⟨ψ|)⊗2).

r m s (hrgs
∗
)2h

m
4 W24 (T s

rm)24

0 0 0

I 0

0 I

 I 0

0 X

 I 0

0 I


0 0 1

I 0

0 w∗I

 I 0

0 1
w∗X

 I 0

0 I


0 1 0

X 0

0 X

 X 0

0 I

 I 0

0 I


0 1 1

X 0

0 w∗X

 X 0

0 1
wI

 I 0

0 I


1 0 0

0 I

I 0

  0 I

X 0

 I 0

0 I


1 0 1

0 w∗I

I 0

  0 I

1
w∗X 0

 I 0

0 I


1 1 0

 0 X

X 0

 0 X

I 0

 I 0

0 I


1 1 1

 0 w∗X

X 0

  0 X

1
w∗ I 0

 1 0

0 I
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III. CONCLUSIONS

We have proposed a general two-copy quantum teleportation protocol based on GHZ

measurement and showed this process is trace preserving. The corresponding optimal tele-

portation fidelity has been explicitly derived. It turns out that the optimal teleportation

fidelity only depends on the two-copy fully entangled fraction, which is invariant under local

unitary transformations on the resource states. The two-copy teleportation based on GHZ

measurement is illustrated to be better than one copy teleportation in some cases by an

explicit example, which is amenable to demonstration in simple experiments. We hope our

work could simulate further study on efficient teleportation protocols.
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