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Abstract

We analyze symbolic dynamics to infinite alphabets by endowing the alphabet
with the cofinite topology. The topological entropy is shown to be equal to the
supremum of the growth rate of the complexity function with respect to finite sub-
alphabets. For the case of topological Markov chains induced by countably infinite
graphs, our approach yields the same entropy as the approach of Gurevich [B.M.
Gurevich, Topological entropy of enumerable Markov chains, 1969, Soviet Math-
ematics Doklady 10:4, 911-915]. We give formulae for the entropy of countable
topological Markov chains in terms of the spectral radius in [2.

In comparison to the published version [Subshifts on infinite alphabets and their entropy,
2020, Entropy 22(11): 1293, Special issue “Aspects of topological entropy”], this version
contains more details in the proof of Lemma 3.

1 Introduction

Symbolic dynamical systems on finite alphabets are classical mathematical objects that
provide a wealth of examples and have greatly influenced theoretical developments in
dynamical systems. In computer science, certain symbolic systems, namely the topolog-
ical Markov chains generated by finite graphs, model the evolution of finite transition
systems, and the class of sofic symbolic systems (factors of topological Markov chains)
models the evolution of certain automata. The most important numerical invariant of
dynamical systems is the topological entropy. For symbolic systems, the entropy equals
the exponential growth rate of the number of finite words of fixed length. In the case
of a topological Markov chain, the entropy equals the natural logarithm of the spectral
radius of the generating graph. Considering the graph as a linear map, the spectral radius
measures the rate of dilation under iterated application. On an exponential scale, this
rate equals the growth of the number of finite words. This note is an attempt to generalize
this meeting ground of topology, graph theory, and spectral theory to infinite alphabets,
especially countably infinite alphabets. Beside its theoretical interest, this was motivated
by the increasing importance of infinite state systems in computer science.

Any attempt at studying symbolic dynamics on infinite alphabets has to deal with the
fact that the discrete topology, employed in the finite case, leads to shift spaces which are
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not compact. Most approaches attempt to compactify the respective alphabet. In this
note, we endow the alphabet with a compact topology which coincides with the discrete
topology in the finite case, the cofinite topology. Gurevich [Gur69] has considered the
Alexandrov compactification of the alphabet and his formula for the entropy of the re-
spective topological Markov chains coincides with ours. The theory of Gurevich has the
unpleasent feature that the closure of the set of graph walks must be taken. Still, our
approach is similar to Gurevich’s, since minimal open covers in the Alexandrov compact-
ification of an infinite countable discrete space and in the cofinite topology are similar.
In Gurevich’s setting, the dynamical properties of the boundary of a (sofic) subshift have
been studied [Pet86, Section 3] (see also [FF95; Fie0l; FF05]). Another approach is due
to Ott et al. [OTW14], who considered an N-shift on words in the Alexandrov compacti-
fication which they endowed with a certain quotient topology to get rid of the introduced
oo-symbol. Their constructions have been further developed to yield topological dynami-
cal systems which are analogous to classical Z-shifts, and in this setting, characterizations
of morphisms of systems are known [GSS16; GSS17]. Contrary to these authors, this paper
is mostly interested in entropy theory, especially its connections to subword complexity
and spectral theory.

The entropy theory of this note admits a clear operational interpretation. In the case
of an infinite alphabet, the number of finite words may be uncountable; hence, we identify
all but finitely many letters prior to counting. The entropy is obtained by suprematizing
over such identifications. Under some conditions, the entropy of a countable topological
Markov chain may be computed or bounded via the spectral radius of a linear operator,
analogous to the finite case. This reduces the computation of the entropy of certain
symbolic systems on countable alphabets to a well-understood numerical problem.

Section 2 recalls some of the theory of symbolic dynamics on finite alphabets, Sec-
tion 3 defines subshifts on infinite alphabets, Section 4 shows that the entropy equals the
supremum of the exponential growth rates of the number of words in a finite subalpha-
bet, Section 5 specializes to the case of countably infinite topological Markov chains and
provides spectral formulae, Section 6 presents a proof that all nonnegative real numbers
may be the entropy of a subshift on an infinite alphabet, and Section 7 collects examples.

2 Symbolic Dynamics on Finite Alphabets

We recall the construction of symbolic dynamical systems on a finite alphabet. Consider
a finite set of letters, the alphabet, {1,...,k} =: [k], endowed with the discrete topology.
We form the product space [k]Z on which the shift map o : [k]Z — [k]% acts continuously
via 0(s); = s;41. The dynamical system ([k]%, o) is called the k-shift. A subshift of the -
shift is a closed o-invariant subset S C [k]%; we write (S, o). Special cases of subshifts are
the topological Markov chains; they are induced by finite directed graphs. We treat such
graphs as finite square matrices with entries from the set {0, 1}, the respective adjacency
matrices. Given a graph G, whose vertex set we may enumerate as [k], its associated
subshift is (S¢g, o) where

S = {s € [k]?|Gysr., =1 forall t € Z} .
We denote by W*(S) the words of length ¢ in the subshift S; hence
WHS) = {{al, ...,at}{Els € S with {s;, ..., Siye-1} = {a1, ..., a; } for some i € Z}.
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The growth rate of a real nonnegative sequence {x;};2, is the expression

GR;(z;) := limsup 1 In* ()
t—o0 t
where In" (z) := max{0,In(x)}. The above is the asymptotic exponential growth rate
of the sequence. It may be zero, if the sequence grows subexponentially, or infinite, if
the sequence grows superexponentially. Given a subshift S, its complexity function as-
signs t — |W*(S)|. The growth rate GRt(]Wt(S )|) measures the asymptotic exponential
growth rate of the number of words in the subshift. In the case of a topological Markov

chain, one has [Par64]
GRt(|Wt(S(;)|) =1In" (/\Iélax)

where A\ denotes the largest eigenvalue of the graph G.

The topological entropy [AKM65] is the chief numerical invariant associated with a
topological dynamical system. Let X be a compact topological space and let f: X — X
be continuous. The topological entropy of the system (X, f) with respect to the open
cover U of X is

hu(X> f) = GR; (# \/E:O f_iu)
where AV B := {AN B}acapes, and #C denotes the minimal cardinality of a finite
subcover of C. The topological entropy of the system (X, f) is

h(X, f) =sup {hu(X, f)‘ U is an open cover of X} .

The entropy of a subsystem is lesser or equal to the entropy of the surrounding system.
The entropy of the continuous image of a system is lesser or equal to the original entropy.
It is well-known [AKMG65] that for a subshift (S, o) we have h(S,0) = GR(]W*(S)|). In
particular, h(Sg,0) = In* (AZ™).

3 Symbolic Dynamics on Infinite Alphabets

Let A be a set equipped with the cofinite topology, the minimal topology with the T7-
property, which is generated by the subbasis {A\ {z}},.,. The respective basis consists
of sets of the form A\ {x1,...,x,}. It is easy to verify that this basis is the entire topology.
Hence, a subset of A is open if and only if it is the complement of a finite subset. If A
is finite, the cofinite topology coincides with the discrete topology. The cofinite topology
turns every set into a compact separable Ti-space. If A is infinite, its cofinite topology is
hyperconnected. By Tikhonov’s theorem, the product A? is also compact. The topology
of A% has a subbasis of sets of the form

U(t,z) = {s € A%|s, € A\ {a}} = {s € A%|s, # z}

where t € Z and x € A. The shift map o : AZ — AZ defined by o(s); = 5441 is continuous
since

o ' (Ut,z)) =U(—1,z).

A basis for AZ is given by finite intersections of subbasic open sets, by sets of the form
{s € AZ|3tl # X1y .., Sy, F xn} )
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In the remainder of this note, we suppose shift spaces to be equipped with the product
of the cofinite topology, unless we explicitly state otherwise.

Definition 1 (Shifts and subshifts). A shift is the dynamical system (AZ, o) for some
alphabet A. A subshift of (A% o) is a dynamical system (S,c) where S C A% is closed
and o(S) C S.

By a morphism from the subshift S C AZ to the subshift T C B% we mean a o-equivariant
continuous surjection M : .S — T. The following diagram commutes.

S —2= 8

pr [

T ——T
If S has an infinite alphabet, codings may not lead to morphisms, as the following propo-
sition shows (See also Example 6 and Example 7).

Proposition 1 (Sliding block codes). Let S C AZ be a subshift. Consider a map
m : Attt B and define the o-equivariant map M : A” — B% by M(s); =
m({Si_t, ..y Sive}). Then M : S — M(S) is continuous if |m~'(b) N W2*(S)| < oo
forallbe B.

Proof. Clearly M(S) is o-equivariant. By pulling back a subbasic open set through M,
we see

M ({te M(S)[t#b}) = {s€S|m({siewsiacd) # 0}
- {8 € S}{Si—tv o Sitt} ¢ mil(b)}
= m {se S}{Si_t, o Sige) W}

wem—1(b)

= ﬂ {s € A%|{si—t, ..., Sipe} £ w0} .

wem—L(b)NW2t+1(S)
where the latter is open if the intersection is finite. O

If A is finite, m~1(b) is finite, and therefore all sliding block codes give rise to mor-
phisms. In fact, every morphism between subshifts on finite alphabets is a sliding block
code, the Curtis—-Hedlund-Lyndon theorem [Hed69].

4 Entropy Theory

In the following, we restrict our attention to countably infinite alphabets. We may sup-
pose, without loss of generality, that A = N. We denote by WEL(S) the set of words of
length ¢ in the subshift S whose letters are from the finite subalphabet F'.

Lemma 1. Let S be a subshift of N“. The cover of N* given as
U(n) = {s € NZ|50 =1 or sy > ”}?:1
18 open and fulfills
hun(S,) = GRy (W, ]).
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Proof. The cover U(n) consists of open sets since
{SENZ|30:iorso>n} :{SENZ‘SOEN\F}.
where F:= {1,...,n} \ {i} is a finite set. The elements of Vi_,o07*U(n) are of the form

{s|{s,t, oy S0} 18 in Wit or might be obtained from a word in Wi

by changing its letters to letters bigger n}

These covers are minimal, since the sets of the form

{8 € NZ‘{S_t, ...,50} = w}wGW[t:]'l

are properly contained in a single element of the cover. Hence

# Vi o FU(n) = [Wirt.

The claim follows by invoking Lemma 2. ]

Lemma 2. Let S be a subshift of N2. Then
GR,(|W,|) = GR(|w5i"])
for alln € N and c € N.

Proof. Follows by taking growth rates with respect to t on
t c+t c t
(Wial < Wil < ne- Wiyl O

So far, we have shown that h(S,c) > GR,(|W}|) for any finite subalphabet F C A.
Hence, h(S,0) > suppcy GRy(|WE|), where F is a finite set. We proceed to show that
the reverse inequality also holds.

Lemma 3. Let S be a subshift of N? and consider the following open cover of NZ.
B(n,t) == V!__,0c'U(n)

Then
lim hpme(S,0) > h(S,0).

n,t—o00

Proof. We split the proof into several steps.

(i) Consider the set N U {oo} =: N. We denote by Cf(N) the topological space whose
open sets are of the form N\ F' where F' C N and |F| < co. We have Cofin(N) —

Cf(N), an inclusion as a subspace. We have adjoined oo as a dense point, since

every open subset of Cf(N) contains oc.



(i)

(i)

(iv)

We denote by Alex(N) the Alexandrov compactification of the natural numbers
with the discrete topology. Note that its open subsets are of two forms, either they
are arbitrary subsets of N, or they are complements of closed and compact, hence
finite, subsets of N, that is of the form N\ F where F C N and |F| < oco. Hence

Alex(N) is a refinement of Cf(N). In particular, the identity Alex(N) — Cf(N) is

continuous. The space Alex(N) is metrized by

7
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0if 7,7 = .

This metric stems from the embedding n — %

We want to consider the topological products Cf (N)Z and Alex(N)_Z. We have a
subspace embedding Cofin(N)Z — Cf(N)Z. Also, the identity Alex(N)Z — Cf(N)Z

is continuous. The product space Alex(N)Z is metrized by

/ 1 /
(s, 5) = 3 snd(s1. )

teZ

On the product spaces, we want to consider the shift map. Abusing notation, we
write 0 : X — X for X € {Cofin(N)Z Cf(N)Z, Alex(N)Z}. In all these cases, o is
continuous.

Let S C N% be og-invariant. Then S C NZ is also o-invariant. Furthermore, S C
Cf(N)Z is o-invariant. To see this, we need to consider the case of s € S\ S.
By definition, there exists a net s, — s where s, € S for all & € A. Since o :
Cf(N)? — Cf(N)Z is continuous for all i € Z, we know that ¢°(s,) — o'(s). Since
S is o-invariant, o'(s,) € S, hence o'(s) is the limit of a net in S. Therefore
oi(s) € Sforalli € Z.

The set of finite subsets of a countable set is countable, therefore the topologies
of Cofin(N) and Cf(N) are countable. Hence it suffices to consider sequences to
understand convergence. Let {z;} be a sequence in N. We have the following three

cases.

Cofin(N) Cf(N)
No value is taken infinitely often z; —n,Vn €N x; = n,Vn € NU {oo}
Only y € N is taken infinitely often T; X = x=y Ty x = =y
x,y € N,z # y are taken infinitely often A s.th. T;— T Az s.th. Tj—x

Let {Sa}aca be a net in N2 Suppose that s, — s in Cf(N)%. Then there exists
some s € NZ such that s, — s in Cofin(N)Z and s, € {s;,00} for all t € Z. To see
this, note that s, — s’ in Cf(N)Z if and only of (s4); — (84); for all t € Z. For
any such projected sequence, we know, by (v), that its set of limits with respect to
Cf(N)Z is the set of limits with respect to Cofin(N)Z with the possible exception of
00.



(vii)

(xi)

(xii)

(xiii)

(xiv)

Let U C Cofin(N)% be an open subset. Then U LI {oo} C Cf(N)?Z is an open subset.
This defines a map from open subsets U C Cofin(N)Z to open subsets U’ € Cf(N)Z.
By element-wise application, we obtain a map from open covers C of Cofin(N)Z to
open covers C' of Cf(N)Z, that preserves minimality, that is, optimal finite subcovers.

Suppose that s € NZ is contained in the open set U C Cofin(N)Z and consider
s' € N’ such that s, € {s;,00} for all t € Z. Then s’ € U’ C Cf(N)Z.

Let S C Cofin(N)Z be a subshift, that is, S is closed and o-invariant. Then, using
(iv), S € Cf(N)Z is also a subshift. Let C be an open cover of S with respect to
Cofin(N)Z. Then C’ is an open cover of S with respect to Cf(N)Z, via (vii). We
conclude that he(S, o) = he(S, o).

Let S € Cf(N)” be a subshift. Then S C Alex(N)” is a subshift with at least the
same entropy, since the topology of the Alexandov compactification is finer.

Let X be a compact metric space and let f : X — X be continuous. Suppose that
{C:} is a sequence of open covers of X such that C;y = C; and diam(C;) —= 0.

Then [AKM65, Section 3] we have he, (X, f) 2 (X, f) = supy hu(X, f).
Let S C Cofin(N)Z be a subshift and let C be an open cover of S. Then
he(S,0) = he (S, o) < sup hy(S, o),
u

where the first entropy is taken in Cofin(N)?, the second in Cf (N)Z, and the third
in Alex(N)”. The equality between the first and the second follows from (ix), the
inequality between the second and the third holds since Alex(N)Z refines Cf(N)Z.

Note that B(n + 1,t + 1) = B(n,t) in NZ equivalently B'(n + 1,t + 1) = B'(n,t)
n,t—o00

in N°. Furthermore diam(B'(n,t)) ——— 0 with respect to the metric from (iii).
Using (xi), we have that sup, hy(S, ) = limy, ¢ 00 A (S, 0) in Alex(N)Z,

Let S C Cofin(N)Z be a subshift and let C be an open cover of S. Combining (xii)
and (xi), we have

hc(s, O') = hc/(g, 0') S lim hB’(n,t) (g, O') = lim hB(n,t)(Sa O'),

n,t—o00 n,t—o0

where the first entropy is taken in Cofin(N)?, the second in Cf (N)Z, the third in
Alex(N)Z, and the fourth in Cofin(N)Z. The final equality follows from the preser-
vation of minimality, see (vii). We conclude, supe he (S, o) < limy, 400 AB ) (S, 0).

[]

Lemma 4. Let S be a subshift of N2 and consider the following open cover of NZ.

Then

In pa

B(n,t) ;== Vi__,0'U(n)

GR, (# Vi_o 07 'B(n, 1)) < GRy(|W,]).

rticular,
hB(n,t)(Sv U) = hB(n,l) (S, U) - hZ/{(n) (S, U)'
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Proof. We have '
# Vig o 'B(n,t) < [WhHH].

By Lemma 2, we conclude GR; (}W@THZ ) =GR, (‘W[ln] D O
We are ready to prove the main result.

Theorem 1. Let S C A% be a subshift on a countable alphabet. Then
h(S,0) = sup {GRt(|W};|) ‘F is a finite subset of A}.

Proof. Pick an arbitrary bijection N <> A. By Lemma 1 we have

sup hyny (S, 0) < h(S,0),

neN

while by Lemma 3 and Lemma 4 we have

h(S,0) < lim hB(n,t)<S; o) = sup hu(n)(S, o).

n,t—o00 neN

Combining these inequalities and using Lemma 1 we obtain h(S, o) = sup,,.y GR: (|W[’;1] ).
Since |WE| < |WE/| whenever F C F’ and since every finite subset of N is included in
some [n], we have

h(S,0) = sup GR,(|W}]). O

FCN
Corollary 1. Let A be a countably infinite alphabet. Then h(AZ, o) = oco.

Proof. From |WE| = |F|" we conclude

h(AZ,a) = sup GRy(|F|") = sup In(|F|) = supln(n) = co. [
FCA FCA

neN

Remark 1. Let S C A% be a subshift and let /' C A be a finite subset of the alphabet
such that for all s € S where s; € F for some t € Z we have s; € I for all [ € Z. Then
FZ NS C 8 is clearly o-invariant, and also closed, since FZ is the product of finite and
therefore closed sets.

The above observation allows us to build subhifts on infinite alphabets as “disjoint unions”
of subshifts on finite alphabets.

Example 1. Let {F} };cn be a sequence of subshifts on finite alphabets. Label the alphabet
of F1 by {1, ..., fi}, the alphabet of F5 by {f1 + 1, ..., f2}, and so on. We have obtained a
subshift of N” whose entropy equals sup;cy h(F}, ).



5 Shifts along Infinite (Directed) Graphs

In this section, we consider countably infinite graphs. For any such graph we assume,
without loss of generality, that its vertex set is N.

Proposition 2. Let G be an infinite countable graph. Then the set
Sq = {s € NZ|GSt,st+1 =1 forallt e Z}
18 a subshift.

Proof. Clearly Sg is o-invariant. It remains to show that it is closed. Let s € Cofin(N)Z\
Sq. It suffices to show that s is an interior point. There are three cases.

1. For all t € Z, s, is not a vertex of G. Then (J, {z € NZ‘ZO #* v}, where v runs
through the vertices of GG, is an open neighborhood of s which does not intersect
Sa.

2. There exists t € Z such that {s;, s;41} is not an edge of G but s, is a vertex of G.
Then |J, {z € N%|{2, 2141} # {s1,y}}, where y runs through the vertices of G which
fulfill the condition that {s;,y} is an edge of GG, which is an open neighborhood of
s, does not intersect Sg.

3. There exists ¢t € Z such that {s;, s;11} is not an edge of G but s, is a vertex
of G. Then |, {z € NZ}{zt, zes1} # {Y, Se41} }, where y runs through the vertices
of G which fulfills the condition that {y, s;11} is an edge of G, which is an open
neighborhood of s, does not intersect Sg. O

Remark 2. Let G and H be countable graphs and let m : G — H be a graph morphism.
Then the induced coding M : Sg — Sy is a morphism of topological Markov chains if m
is finite-to-one. This follows from Proposition 1. (See also Example 6).

Remark 3 (Universal topological Markov chain). Since there are countably many finite
directed graphs, their disjoint union is a countable graph. Hence, there is a countable
topological Markov chain which contains all finite topological Markov chains as closed
subsystems. However, there exists a more interesting universal chain. It is well-known that
there exists a countable connected directed graph U such that, for any countable directed
graph G, there exists an embedding G — U, an injection that is adjacency preserving,
whose image is an induced subgraph of U. (The case of undirected graphs is discussed
in [Rad64]; the case of directed graphs, in the guise of 3-colored graphs, is discussed in
[Tru85]). The topological Markov chain (Sy, o) is such that, for any topological Markov
chain S on a finite alphabet, there exists a closed embedding (Sg,0) < (Sy, o). To
see this, observe that the universal directed graph U contains a copy of G. Let V' be the
finite vertex set of G. Then V#N Sy is closed and nowhere dense, since V is finite, and a
o-invariant subset of Sy, since G embeds as an induced subgraph. The universal system
(Su, o) contains every chain on an infinite alphabet as an open dense subsystem, since
the infinite vertex set of the subgraph is open and dense in the cofinite topology.

Lemma 5. Let G be a graph and let F be a finite induced subgraph of G. Then
exp (GR.(IWh]) ) = Ap = lim {/J[F]

for any norm || — ||



Proof. Since F is finite, we may, without loss of generality, use the norm ||M|| =Y. , | M,;].

We have [Wg| =37, ((F')i; = [|F'||. By Gelfand’s formula,

1,J

lim /[[FY| = lim {/|Wh| = Amax
t—o00 t—o00

lim In (M) — In(Am)
Jim I (WE) = (). O
Proposition 3. Let G be a countable graph and consider S C N%. Then
h(Sq, o) = sup { ln+()\%‘ax)|F is a finite subgraph of G}.
Proof. From Lemma 5, we know that GR(|Wg|) = In(Ap*), where Np** refers to the
largest eigenvalue of the subgraph induced by F'. O]

Just as a finite graph corresponds to a linear map from a finite-dimensional vector
space to itself, a countable graph, an infinite {0, 1}-matrix, corresponds to a linear map
from an infinite-dimensional vector space to itself. In the infinite-dimensional setting
the choice of topology becomes important. Let [? denote the Hilbert space of sequences

{x;}2, such that 3, |z;]> < oo equipped with the norm ||z||y = /3, [#:]2. Then the
adjacency operator G : [ — [? is defined by

j=1

We suppose that G is uniformly locally finite, i.e., there is a common upper bound for
the number of successors of every vertex; therefore, the adjacency operator G : [ — [? is
bounded [Moh82, Theorem 3.2]. The spectrum of a bounded operator B : [2 — [? is

Spec(B) = {\ € C‘B — M is not invertible},
and its spectral radius is the number
p(B) = sgp {IAl|X € Spec(B)}.
Proposition 4. Let G be a uniformly locally finite directed countable graph and consider
S C N%. Then h(Sg,0) <In™ (p(G)).

Proof. We equip the space of linear maps from [? to itself with the operator norm || — [|2.o.
We may consider a finite subgraph F' of G as F : [?> — [? by filling up with zeros. For any
t € N we have 0 < (F*);; < (G");; which implies || F*||22 < [|G?||2,2. We conclude, starting
with an application of Gelfand’s formula, that

Jm ([ F < im (/| GEl20
AP < p(G)
In (A5*) < In (p(G))
sup In (AP™) <In (p(G))
h(Sa,0) <In(p(@)),

where we have invoked Proposition 3 in the last step. O
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Proposition 5. Let G be a uniformly locally finite countable graph that is undirected,
Gy; = Gji, and consider Sg C N%. Then h(S¢,0) =In™ (p(G)).

Proof. Mohar [Moh82, Section 4] has shown that, under the hyotheses above, p(G) =
sup {A$3X|F is a finite subgraph of G } It remains to invoke Proposition 3. n

6 Entropy Numbers

In this section, we show that all numbers in [0, 00] are entropies of subshifts of NZ in
particular, entropies of topological Markov chains. This result has been obtained by
Salama [Sal88|, who considered Gurevich’s compactification approach, which leads to the
same entropy. In fact, Salama obtained the stronger result that, given two numbers
0 < a < < oo, there exists a countable graph G such that h(Sg,0) = o and

h*(Sg) = sup GR, (]{Words of length t in S which begin with }|) = 3,
ieN

where the latter is an entropy-like invariant defined by Salama.

Salama’s methods are analytical, while our proof is topological. Lind [Lin84] asked
which numbers may be entropies of topological Markov chains on finite alphabets. This
amounts to asking which numbers may be the spectral radii of finite directed graphs. We
will need the following slight variation of a result of his.

Lemma 6 (Lind [Lin84]). There is a dense subset D C [1,00) such that for every d € D
there exists a finite strongly connected directed graph G such that \5** = d.

Proof. Lind has shown that the set of Perron numbers, the real algebraic integers that
dominate all their conjugates in absolute value, arise as spectral radii of positive integer
matrices [Lin84, Theorem 1], and that the Perron numbers are dense in [1,00) [Lin84,
Proposition 2]. By a higher block representation [Boy93, Sections 1.2-1.7], we obtain a
{0, 1}-valued matrix with the same spectral radius. Since the spectral radius is realized
in a strongly connected subgraph, we may choose the respective subgraph. O]

The following elementary lemma can be proven by considering the Rayleigh quotient
[Steld, Section 1.3].

Lemma 7. Let G be a finite strongly connected graph and let S be a subgraph of G. Then
NG <A

Proposition 6 (Salama [Sal88]). All numbers in [0, 0o] are entropies of topological Markov
chains in NZ.

Proof. The full shift has infinite entropy; see Corollary 1. The infinite one-way path has
entropy zero; see Example 2. It remains to consider the interval (0,00). Let r € (1, 00).
Consider the set D from Lemma 6. Since D is a dense subset of the linearly ordered
set R, there exists a monotonically increasing sequence {d;} in D such that d; — r. Let
{Gi} be a sequence of finite strongly connected directed graphs such that A*™ = d;. The
existence of such a sequence follows from Lemma 6. Take the disjoint union G of the
topological Markov chains generated by G;, as in Example 1. Consider the subgraph of
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GG induced by a finite subset F' C N. By Lemma 7, its spectral radius is smaller or equal
to the largest d; such that F' intersects the vertex set of G;. We conclude that

h(Sg, o) = supIn (A&™) = limIn(d;) = In(r).

Since In((1, 00)) = (0, 00), this proves the claim. O

Note that the construction in the above proof yields a nonminimal subshift. There
exist minimal subshifts of N with entropy zero—for example, the subshift obtained from
the infinibonacci substitution [Fer06]. A construction of Grillenberger [Gri73] provides a
minimal subshift of N with infinite entropy.

7 Examples
Example 2. Consider the subshift C' C Z% defined by
Ci={seZ|syy1=s+1foralteZ}.

We have h(C, o) = 0 since ‘Wf—n,n}} < 2n + 1. This subshift is generated by walks along
an infinite graph, the infinite one-way path. Its spectral radius is 0.

Example 3. Consider the subshift P C Z% defined by
P:={s€Z"||sys1 —s|=1forall t € Z}.

This subshift is generated by walks along an infinite graph, the infinite two-way path,
whose spectral radius is 2. We have h(P, o) = In(2).

Example 4. Consider the lattice Z¢ as an undirected graph. Its spectral radius is 2d.
Hence, the associated topological Markov chain has entropy In(2)+In(d). (This generalizes
Example 3).

Example 5. Consider the undirected homogeneous g-tree. Its spectral radius is 2/q — 1.
Hence, the associated topological Markov chain has entropy In(2) + £ In(g — 1).

Example 6. Consider the following two graphs.

. < o < o < o < > O > O > O >
O <—— O

The latter is a quotient of the former, yet the former has entropy zero, while the latter
has entropy In(2). By Proposition 1, the quotient map does not induce a continuous map
between the subshifts, yet it induces an equivariant surjection whose image, the entire
2-shift, is closed.
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Example 7. Consider the following graph G on the vertex set Z U {«, 8}.

>y —1 < >
o <

The code m : Z U {«, B} — Z U {x} given by

m(x):{xifxez

0 1 < > 2 <

) \
< 7
\
7

c— —2 <

« if z € {o, B}

induces the map M : (ZU{a, B})Z — (ZU{*})Z where M (s); = m(s;). By Proposition 1,
M : Sg — M(Sg) is continuous. Since M is a continuous map from a compact space to
a Hausdorff space, its image is closed. We conclude that M is a morphism. The image
M(Sg) C (Z U {*})Z is not generated by a graph, since whenever the symbol * appears,
it must appear in a succession of evenly many *-symbols, which may not be encoded in a
graph. We have In(2) < h(M(Sg),0) < In(2.66). This is a play on the even shift of Weiss
[WeiT3].

Example 8. By considering Sg C Alex(N)%, one may adjoin many sequences that con-
tain the symbol co. An example is the countable graph G on N which contains the edge
(1,7) if and only if i < j. Then S¢ \ S¢ equals the union of the set

{s € NZ|32 € Z such that s;_1 < s; < oo for all t < z and s; = oo for all t > z}

with the constant sequence at oo.
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