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Quantum coherence with respect to orthonormal bases has been studied extensively in the past
few years. Recently, Bischof, et al. [Phys. Rev. Lett. 123, 110402 (2019)] generalized it to
the case of general positive operator-valued measure (POVM) measurements. Such POVM-based
coherence, including the block coherence as special cases, have significant operational interpretations
in quantifying the advantage of quantum states in quantum information processing. In this work
we first establish an alternative framework for quantifying the block coherence and provide several
block coherence measures. We then present several coherence measures with respect to POVM
measurements, and prove a conjecture on the l1-norm related POVM coherence measure.

PACS numbers: 03.65.Ud, 03.67.Mn, 03.65.Aa

I. INTRODUCTION

Quantum coherence is a characteristic feature of quan-
tum mechanics, with wide applications in superconduc-
tivity, quantum thermodynamics and biological process-
es. From a resource-theoretic perspective the quantifi-
cation of quantum coherence has attracted much at-
tention and various kinds of coherence measures have
been proposed [1–15]. Let ρ be a density operator in
d-dimensional complex Hilbert space H. Under a fixed
orthonormal basis {|i⟩}di=1 of H, the state ρ is called in-
coherent if ⟨i|ρ|j⟩ = 0 for any i ̸= j [1]. Otherwise ρ
is called coherent. The coherence theory has achieved
fruitful results in the past few years (for recent reviews
see e.g. [16, 17]).

From another perspective, the orthonormal basis
{|i⟩}di=1 corresponds to a rank-1 projective measurement
(von Neumann measurement) {|i⟩⟨i|}di=1, and ⟨i|ρ|j⟩ = 0
is equivalent to |i⟩⟨i|ρ|j⟩⟨j| = 0. This observation leads
one to view the coherence with respect to the orthonor-
mal basis {|i⟩}di=1 as the coherence with respect to the
rank-1 projective measurement {|i⟩⟨i|}di=1. Along this
idea, the concept of coherence can be generalized to the
cases of general measurements. Recently, Bischof, et al.
[18] have generalized the concept of coherence to the case
of general quantum measurements, i.e., positive operator-
valued measures (POVMs) and established the resource
theory of coherence based on POVMs. One motivation of
this generalization is due to the fact that POVMs may be
more advantageous compared to von Neumann measure-
ment in many applications [19]. Moreover, the coherence
of a state with respect to a POVM can be interpreted
as the cryptographic randomness generated by measur-
ing the POVM on the state [20]. Namely, the amount of
POVM coherence in a state is equal to the unpredictabil-
ity of measurement outcomes relative to an eavesdropper
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with maximal information about the state, which gen-
eralizes the results from [2]. It has been shown that the
relative entropy of POVM-coherence is equal to the cryp-
tographic randomness gain [20]. It provides an important
operational meaning to the concept of coherence with re-
spect to a general measurement. Generalizing the usual
coherence theory from an orthonormal basis to a generic
POVM had been also the efforts made in [21, 22].

After establishing a framework for quantifying the
POVM coherence [18, 20], Bischof, et al. developed
[18, 20] a scheme by employing the Naimark extension
to embed the POVM coherence into the block coherence
proposed in [23] in a lager Hilbert space. The Naimark
extension [24, 25] states that any POVM can be extend-
ed to a projective measurement in a larger Hilbert space.
The block coherence was defined with respect to pro-
jective measurements, not necessarily rank-1. With this
scheme, the relative entropy of POVM coherence Crel, the
robustness POVM coherence Crot were proposed. Re-
cently, the structures of different incoherent operations
for POVM coherence were investigated [26]. For simplic-
ity, we call the coherence theory with respect to fixed
orthonormal bases the standard coherence theory. As
the generalizations of the standard coherence, both the
block coherence and the POVM coherence reduce to the
standard coherence in the case of the von Neumann mea-
surement.

In the present work, we establish an alternative frame-
work for quantifying the block coherence and provide sev-
eral block coherence measures. We then present several
POVM coherence measures. Meanwhile, we also prove a
conjecture raised recently.
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II. ALTERNATIVE FRAMEWORK FOR
QUANTIFYING BLOCK COHERENCE

A. Block incoherent states and block incoherent
channels

The block coherence theory was introduced in [23]. We
adopt the framework proposed in [20] for quantifying the
block coherence. Consider a quantum system A associat-
ed with anm-dimensional complex Hilbert space H. One
has partition H = ⊕n

i=1πi into orthogonal subspaces πi
of dimension dimπi = mi,

∑n
i=1mi = m. Correspond-

ingly, one gets a projective measurement P = {Pi}ni=1,
with each projector satisfying Pi(H) = πi. A state ρ on
H is called block incoherent (BI) with respect to P if

PiρPj = 0, ∀i ̸= j, (1)

or

ρ =
n∑

i=1

PiρPi. (2)

We denote the set of all quantum states in H by S(H),
and the set of all block incoherent quantum states by
IB(H). It is easy to check that

IB(H) = {
n∑

i=1

PiρPi|ρ ∈ S(H)}. (3)

A quantum channel is a completely positive and trace
preserving (CPTP) linear map of quantum states [27].
A quantum channel ϕ is often expressed by the Kraus

operators {Kl}l satisfying
∑

lK
†
lKl = Im, where Im is

the identity operator onH and † stands for the adjoint. A
quantum channel ϕ is called block incoherent if it admits
an expression of Kraus operators ϕ = {Kl}l such that

PiKlρK
†
l Pj = 0, ∀l, ∀i ̸= j (4)

for any ρ ∈ IB(H). Such an expression ϕ = {Kl}l is
called a block incoherent decomposition of ϕ. We denote
the set of all quantum channels on H by C(H), and the
set of all block incoherent quantum channels by CBI(H).
The concept of block coherence can be properly ex-

tended to the multipartite systems via the tensor prod-
uct of the Hilbert spaces of the subsystems, similar to
the case of standard coherence theory [16]. For bipartite
systems, let A′ be another quantum system associating
with the m′-dimensional complex Hilbert space H ′. Par-
titioning H ′ = ⊕n′

i=1π
′
i into orthogonal subspaces π′

i of

dimension dimπ′
i = m′

i, m
′ =

∑n′

i=1m
′
i, one gets a pro-

jective measurement P ′ = {P ′
i}n

′

i=1 with each projector
P ′
i satisfying P ′

i (H
′) = π′

i. Correspondingly one has con-
cepts such as S(H ′), IB(H ′), C(H ′) and CBI(H

′). For the

composite Hilbert space HAA′
= HA ⊗HA′

associating
to the bipartite system AA′, we have the projective mea-
surement P ⊗ P ′ = {Pi ⊗ P ′

i′}ii′ . A state ρAA′
on HAA′

is called block incoherent with respect to the projective
measurement P ⊗ P ′ if

(Pi ⊗ P ′
i′)ρ

AA′
(Pj ⊗ P ′

j′) = 0, ∀(i, i′) ̸= (j, j′), (5)

where (i, i′) ̸= (j, j′) means that i ̸= j or i′ ̸= j′.

We denote the set of all states on HAA′
by S(HAA′

)

and the set of all channels on S(HAA′
) by C(HAA′

). A

quantum channel ϕAA′
on C(HAA′

) is called a block in-
coherent if it admits an expression of Kraus operators
ϕAA′

= {KAA′

l }l such that

(Pi ⊗ P ′
i′)K

AA′

l ρAA′
(KAA′

l )†(Pj ⊗ P ′
j′) = 0 (6)

for all l and (i, i′) ̸= (j, j′). We denote the set of all block

incoherent channels on C(HAA′
) by CBI(H

AA′
) and call

such an expression ϕAA′
= {KAA′

l }l a block incoherent

decomposition of ϕAA′
.

B. An alternative framework for quantifying the
block coherence

A framework for quantifying the block coherence has
been established in [20]: any valid block coherence mea-
sure C(ρ;P ) with respect to the projective measurement
P should satisfy the conditions (B1-B4) below.

(B1) Faithfulness: C(ρ;P ) ≥ 0 with equality if ρ ∈
IB(H).

(B2) Monotonicity: C(ϕBI(ρ);P ) ≤ C(ρ;P ) for any
ϕBI ∈ CBI(H).

(B3) Strong monotonicity:
∑

l plC(ρl;P ) ≤ C(ρ;P )
for any block incoherent decomposition ϕBI = {Kl}l ∈
CBI(H) of ϕBI, pl = tr(KlρK

†
l ), ρl = KlρK

†
l /pl.

(B4) Convexity: C(
∑

j pjρj ;P ) ≤
∑

j pjC(ρj ;P ) for

any states {ρj}j and any probability distribution {pj}j .
This framework coincides with the one in the standard

coherence theory [1] if all {Pi}ni=1 are rank-1. Note that
(B3) and (B4) together imply (B2).

The framework of the standard coherence theory [1]
had been modified by adding an additivity condition in
[28]. For the block coherence theory, we add the following
condition:

(B5) Block additivity:

C(p1ρ1 ⊕ p2ρ2;P ) = p1C(ρ1;P ) + p2C(ρ2;P ), (7)

where p1 > 0, p2 > 0, p1+p2 = 1, ρ1, ρ2 ∈ S(H), and for
any partition P = {Pk1}k1 ∪ {Pk2}k2 such that {k1}k1 ∪
{k2}k2 = {k}nk=1, {k1}k1 ∩ {k2}k2 = ∅ and ρ1Pk2 =
ρ2Pk1 = 0 for any k1 and k2.

With condition (B5), we have the following theorem,
which establishes an alternative framework for quantify-
ing the block coherence.

Theorem 1. The framework given by conditions (B1)
to (B4) is equivalent to the one given by the conditions
(B1), (B2) and (B5).

[Proof] We first prove that conditions (B1) to (B4) im-
ply (B1), (B2) and (B5). Suppose that (B1) to (B4) are
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fulfilled. For the state p1ρ1 ⊕ p2ρ2 as given in (B5), we
construct the BI channel ϕBI = {K1,K2} with K1 =∑

k1
Pk1 , K2 =

∑
k2
Pk2 . We have K1(p1ρ1 ⊕ p2ρ2)K

†
1 =

p1ρ1 and K2(p1ρ1⊕p2ρ2)K†
2 = p2ρ2. Then from (B3) we

get

C(p1ρ1 ⊕ p2ρ2;P ) ≥ p1C(ρ1;P ) + p2C(ρ2;P ). (8)

On the other hand, since p1ρ1⊕p2ρ2 = p1ρ1+p2ρ2, from
(B4) we get

C(p1ρ1 ⊕ p2ρ2;P ) ≤ p1C(ρ1;P ) + p2C(ρ2;P ). (9)

Combining (8) and (9) we get the condition (B5).
Next we prove that (B1), (B2) and (B5) imply (B1) to

(B4). Suppose conditions (B1), (B2) and (B5) are sat-

isfied. Let {Kl}n
′

l=1 ∈ CBI(H) be a BI decomposition as-
sociated to the system A. Consider the bipartite system
AA′ with the aforementioned notation and ρ ∈ S(H).

Let the state ρAA′
= ρ ⊗ |1⟩⟨1| undergo a BI channel

such that

ϕAA′

BI (ρAA′
) =

∑
l

(Kl ⊗ Ul)(ρ⊗ |1⟩⟨1|)(K†
l ⊗ U†

l )

=
∑
l

KlρK
†
l ⊗ |l⟩⟨l|, (10)

where

Ul =

n′∑
k=1

|k + l − 1⟩⟨k|

are the unitary operators on A′. From (B5), (10) gives
rise to

C(
∑
l

KlρK
†
l ⊗ |l⟩⟨l|;P ⊗ P ′) =

∑
l

plC(ρl;P ), (11)

where P and P ′ are rank-1 projective measurements, pl =

tr(KlρK
†
l ), ρl = KlρK

†
l /pl, and we have used

C(ρl ⊗ |l⟩⟨l|;P ⊗ P ′) = C(ρl;P ). (12)

According to (B2), (10) and (11) together imply (B3).
Now consider the following state

ρAA′
=

n′∑
l=1

plρl ⊗ |l⟩⟨l|, (13)

with {pl}n
′

l=1 a probability distribution and {ρl}n
′

l=1 ⊂
S(H), {|l⟩}n′

l=1 orthonormal basis of H ′. According to
(B5), we have

C(
∑
l

plρl ⊗ |l⟩⟨l|;P ⊗ P ′) =
∑
l

plC(ρl;P ). (14)

Let ρAA′
undergo a BI channel as

ϕAA′

BI (ρAA′
) =

n′∑
k=1

(IA ⊗ |1⟩⟨k|)ρAA′
(IA ⊗ |k⟩⟨1|)

=
∑
j

pjρj ⊗ |1⟩⟨1|. (15)

Similarly, (B2), (B5), (14) and (15) together imply (B4).

We have provided an alternative framework for block
coherence by proving that the conditions (B1) to (B4)
are equivalent to the conditions (B1), (B2) and (B5).
The similar condition (B5) in the standard coherence has
particular advantages in calculating coherence of block
diagonal states [29]. The condition (B5) in the block
coherence may also simplify the calculations of the block
coherence for certain block diagonal states.

C. Several block coherence measures

Under the framework of block coherence above, we
now provide several block coherence measures. Denote
P = {Pi}ni=1 a projective measurement on the Hilbert
space H. The following Propositions 1-5 provide block
coherence measures, see the detailed proofs in Appendix.

Proposition 1. l1 norm of coherence

Cl1(ρ, P ) =
∑
i ̸=j

||PiρPj ||tr (16)

is a block coherence measure, where ||M ||tr =tr
√
M†M

denotes the trace norm of the matrix M .
Proposition 2. For α ∈ (0, 1)∪(1, 2], coherence based

on Tsallis relative entropy

CT,α(ρ, P ) =
1

α− 1
{
∑
i

tr[(Piρ
αPi)

1/α]− 1} (17)

is a block coherence measure.
In particular, we have
Corollary 1.

lim
α→1

CT,α(ρ, P ) = (ln 2)Crel(ρ, P ), (18)

where

Crel(ρ, P ) = tr(ρ log2 ρ)−
∑
i

tr[(PiρPi) log2(PiρPi)],

(19)

and ln is the natural logarithm.
Proposition 3. Modified trace norm of coherence

Ctr(ρ, P ) = min
λ>0,σ∈IB(H)

||ρ− λσ||tr (20)

is a block coherence measure.
Proposition 4. Coherence weight

Cw(ρ, P )

= min
σ,τ

{s ≥ 0|ρ = (1− s)σ + sτ, σ ∈ IB(H), τ ∈ S(H)}

= min
σ

{s ≥ 0|ρ ≥ (1− s)σ, σ ∈ IB(H)} (21)



4

is a block coherence measure.
Proposition 5. For α ∈ [ 12 , 1), coherence based on

sandwiched Rényi relative entropy

CR,α(ρ, P ) = 1− max
σ∈IB(H)

({tr[(ρ
1−α
2α σρ

1−α
2α )α]}

1
1−α )

(22)

is a block coherence measure.
When P is a rank-1 projective measurement, Cl1(ρ, P )

recovers the standard coherence measure Cl1(ρ) proposed
in Ref. [1], CT,α(ρ, P ) recovers the standard coherence
measure proposed in Ref. [9, 13, 30], Ctr(ρ, P ) recovers
the standard coherence measure proposed in Ref. [28],
Cw(ρ, P ) recovers the standard coherence measure Cw(ρ)
proposed in Ref. [31], CR,α(ρ, P ) recovers the standard
coherence measure proposed in Ref. [14]. In particular,
when α = 1

2 ,

CR, 12
(ρ, P ) = 1− max

σ∈IB(H)
(tr

√√
ρσ

√
ρ)2 (23)

recovers the standard coherence measure proposed in Ref.
[32] when P is a rank-1 projective measurement.

III. COHERENCE MEASURES WITH RESPECT
TO GENERAL QUANTUM MEASUREMENTS

We study now the coherence measures with respec-
t to general quantum measurements [20]. A general
measurement or a POVM on d-dimensional Hilbert s-
pace H is given by a set of positive semidefinite op-
erators E = {Ei}ni=1 with

∑n
i=1Ei = Id the identity

on H. Projective measurement and rank-1 projective
measurement are the special cases of POVM. Suppose

Ei = A†
iAi for any i. We also denote E = {Ai}ni=1 with∑n

i=1A
†
iAi = Id. Note that Ei = (UiAi)

†(UiAi) for any
unitary {Ui}ni=1.
A state ρ is called an incoherent state with respect to

E if [18]

EiρEj = 0, ∀i ̸= j. (24)

Note that this is equivalent to [18]

AiρA
†
j = 0, ∀i ̸= j. (25)

The POVM incoherent channel is defined via the
canonical Naimark extension [20]. For POVM E = {Ei =

A†
iAi}ni=1 on d-dimensional Hilbert space H, introduce

an n-dimensional Hilbert space HR with {|i⟩}ni=1 an or-
thonormal basis of HR. A canonical Naimark extension
P = {Pi}ni=1 of E = {Ei}ni=1 is described by a unitary
matrix V on Hε = H ⊗HR as [20]

V =
n∑

ij=1

Aij ⊗ |i⟩⟨j|, (26)

P = {P i = Id ⊗ |i⟩⟨i|}ni=1, (27)

Pi = V †P iV, (28)

with {Aij}nij=1 satisfying

n∑
i=1

A†
ijAik = δjkId,

n∑
k=1

AikA
†
jk = δijId,

Ai1 = Ai.

A channel ϕ ∈ C(H) is called a POVM incoherent (PI)
channel if [20] ϕ allows a Kraus operator decomposition

ϕ = {Kl}l with
∑

lK
†
lKl = Id and there exists a BI

channel ϕ′ = {K ′
l}l ∈ CBI(Hε) with respect to a canonical

Naimark extension P = {Pi}ni=1 such that

KlρK
†
l ⊗ |1⟩⟨1| = K ′

l(ρ⊗ |1⟩⟨1|)K ′†
l , ∀l, (29)

where {K ′
l}l is a BI decomposition of ϕ′. For such case

we call {Kl}l a PI decomposition of ϕ.
We denote the set of all PI states as IP(H), and the

set of all PI channels as CPI(H). Note that IP(H) may be
empty for some POVMs. Note also that such definition
of PI operation does not depend on the choice of Naimark
extension [20],

A coherence measure for states in Hilbert spaceH with
respect to a general quantum measurement E = {Ei}ni=1

should satisfy the following conditions (P1)-(P4) [20]:
(P1) Faithfulness: C(ρ,E) ≥ 0, with equality if ρ ∈

IP(H).
(P2) Monotonicity: C(ϕPI(ρ), E) ≤ C(ρ,E), ∀ϕPI ∈

CPI(H).
(P3) Strong monotonicity:

∑
l plC(ρl, P ) ≤ C(ρ, P ),

where {Kl}l is a PI decomposition of a PI channel,

pl =tr(KlρK
†
l ), ρl = KlρK

†
l /pl.

(P4) Convexity: C(
∑

j pjρj , E) ≤
∑

j pjC(ρj , E),

{ρj}j ⊂ S(H), {pj}j a probability distribution.
Note that the definitions of PI states and PI channels

and the conditions (P1)-(P4) all include the projective
measurements and the rank-1 projective measurements
as special cases [20]. We emphasize that the framework of
POVM coherence measure is about POVM E = {Ei}ni=1.
Hence, any valid coherence measure in terms of {Ai}i
should be invariant under the unitary transformation
{Ai}i → {UiAi}i for any unitary {Ui}ni=1 [20].

An efficient scheme for constructing POVM coherence
measures is as follows [18, 20]

C(ρ,E) = C(ε(ρ), P ), (30)

where

ε(ρ) =

n∑
ij=1

AiρA
†
j ⊗ |i⟩⟨j|, (31)

It can be checked that if C(ρε, P ) is a unitarily invari-
ant block coherence measure satisfying conditions (B1) to
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(B4), then C(ρ,E) defined above is a POVM coherence
measure satisfying conditions (P1) to (P4) [20]. Here ρε
is any state on Hε = H ⊗ HR. The unitary invariance
means that

C(ρε, P ) = C(UρεU
†, UPU†) (32)

for any unitary transformation U on Hε. Employing this
scheme and using Propositions 1 to 5, we obtain the fol-
lowing Theorem.

Theorem 2. Let E = {Ei = A†
iAi}ni=1 be a POVM

on the Hilbert space H. The following quantities given
in (1)-(5) are all POVM coherence measures with respect
to E.
(1). l1 norm of coherence

Cl1(ρ,E) =
∑
i ̸=j

||AiρA
†
j ||tr. (33)

(2). For α ∈ (0, 1) ∪ (1, 2], coherence based on Tsallis
relative entropy

CT,α(ρ,E) =
1

α− 1
{
∑
i

tr[(Aiρ
αA†

i )
1/α]− 1}, (34)

and

lim
α→1

CT,α(ρ,E) = (ln 2)Crel(ρ,E), (35)

where

Crel(ρ,E) = tr(ρ log2 ρ)−
∑
i

tr[(AiρA
†
i ) log2(AiρA

†
i )].

(36)

(3). Modified trace norm of coherence

Ctr(ρ,E) = min
λ>0,σ∈IB(Hε)

||ε(ρ)− λσ||tr. (37)

(4). Coherence weight

Cw(ρ,E) = min
σ∈IB(Hε)

{s ≥ 0|ε(ρ) ≥ (1− s)σ}. (38)

(5). For α ∈ [ 12 , 1), coherence based on sandwiched
Rényi relative entropy

CR,α(ρ,E)

= 1− max
σ∈IB(Hε)

{tr[(ε(ρ
1−α
2α )σε(ρ

1−α
2α ))α]}

1
1−α . (39)

[Proof]. To prove the results of the Theorem 2, we need
to use the results of the Propositions 1 to 5. Let {|i⟩}ni=1

be an orthonormal basis for the Hilbert space HR, and P
and ε(ρ) be defined in Eqs. (27) and (31), respectively.
Since C(ρ,E) is a POVM coherence measure satisfying
conditions (P1) to (P4) if C(ρε, P ) is a unitarily invari-
ant block coherence measure satisfying conditions (B1)
to (B4), we only need to prove the unitary invariance E-
q. (32) and show that Cl1(ρ,E), CT,α(ρ,E), Ctr(ρ,E),

Cw(ρ,E) and CR,α(ρ,E) take the forms of Eqs. (33),
(34), (37), (38) and (39) under Eq. (30), respectively.

(1). We prove that Cl1(ρε, P ) is unitarily invariant.
For any unitary U on Hε, we have

Cl1(UρεU
†, UPU†)

=
∑
i̸=j

||UP iU
†UρεU

†UP jU
†||tr

=
∑
i̸=j

||P iρεP j ||tr = Cl1(ρε, P ),

where we have used the fact that the trace norm is uni-
tarily invariant. It is easy to see that Cl1(ρ,E) have the
form of Eq. (33).

(2). It is easy to see that CT,α(ρε, P ) is unitarily in-
variant. Now we prove that CT,α(ρ,E) has the form of
Eq. (34) under Eq. (30).

For the unitary transformation V defined in Eq. (26),

εV (ρ) = V (ρ⊗ |1⟩⟨1|)V † =
∑
ij

AiρA
†
j ⊗ |i⟩⟨j| = ε(ρ).

As a result,

tr[(P i(εV (ρ))
αP i)

1/α]

= tr[(P iV (ρα ⊗ |1⟩⟨1|)V †
i P )

1/α]

= tr[(P i(
∑
jk

Ajρ
αA†

k ⊗ |j⟩⟨k|)P i)
1/α]

= tr[(AiρA
†
i ⊗ |i⟩⟨i|)1/α]

= tr[(AiρA
†
i )

1/α].

Hence, CT,α(ρ,E) has the form of Eq. (34). Eq. (35)
can be proved as Corollary 1.

(3). It is easy to see that Ctr(ρ,E) has the form of Eq.
(37). Now we show that Ctr(ρε, P ) is unitarily invariant.
Note that

Ctr(ρε, P ) = min
λ>0,σ

||ρε − λ
n∑

i=1

P iσP i||tr,

where σ is any density operator on Hε.
For any unitary U on Hε, we have

Ctr(UρεU
†, UPU †)

= min
λ>0,σ

||UρεU† − λ

n∑
i=1

UP iU
†σUP iU

†||tr

= min
λ>0,σ

||ρε − λ
n∑

i=1

P iU
†σUP i||tr

= min
λ>0,σ

||ρε − λ
n∑

i=1

P iσP i||tr

= Ctr(ρε, P ),

where we have used the facts that trace norm is unitarily
invariant and {σ : σ ∈ S(H)} = {U†σU : σ ∈ S(H)}.
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(4). It is easy to see that Cw(ρ,E) has the form of Eq.
(38). Next we show that Cw(ρε, P ) is unitarily invariant.
Note that

Cw(ρε, P ) = min
σ

{s ≥ 0|ρε ≥ (1− s)
n∑

i=1

P iσP i},

where σ is any density operator on Hε.
For any unitary U on Hε, we have

Cw(UρεU
†, UPU †)

= min
σ

{s ≥ 0|UρεU† ≥ (1− s)

n∑
i=1

UP iU
†σUP iU

†}

= min
σ

{s ≥ 0|ρε ≥ (1− s)
n∑

i=1

PU†σUP i}

= min
σ

{s ≥ 0|ρε ≥ (1− s)
n∑

i=1

P iσP i}

= Cw(ρε, P ),

which completes the proof.
(5). It is easy to see that CR,α(ρ,E) has the form of

Eq. (39). Similarly to the proof of (3), one can show that
Cw(ρε, P ) is unitarily invariant.
We remark that the coherence measure Cl1(ρ, P ) was

proposed in [23]. In [20] the authors conjectured that
Cl1(ρ,E) is a well defined POVM coherence measure sat-
isfying the conditions (P1)-(P4). Combining with our re-
sult of proposition 1, we have strictly proved in Theorem
2 that Cl1(ρ,E) is indeed a well defined POVM coherence
measure.

IV. SUMMARY

We have established an alternative framework for
quantifying the coherence with respect to projective
measurements, and provided several coherence measures
with respect to projective measurements. We then ob-
tained several coherence measures with respect to gen-
eral POVM measurements, from which a conjecture has
been verified concerning the coherence measure Cl1(ρ,E).

The coherence with respect to POVM measurements has
operational significance. Similar to the robustness of co-
herence and the maximum relative entropy of coherence
which characterize success probability of subchannel dis-
crimination [4, 8], it would be also an interesting issue
to explore the operational meanings of the POVM co-
herence measures given in Theorem 2. Our results may
highlight further investigations on the coherence of quan-
tum states and the applications in quantum information
processing.
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APPENDIX

A. Proof of Proposition 1

From the definition of BI state and the properties of
trace norm, Cl1(ρ, P ) satisfies the condition (B1). It sat-
isfies the conditions (B4) and (B5) due to the properties
of trace norm. Since (B3) and (B4) imply (B2), we only
need to prove that Cl1(ρ, P ) fulfills (B3).

For any BI channel ϕ with BI decomposition ϕBI =

{Kl}l,
∑

lK
†
lKl = Id, each Kl has the form [20],

Kl =

n∑
i=1

Pfl(i)MlPi, (A1)

where fl(i) is a function on {i}ni=1, Ml is a matrix on H.

Denote pl =tr(KlρK
†
l ), ρl = KlρK

†
l /pl. We have

∑
l

plCl1(ρl, P ) =
∑
l,i ̸=j

||PiKlρK
†
l Pj ||tr

=
∑
l,i ̸=j

||PiKl

∑
i′ ̸=j′

Pi′ρPj′K
†
l Pj ||tr (A2)

≤
∑

l,ij,i′ ̸=j′

||PiKlPi′ρPj′K
†
l Pj ||tr

=
∑

l,i′ ̸=j′

||Pfl(i′)KlPi′ρPj′K
†
l Pfl(j′)||tr (A3)
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=
∑

l,i′ ̸=j′

||Pfl(i′)Kl

∑
k

si′j′k|ψi′j′k⟩⟨ψi′j′k|K
†
l Pfl(j′)||tr (A4)

≤
∑

lk,i′ ̸=j′

si′j′k||Pfl(i′)Kl|ψi′j′k⟩⟨ψi′j′k|K
†
l Pfl(j′)||tr

=
∑

k,i′ ̸=j′

si′j′k
∑
l

√
⟨ψi′j′k|K†

l Pfl(i′)Kl|ψi′j′k⟩⟨ψi′j′k|K
†
l Pfl(j′)Kl|ψi′j′k⟩ (A5)

≤
∑

k,i′ ̸=j′

si′j′k

√∑
l

⟨ψi′j′k|K†
l Pfl(i′)Kl|ψi′j′k⟩

√∑
l′

⟨ψi′j′k|K
†
l′Pfl′ (j

′)Kl′ |ψi′j′k⟩ (A6)

=
∑

k,i′ ̸=j′

si′j′k

√
⟨ψi′j′k|

∑
l

K†
l Pfl(i′)Kl|ψi′j′k⟩

√
⟨ψi′j′k|

∑
l′

K†
l′Pfl′ (j

′)Kl′ |ψi′j′k⟩

≤
∑

k,i′ ̸=j′

si′j′k

√
⟨ψi′j′k|Im|ψi′j′k⟩

√
⟨ψi′j′k|Im|ψi′j′k⟩ (A7)

=
∑

k,i′ ̸=j′

si′j′k =
∑
i′ ̸=j′

||Pi′ρPj′ ||tr = Cl1(ρ, P ).

In Eq. (A2) we have used the property that {Kl}l is a

BI decomposition, that is, PiKl(
∑

i′ Pi′ρPi′)K
†
l Pj = 0

for any i ̸= j. In Eq. (A3) we have used PiKlPi′ =
PiPfl(i′)KlPi′ = δi,fl(i′)Pfl(i′)KlPi′ which is a result of
Eq. (A1). In Eq. (A4) we have used the singular val-
ue decomposition, Pi′ρPj′ =

∑
k si′j′k|ψi′j′k⟩⟨ψi′j′k| with

{si′j′k}k the singular values, {|ψi′j′k⟩}k ({|ψi′j′k⟩}k) a set
of orthonormal vectors. In Eq. (A5) we have taken into

account the fact that |||ψ⟩⟨φ|||tr =
√
⟨ψ|ψ⟩⟨φ|φ⟩ for any

pure states |ψ⟩ and |φ⟩. In Eq. (A6) we have used the

Cauchy-Schwarz inequality
∑

l

√
albl ≤

√∑
l al

√∑
l′ bl′

with al ≥ 0 and bl ≥ 0. In Eq. (A7) we have used the

fact that
∑

lK
†
l Pfl(i′)Kl ≤ Im since Pfl(i′) ≤ Im and∑

lK
†
lKl = Im.

B. Proof of Proposition 2

For α > 0, the quantum Tsallis relative entropy is
defined as

DT,α(ρ||σ) =
tr(ρασ1−α)− 1

α− 1
, ρ, σ ∈ S(H),

supp(ρ) ⊂ supp(σ) when α ≥ 1, (A8)

where supp(ρ) = {|ψ⟩|ρ|ψ⟩ ̸= 0} is the support of ρ.
It is shown that for α > 0 [33],

DT,α(ρ||σ) ≥ 0, DT,α(ρ||σ) = 0 ⇔ ρ = σ. (A9)

Also, Dα(ρ||σ) is monotonic under CPTP maps for α ∈
(0; 2] [33],

DT,α(ϕ(ρ)||ϕ(σ)) ≤ DT,α(ρ||σ). (A10)

Define

DT,α(ρ) = min
σ∈IB(H)

DT,α(ρ||σ). (A11)

We now prove that

DT,α(ρ) =
{
∑

i tr[(Piρ
αPi)

1
α ]}α − 1

α− 1
. (A12)

To go ahead, we need the lemmas below.
Lemma 1. Hölder inequality.
Suppose {ai}ni=1, {bi}ni=1, are all positive real numbers,

then
1) when α ∈ (0, 1),

n∑
i=1

aibi ≤ (
n∑

i=1

a
1
α
i )α(

n∑
i=1

b
1

1−α

i )1−α, (A13)

and the equality holds if and only if a
1
α
i /b

1
1−α

i = a
1
α
j /b

1
1−α

j
for any i, j;

2) when α > 1,

n∑
i=1

aibi ≥ (
n∑

i=1

a
1
α
i )α(

n∑
i=1

b
1

1−α

i )1−α, (A14)

and the equality holds if and only if a
1
α
i /b

1
1−α

i = a
1
α
j /b

1
1−α

j
for any i, j.

Lemma 2 (Ref. [34]). For r × r positive semidefinite
matrices M and N , it holds that

r∑
j=1

λ↓r+1−j(M)λ↓j (N) ≤ tr(MN) ≤
r∑

j=1

λ↓j (M)λ↓j (N),

(A15)

where {λ↓j (M)}j are the eigenvalues of M in decreasing
order.

Now for α ∈ (0, 1) and σ ∈ IB(H), we have

tr(ρασ1−α)
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= tr[ρα
n∑

i=1

(PiσPi)
1−α]

=

n∑
i=1

q1−α
i tr(ρασ1−α

i ) ≤ {
n∑

i=1

[tr(ρασ1−α
i )]

1
α }α,

(A16)

where qi =tr(PiσPi), σi = PiσPi/qi, the Hölder in-
equality has been used, and the equality holds if and
only if there exists constant C ≥ 0 such that qi =
C[tr(ρασ1−α

i )]
1
α for any i. Furthermore,

tr(ρασ1−α
i )

= tr(ραPiσ
1−α
i Pi)

≤
mi∑
j=1

λ↓j (Piρ
αPi)λ

↓
j (σ

1−α
i )

=

mi∑
j=1

λ↓j (Piρ
αPi)(λ

↓
j (σi))

1−α

≤ {
mi∑
j=1

[λ↓j (Piρ
αPi)]

1
α }α{

mi∑
j=1

[(λ↓j (σi))
1−α]

1
1−α }1−α

= {tr[(Piρ
αPi)

1
α ]}α, (A17)

where the Lemma 1 and Lemma 2 have been used. It is
easy to check that when

σ =

∑n
i=1(Piρ

αPi)
1
α∑n

i=1 tr[(PiραPi)
1
α ]

(A18)

Eq. (A11) achieves Eq. (A12). As a result we get Eq.
(A12).
For α > 1, we have

tr(ρασ1−α)

= tr[ρα
∑
i

(PiσPi)
1−α]

=
∑
i

q1−α
i tr(ρασ1−α

i )

≥ {
∑
i

[tr(ρασ1−α
i )]

1
α }α, (A19)

and the equality holds if and only if there exists a con-
stant C ≥ 0 such that qi = C[tr(ρασ1−α

i )]
1
α for any i.

Moreover,

tr(ρασ1−α
i )

= tr(ραPiσ
1−α
i Pi)

≥
mi∑
j=1

λ↓j (Piρ
αPi)λ

↓
mi+1−j(σ

1−α
i )

=

mi∑
j=1

λ↓j (Piρ
αPi)(λ

↓
mi+1−j(σi))

1−α

≥ {
mi∑
j=1

[λ↓j (Piρ
αPi)]

1
α }α{

mi∑
j=1

[(λ↓mi+1−j(σi))
1−α]

1
1−α }1−α

= {tr[(Piρ
αPi)

1
α ]}α. (A20)

In above derivation, we have used Lemma 1 and Lemma
2. Again, when σ takes the value in Eq. (A18), Eq.
(A11) achieves Eq. (A12). As a result we get Eq. (A12).

From Eqs. (A9) and (A11) we see that DT,α(ρ) ≥ 0
and DT,α(ρ) = 0 if and only if ρ ∈ IB(H). Then from
Eq. (A12) we have

{
∑

i tr[(Piρ
αPi)

1
α ]}α − 1

α− 1
≥ 0,

namely, ∑
i tr[(Piρ

αPi)
1
α ]− 1

α− 1
≥ 0,

with the equality holding if and only if ρ ∈ IB(H), which
proves that CT,α(ρ, P ) satisfies (B1).

For any ϕBI ∈ CBI(H), from Eqs. (A10) and (A11) we
have

DT,α(ρ) = min
σ∈IB(H)

DT,α(ρ||σ) = DT,α(ρ||σ∗)

≥ DT,α(ϕBI(ρ)||ϕBI(σ
∗))

≥ min
σ∈IB(H)

DT,α(ϕBI(ρ)||σ) = DT,α(ϕBI(ρ)), (A21)

where σ∗ ∈ IB(H) such that minσ∈IB(H)DT,α(ρ||σ) =
DT,α(ρ||σ∗).

From Eq. (A12), Eq. (A21) is equivalent to

{
∑

i tr[(Piρ
αPi)

1
α ]}α − 1

α− 1

≤
{
∑

i tr[(P
α
i (ϕBI(ρ))

αPi)
1
α ]}α − 1

α− 1
,

which is further equivalent to∑
i tr[(Piρ

αPi)
1
α ]− 1

α− 1

≤
∑

i tr[(P
α
i (ϕBI(ρ))

αPi)
1
α ]− 1

α− 1
.

We then proved that CT,α(ρ, P ) satisfies (B2).
Now we prove that CT,α(ρ, P ) also satisfies (B5). Sup-

pose ρ = p1ρ1 ⊕ p2ρ2 as described in (B5). Then

n∑
i=1

tr[(Piρ
αPi)

1
α ]

= p1
∑
k1

tr[(Pk1ρ
α
1Pk1)

1
α ] + p2

∑
k2

tr[(Pk2ρ
α
2Pk2)

1
α ]

= p1

n∑
i=1

tr[(Piρ
α
1Pi)

1
α ] + p2

n∑
i=1

tr[(Piρ
α
2Pi)

1
α ]. (A22)

Substituting (A22) into Eq. (17), we then proved that
CT,α(ρ, P ) satisfies (B5).
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C. Proof of Corollary 1

Set α = 1+ ε. Consider the Taylor expansions around
ε = 0,

M1+ε = M + εM lnM + o(ε2),

ln(M + εN) = lnM + o(ε),

1

1 + ε
= 1− ε+ o(ε2),

where M , N are Hermitian matrices, o(ε) denotes the
infinitesimal term with the order ε or higher around ε =
0.We have Piρ

αPi = Pi(ρ+ερ ln ρ+o(ε
2))Pi. Therefore,

tr[(Piρ
αPi)

1
α ]

= tr[(Piρ
αPi)

1−ε+o(ε2)]

= tr[(Piρ
αPi)− ε(Piρ

αPi) ln(Piρ
αPi) + o(ε2)]

= tr[PiρPi + εPi(ρ ln ρ)Pi − ε(PiρPi) ln(PiρPi)

+o(ε2)].

Applying the L’Hospital’s rule to Eq. (17), we have

lim
α→1

CT,α(ρ, P )

= lim
α→1

d

dα

∑
i

tr[(Piρ
αPi)

1/α]

=
∑
i

tr[Pi(ρ ln ρ)Pi − (PiρPi) ln(PiρPi)]

= tr(ρ ln ρ)−
∑
i

tr[(PiρPi) ln(PiρPi)]

= (ln 2)Crel(ρ, P ).

D. Proof of Proposition 3

Obviously, the condition (B1) is satisfied. (B2) is al-
so satisfied as a consequence of the fact that ||M ||tr ≥
||ϕ(M)||tr for any CPTP map ϕ and any Hermitian ma-
trix M [35]. Concerning (B5), we consider ρ = p1ρ1 ⊕
p2ρ2 as described in (B5). Any σ ∈ IBI(H) can be writ-
ten as

σ = q1σ1 ⊕ q2σ2, (A23)

with q1 ≥ 0, q2 ≥ 0, q1 + q2 = 1, and σ1, σ2 ∈ S(H),
σ1Pk2

= σ2Pk1
= 0 for any k1 and k2. It follows that

C(p1ρ1 ⊕ p2ρ2, P )

= min
λ>0,q1,σ1,σ2

||p1ρ1 ⊕ p2ρ2 − λ(q1σ1 ⊕ q2σ2)||tr

= min
λ>0,q1,σ1,σ2

(p1||ρ1 −
λq1
p1

σ1||tr + p2||ρ2 −
λq2
p2

σ2||tr)

= p1 min
λ1>0,σ1

||ρ1 −
λq1
p1

σ1||tr

+p2 min
λ2>0,σ2

||ρ2 −
λq2
p2

σ2||tr

= p1C(ρ1) + p2C(ρ2, P ),

where we have used the facts that σ1, σ2 ∈ S(H), {q1, q2}
is a probability distribution, λ1 = λq1

p1
and λ2 = λq2

p2
.

E. Proof of Proposition 4

It can be proved that Cw(ρ, P ) fulfills the condition-
s (B1), (B3) and (B4) by using a similar way adopted
in Ref. [31]. Here we equivalently prove that Cw(ρ, P )
fulfills (B1), (B2) and (B5). (B1) is evidently satisfied.
To prove (B2), suppose {Kl}l ∈ CBI(H) with {Kl}l a BI
decomposition. Then there exists σ ∈ IB(H) such that

ρ ≥ [1− Cw(ρ, P )]σ,∑
l

KlρK
†
l ≥ [1− Cw(ρ, P )]

∑
l

KlσK
†
l .

Since
∑

lKlσK
†
l ∈ IB(H), we obtain

Cw(
∑

lKlρK
†
l , P ) ≤ Cw(ρ, P ), which proves that

(B2) is satisfied.
To prove (B5), let us consider again ρ = p1ρ1 ⊕ p2ρ2

as described in (B5). Then there exists σ ∈ IB(H) such
that

ρ ≥ [1− Cw(ρ, P )]σ,∑
k1

Pk1ρPk1 ≥ [1− Cw(ρ, P )]
∑
k1

Pk1σPk1 ,∑
k2

Pk2ρPk2 ≥ [1− Cw(ρ, P )]
∑
k2

Pk2σPk2 .

Denote
∑

k1
Pk1σPk1 = q1σ1,

∑
k1
Pk1σPk1 = q2σ2, with

{q1, q2} a probability distribution, σ1, σ2 ∈ IB(H). Since∑
k1
Pk1ρPk1 = p1ρ1,

∑
k2
Pk2ρPk2 = p2ρ2, we have

ρ1 ≥ [1− Cw(ρ, P )]q1
p1

σ1,

ρ2 ≥ [1− Cw(ρ, P )]q2
p2

σ2,

Cw(ρ1, P ) ≤ 1− [1− Cw(ρ, P )]q1
p1

,

Cw(ρ2, P ) ≤ 1− [1− Cw(ρ, P )]q2
p2

,

p1Cw(ρ1, P ) + p2Cw(ρ2, P ) ≤ Cw(ρ, P ). (A24)

Conversely, there exist σ′
1, σ

′
2 ∈ IB(H) such that

ρ1 ≥ [1− Cw(ρ1, P )]σ
′
1,

ρ2 ≥ [1− Cw(ρ2, P )]σ
′
2.

It follows that

p1ρ1 ⊕ p2ρ2

≥ p1[1− Cw(ρ1, P )]σ
′
1 + p2[1− Cw(ρ2, P )]σ

′
2,

Cw(ρ, P ) ≤ p1Cw(ρ1, P ) + p2Cw(ρ2, P ). (A25)

Eqs. (A24) and (A25) imply (B5), which completes the
proof.



10

F. Proof of Proposition 5

This proof is a generalization of the proof for the The-
orem 1 in Ref. [14]. For α ∈ [ 12 , 1), σ, ρ ∈ S(H), the
sandwiched Rényi relative entropy is defined as [36, 37],

Fα(σ||ρ) =
ln tr[(ρ

1−α
2α σρ

1−α
2α )α]

α− 1
.

It is shown that [37, 38] for α ∈ [ 12 , 1), Fα(σ||ρ) ≥ 0,
where the equality holds if and only if σ = ρ. This is
equivalent to that

tr[(ρ
1−α
2α σρ

1−α
2α )α] ≤ 1,

and to that

{tr[(ρ
1−α
2α σρ

1−α
2α )α]}

1
1−α ≤ 1,

with the equality holding if and only if σ = ρ. This says
that CR,α(ρ, P ) satisfies (C1).
For α ∈ [ 12 , 1), it has been shown that [37, 39] for

σ, ρ ∈ S(H), and any CPTP map ϕ,

Fα(ϕ(σ)||ϕ(ρ)) ≤ Fα(σ||ρ).

This implies

tr[(ϕ(ρ))
1−α
2α ϕ(σ)(ϕ(ρ))

1−α
2α )α]

≥ tr[(ρ
1−α
2α σρ

1−α
2α )α],

{tr[(ϕ(ρ))
1−α
2α ϕ(σ)(ϕ(ρ))

1−α
2α )α]}

1
1−α

≥ {tr[(ρ
1−α
2α σρ

1−α
2α )α]}

1
1−α .

For any BI map ϕBI, there exists σ∗ ∈ IB(H) such that

max
σ∈IB(H)

{tr[(ρ
1−α
2α σρ

1−α
2α )α]}

1
1−α

= {tr[(ρ
1−α
2α σ∗ρ

1−α
2α )α]}

1
1−α

≤ {tr[(ϕBI(ρ))
1−α
2α ϕBI(σ

∗)(ϕBI(ρ))
1−α
2α )α]}

1
1−α

≤ max
σ∈IB(H)

{tr[(ϕBI(ρ))
1−α
2α σ(ϕBI(ρ))

1−α
2α )α]}

1
1−α .

This proves that CR,α(ρ, P ) satisfies (C2).
Next we prove CR,α(ρ, P ) satisfies (C5). Consider ρ =

p1ρ1⊕p2ρ2 as described in (B5). As any σ ∈ IBI(H) can
be written as Eq. (A23), it follows that

max
σ∈IB(H)

tr[(ρ
1−α
2α σρ

1−α
2α )α]

= max
q1,q2

{(p1−α
1 qα1 )max

σ1

tr[(ρ
1−α
2α

1 σ1ρ
1−α
2α

1 )α]

+(p1−α
2 qα2 )max

σ2

tr[(ρ
1−α
2α

2 σ2ρ
1−α
2α

2 )α]}

= max
q1,q2

{p1−α
1 qα1 t1 + p1−α

2 qα2 t2}

= p1−α
1 p1−α

2 t1t2(p
−1
1 t

1
α−1

1 + p−1
2 t

1
α−1

2 )1−α,
where

t1 = max
σ1

tr[(ρ
1−α
2α

1 σ1ρ
1−α
2α

1 )α,

t2 = max
σ2

tr[(ρ
1−α
2α

2 σ2ρ
1−α
2α

2 )α],

and the Lemma 1 (note here t1 > 0 and t2 > 0) has been
taken into account.

Consequently,

max
σ∈IB(H)

({tr[(ρ
1−α
2α σρ

1−α
2α )α]}

1
1−α )

= { max
σ∈IB(H)

tr[(ρ
1−α
2α σρ

1−α
2α )α]}

1
1−α

= p1p2t
1

1−α

1 t
1

1−α

2 (p−1
1 t

1
α−1

1 + p−1
2 t

1
α−1

2 )

= p1t
1

1−α

1 + p2t
1

1−α

2 .

This shows that CR,α(ρ, P ) satisfies (C5).
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