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Abstract

The SIR model is the basic mathematical model for epidemics, but it needs some modification
to capture the dynamics of the current Covid-19 pandemic. Here, we consider contact rates
that depend negatively on the total number Γ of infections, as a result of the social distancing
measures. Under general assumptions, the recovery and death rates are proved to be increasing
functions of Γ, as witnessed in empirical data. Population structure is another issue, for instance
concerning the contact number distribution and age structure of the population.
We develop and describe such models and show how the coefficients can be estimated and what
the effects of delays are. We find that a simple linear regression is adequate for modelling the
decay of the epidemic. We also discuss on the possibility of extending the model taking into
account the time delays corresponding to the incubation period and the duration of the disease,
which should be considered as random variables.

1 Introduction

In the current Covid-19 pandemic, it is important to understand the available models for the
spreading of epidemics, to identify their conceptual and/or empirical shortcomings, and to develop
new ones that overcome those problems. These should enable a more accurate modelling of the
pandemic and help to assess the effects of various policies aimed at constraining it.
The mathematical basis of epidemic models is the classical SIR model [16] that models the dynamics
between four subgroups, the susceptible, the infected, the recovered and the deceased individuals.
Susceptible individuals can get infected, depending on the contact rate with infected ones, and
infected individuals in turn will recover or die. While this model provides the main dynamical
insights, it needs of course be enriched to capture real epidemics. Important effects that have to be
taken into account are time delays caused by incubation periods, variations of the model coefficients,
population structures and network effects. The coefficients may in particular vary as the result of
policies designed and implemented to constrain the spreading of the epidemic. The most important
one here is the contact rate between infected and susceptible individuals. Thus, one may isolate
infected individuals, but since such individuals may be asymptomatic or for some other reasons
not diagnosed, one has to take the general contact rate in the population as a proxy or move to
a more finegrained analysis that takes the population structure or the network structure of social
contacts into account. In this contribution, we develop and describe such models and show how
the coefficients can be estimated and what the effects of delays are. A simple linear regression is
displayed that models the decay of the epidemic.
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2 Variational SIR model with containment efficiency and control
strategies

We start by describing the classical SIR model for epidemic spreading [16], although, as we shall see,
the model cannot be taken as such to model the current pandemic, but will need some modifications.
We look at the following quantities that depend on time t.

• St: the number of susceptibles,

• It: the number of active infected cases,

• Dt: the number of death cases,

• Rt: the number of recovered cases,

• Γt: the total infections, as reported daily. Then Γt = It +Dt +Rt.

• Nt: the total population. Then Nt = St + Γt (neglecting normal births and deaths).

We assume that we are at a stage of the epidemic where Dt � Nt and without vital dynamics, so
that we may replace Nt by a constant population size N . We may therefore normalize the other
quantitities and simply write S, I,R,D,Γ for the normalized data S

N ,
I
N ,

R
N ,

D
N ,

Γ
N . The classical SIR

model (here augmented by the death rate) for normalized data then is

dSt
dt

= −βStIt (2.1)

dIt
dt

= βStIt − µIt − γIt (2.2)

dRt
dt

= γIt,
dDt

dt
= µIt. (2.3)

where linear relations are assumed between the numbers of new deaths, recovered and active infected
cases. It is assumed that recovered patients are immune and therefore will not become susceptible
again. We call parameters β, µ, γ respectively the contact rate, the death rate and the recovery
rate.

Several variational models have been proposed from previous studies, for e.g. by considering
β StItNt

in the right hand side of (2.1), which is βSI, as a functional response F (S, I) where

• for the Holling type II functional response (see [13]) F (S, I) = βSI
m1+S ;

• for the nonlinear functional response (see [7], [27], [33]): F (S, I) = βSIl

1+mIh
;

• for the Beddington-DeAngelis functional response (see [2]): F (S, I) = βSI
1+m1S+m2I

.

To keep the analysis simple, we keep equations (2.1)-(2.3) in the normalized data unchanged,
but accept the possibility that the parameters β, µ, γ can vary in time, and in fact, can be modified
by appropriate policies. For the Covid-19 disease, empirical studies [4], [17], [26], [22] and also the
analysis in Section 3 suggest that for simplicity, we may keep the recovery rate γ constant at γ0

(neglecting the time lag and the random fluctuation effects). The contact rate β and the death
rate µ, however, should not be assumed constant since β is the average contact rate of the whole
population which might change during the course of time, while µ depends on the public health
care system, on the age structure of the population and also on how the disease spreads to the old
age group. In fact, it is precisely the purpose of the social distancing policies and the improvement
of the public health care system to decrease β and µ. On the one hand, we would like to work with
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a time varying βt which, among possible other factors, depends on the social distancing policies.
On the other hand, we need to keep the model intrinsically closed.

Motivated by [11], we consider the contact rate β and the death rate µ as functions of the total
infections, i.e. β = β(Γ), µ = µ(Γ). Specifically, consider the general model for the normalized data

dSt
dt

= −β0G(Γt)StIt (2.4)

dIt
dt

= β0G(Γt)StIt − µ0P (Γt)It − γ0It (2.5)

dRt
dt

= γ0It,
dDt

dt
= µ0P (Γt)It (2.6)

where S + I + R + D = S + Γ = 1 and β0, µ0, γ0 > 0 are constant. The contact function G(Γ) is
assumed to be differentiable and satisfy

G(Γ) > 0, G(0) = 1, G′(Γ) ≤ 0. (2.7)

Meanwhile the death function P (Γ) is assumed to be differentiable such that

P (Γ) > 0, P (0) = 1, P ′(Γ) ≤ 0. (2.8)

Denote by κ0 := β0
µ0+γ0

the basic reproduction number, it is well-known that for covid-19, κ0 ∈ (2, 3).
By similar arguments as in [11], one derives from (2.5) and (2.6) with S = 1− Γ that

dΓt
dt

= β0G(Γt)(1− Γt)It ⇒ It =
1

β0G(Γt)(1− Γt)

dΓt
dt
. (2.9)

Inserting (2.9) into (2.5) yields

dIt
dt

=
dΓt
dt
−

(
µ0P (Γt) + γ0

)
β0(1− Γt)G(Γt)

dΓt
dt
,

which implies, after neglecting the time dependence and integrating both sides, that I and Γ satisfy
the relation

I = I(Γ) = Γ− 1

β0

∫ (
µ0P (Γ) + γ0

)
dΓ

(1− Γ)G(Γ)
+ C (2.10)

where the constant C is determined from the initial relation that I(0) = 0.
An advantage of the model (2.4)-(2.6) is that it possesses an asymptotic state of the total

infections, as shown below.

Theorem 2.1 Assume that I(1) < 0 and
(
P
G

)′
(Γ) ≥ 0. Then there exists a final stationary state

Γ∞ of the total infections which is asymptotically stable.

Proof: A direct computation using (2.7) shows that

I ′(Γ) = 1− 1

β0

(
µ0P (Γ) + γ0

)
(1− Γ)G(Γ)

; (2.11)

I ′(0) = 1− µ0 + γ0

β0G(0)
= 1− 1

κ0
> 0, I ′(1) = −∞;

I ′′(Γ) = − 1

β0

µ0(1− Γ)(P ′(Γ)G(Γ)− P (Γ)G′(Γ))− γ0(1− Γ)G′(Γ) +G(Γ)(µ0P (Γ) + γ0)

(1− Γ)2G(Γ)2
< 0,
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where the last inequality is due to (2.7), (2.8) and the assumption
(
P
G

)′
(Γ) ≥ 0. Hence I(Γ) is

a concave function on Γ ∈ [0, 1] which attains the maximum at some Γmax ∈ (0, 1) such that
I ′(Γmax) = 0. If we assume further that I(1) < 0, then there exists a unique Γ∞ ∈ (Γmax, 1) such
that I(Γ∞) = 0. As a consequence,

I(Γ) > 0, ∀Γ ∈ (0,Γ∞) and I(Γ) < 0, ∀Γ ∈ (Γ∞, 1). (2.12)

Next, inserting (2.10) into (2.9), one derives an ODE for Γ in time

dΓt
dt

= β0G(Γt)(1− Γt)I(Γt) (2.13)

From the above arguments, system (2.13) has three equilibria {0,Γ∞, 1}. Using (2.12), one concludes
that 0 and 1 are unstable fixed points while Γ∞ is the unique fixed point of system (2.13) that is
asymptotically stable, and it represents the expected total infections (normalized) (w.r.t. the whole
population) at the end of the pandemic.

The asymptotic state of the pandemic can be observed in Figure 1 for the case progression in
selected countries worldwide.

Example 2.2 [11] chooses G(Γ) = 1
1+αΓ and P (Γ) ≡ 1 on [0, 1] for α > 0, which satisfies (2.7) and

(2.8). Then the function I(Γ) in (2.10) can be written in the explicit form

I(Γ) = Γ− 1

κ0

∫ (1 + α

1− Γ
− α

)
dΓ = (1 +

α

κ0
)Γ +

1 + α

κ0
log(1− Γ). (2.14)

In this case I(0) = 0 and I(1) = −∞. A direct computation shows that

Γmax =
κ0 − 1

κ0 + α
, h(Γ∞) := −κ0Γ∞ + log(1− Γ∞)

Γ∞ + log(1− Γ∞)
= α. (2.15)

It follows from (2.15) that Γmax and Γ∞ are decreasing functions of α. Hence to reduce Γ∞ and
Γmax, it is important to increase the intensity α of the control function αΓ.

Example 2.3 Empirical data from the Covid19 pandemic suggest to use the control function
G(Γ) = e−αΓ and P (Γ) = e−δΓ for Γ ∈ [0, 1] with α > δ > 0, which satisfies (2.7) and (2.8).
Then function I(Γ) in (2.10) has the form

I(Γ) = Γ− µ0

β0

∫
e(α−δ)ΓdΓ

1− Γ
− γ0

β0

∫
eαΓdΓ

1− Γ
+ C (2.16)

where the constant C is determined by the initial condition I(0) = 0. A direct computation shows
that

I ′(Γmax) = 0⇔ h(α,Γmax) :=
µ0e

(α−δ)Γmax
+ γ0e

αΓmax

(1− Γmax)
= β0, (2.17)

where h(α,Γmax) is an increasing function of α and Γmax. As a result, the solution Γmax of (2.17)
is a decreasing function of α, and one can decrease the theoretical value Γmax by increasing the
intensity α of the control function eαΓ.

Example 2.4 Another possible candidate are the control and death functions of the form G(Γ) =
(1 − Γ)α, P (Γ) = (1 − Γ)δ for Γ ∈ [0, 1] and some α > δ > 0, which also satisfies (2.7) and (2.8).
Like Example 2.2, the function I(Γ) can also be solved explicitly as

I(Γ) = Γ− 1

β0

∫ [
µ0(1− Γ)δ−α−1 + γ0(1− Γ)−α−1

]
dΓ + C

= Γ +
µ0

(α− δ)β0

[
1− (1− Γ)δ−α

]
+

γ0

αβ0

[
1− (1− Γ)−α

]
. (2.18)
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Figure 1: Case progression in countries: Austria, Brazil, Colombia, Germany, Hungary, Italy, India,
Russia, South Africa, Switzerland, Turkey, USA. Data source: Worldometers.

A direct computation shows that I(1) = −∞ and

I ′(Γmax) = 0⇔ h(α,Γmax) := µ0(1− Γmax)δ−α−1 + γ0(1− Γmax)δ−α−1 (2.19)

which is an increasing function of α and Γmax. Hence Γmax is a decreasing function of α, and an
increase in the exponent α of the control function (1− Γ)α leads to a decrease of Γmax.

2.1 Death and recovery ratio

In practice, there often is a lack of data reported from the beginning phase of the pandemic for the
recovered cases, and hence the estimate for the Γ versus I relation cannot be directly checked. In
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this scenarios, one can apply (2.6) and (2.9) to obtain

dDt

dΓt
=
µ0

β0

P (Γ)

(1− Γt)G(Γt)
,

dRt
dΓt

=
γ0

β0

1

(1− Γt)G(Γt)
. (2.20)

Hence by a similar method as above, one can derive the equations for the Γ−D and Γ−R relations

D = D(Γ) =
µ0

β0

∫
P (Γ)dΓ

(1− Γ)G(Γ)
+ C, R = R(Γ) =

γ0

β0

∫
dΓ

(1− Γ)G(Γ)
+ C (2.21)

where C is determined by the initial conditions D(0) = 0 and R(0) = 0. Equation (2.20) can also
be used to estimate the shape of the function G(Γ) as

log
{

(1− Γt)
(Dt+1 −Dt

Γt+1 − Γt

)}
= log

µ0

β0
+ log

(P (Γt)

G(Γt)

)
. (2.22)

Theorem 2.5 Assume the equations (2.20) and (2.21) for the deceased and recovered groups. Then

the recovery ratio R(Γ)
Γ is an increasing function of Γ. If in addition

(
P
G

)′
(Γ) ≥ 0 then the death

ratio D(Γ)
Γ is an increasing function of Γ.

Proof: Since the two rations behave in the same way, it is enough to prove that
[
D(Γ)

Γ

]′
> 0

for Γ ∈ (0, 1). Observe that[D(Γ)

Γ

]′
=

D′(Γ)Γ−D(Γ)

Γ2
where (2.23)

[
D′(Γ)Γ−D(Γ)

]′
= D′′(Γ)Γ =

µ0

β0
Γ

[
(1− Γ)(P ′(Γ)G(Γ)− P (Γ)G′(Γ)) +G(Γ)

]
(1− Γ)2G(Γ)2

> 0(2.24)

for all Γ ∈ [0, 1), where the last equality is due to (2.20), the assumption
(
P
G

)′
(Γ) ≥ 0 and the

conditions (2.7), (2.8). From (2.24), the numerator in the right hand side of (2.23) is increasing in

Γ, thus D′(Γ)Γ−D(Γ) ≥ D′(0)0−D(0) = 0. This shows that the death rate D(Γ)
Γ is increasing in

Γ. As a consequence, due to the fact that Γt is increasing in time, the time varying current death
rate D(Γt)

Γt
is also increasing in time and will approach the limit D(Γ∞)

Γ∞ as Γt tends to Γ∞.

Figure 2 and figure 3 show the time development of the current death and recovery ratios for
the selected countries. While the recovery rate seems to increase over time in every country, the
death rate shows an increasing trend most of the time until it reaches a top level, then stabilizes
and gradually decreases, which indicates that there might be a change in the control functions P,G
and leads to a violation of the assumption

(
P
G

)′
(Γ) ≥ 0.

3 Estimating the contact rate

Since model (2.4)-(2.6) is for normalized data, to test the model, we use equation (2.9) in the
discrete version for the original data to compute the contact rate

β(Γt) :=
Γt+1 − Γt

(1− Γt
N )It

= β0G
(Γt
N

)
(3.1)

As such, a constant value in the right hand side of (3.1) would show that there is no control effect
and the contact rate would be constant as presented in the classical SIR model. With Covid-19, we
observe, however, three phases in the development: first the contact rate looks quite volatile and
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Figure 2: Current death ratio in countries: Austria, Brazil, Colombia, Germany, Hungary, Italy,
India, Russia, South Africa, Switzerland, Turkey, USA. Data source: Worldometer.

stays in the high value area. In the second phase, it starts to decrease considerably. And finally, in
the stable phase, the contact rate stays in a low value area and only fluctuates a little.

The way β(Γt) decreases also varies from country to country and needs to be quantified. [11]
suggests a model as in Example 2.2, in which the contact rate has the form β(Γt) = β0

1+αΓt
. For

checking this model, it is convenient to take the inverse of the contact rate and study its relation
to the total infections Γt

1

β(Γt)
=

1

β0
+
α

β0
Γt. (3.2)

As shown in Figure 4, the relation between Γt and the inverse contact rate 1
β(Γt)

in (3.2) in the
selected countries does not show exactly this linear dependence. In fact, the inverse contact rate
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Figure 3: Current recovery ratio in countries: Austria, Brazil, Colombia, Germany, Hungary, Italy,
India, Russia, South Africa, Switzerland, Turkey, USA. Data source: Worldometer.

seems to depend linearly on the total infections only in the first half period, while in the second
half it rather grows exponentially.

On the other hand, Example 2.3 suggests a model where the contact rate has the form β(Γt) =
β0e
−αΓt with α > 0, which can be checked by considering the logarithmic scaled contact rate

log β(Γt) = log β0 − αΓt. (3.3)

As shown in Figure 5, the linear relation in (3.3) is confirmed in the selected countries in the first
and second phases. The volatility in Phase 3 can be explained as the technical issue that arises
from taking the logarithm of small and rapidly changing new infections Γt+1 − Γt, and from the
fact that in reality, the social distancing policies were gradually relaxed in Phase 3 once the active
cases decreased to a level that was considered safe for the public health system. In this scenario,
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the control parameter α can be switched off to zero (see also [11]). In countries like Russia, we see
β(Γt) dropping like a piecewise constant function, while in others like Turkey or the US, the picture
is more complex. There, β(Γt) first drops exponentially, then stays with little change at the bottom
before bouncing back to a higher level as a result of relaxing social distancing measures. In other
countries like Brazil, Colombia, India and South Africa, the contact rate currently looks unchanged,
indicating that there is no effective policy to stop the disease from spreading.

Figure 4: Inverse contact rate versus total infections in countries: Austria, Brazil, Colombia, Ger-
many, Hungary, Italy, India, Russia, South Africa, Switzerland, Turkey, USA. Data source: Worl-
dometer.

Remark 3.1 From the computations in (2.11) and (2.24), the assumption (2.7) that G(Γ) is a
decreasing function can be relaxed to the assumption that G(Γ)(1 − Γ) is a decreasing function
of Γ. Since this quantity also contributes to the susceptible group St in the contact process with
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Figure 5: Contact rate (logarithmic) versus total infections in countries: Austria, Brazil, Colombia,
Germany, Hungary, Italy, India, Russia, South Africa, Switzerland, Turkey, USA. Data source:
Worldometer.

the active group It as shown in (2.4), in particular 1 − Γt = St, one can in general assume that
G(Γ)(1− Γ) = f(S) is an increasing function of the susceptible group S. The generalized equation
(2.9) then has the form

dΓt
dt

= β0f(St)It. (3.4)

We may also look at its discrete version

log
(Γt+1 − Γt

It

)
= log(β0) + log(f(St)). (3.5)

Figure 6 presents the relation between the left hand side of (3.5) and the normalized susceptible
numbers in a logarithmic scale. It is not surprising that the relation looks almost the same as that
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Figure 6: Contact rate versus susceptibles (logarithmic scale) in countries: Austria, Brazil, Colom-
bia, Germany, Hungary, Italy, India, Russia, South Africa, Switzerland, Turkey, USA. Data source:
Worldometer.

in Figure 5. This is because one obtains from (3.1) and (3.3) that

log β(Γt) = log
(Γt+1 − Γt

It

)
− log(St) = log β0 − αΓt

≈ log β0 + α log(1− Γt) ≈ log β0 + α log(St)

or

log
(Γt+1 − Γt

It

)
≈ log β0 + α log(1− Γt) ≈ log β0 + (1 + α) log(St), (3.6)

and hence we can approximate f(S) = S1+α, which matches with the control function in Example
2.4. Despite this similarity, the choice of model (3.1) addresses the negative dependence of the
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contact rate on the increasing progression of the total infections Γt, which might be used to evaluate
the containment efficiency of the control strategies.

3.1 Relation between total numbers and their log-growth rates

Another important issue is that, due to the lack of information (sometimes unreliable) in recovery
and active case reports in several countries (e.g. Netherlands, Sweden, UK), it is impossible to
estimate the contact rate using the previous analysis. Thus one needs to draw conclusions based on
the growth rate of the total infections and the total deaths, on the possible final state of the total

infections and total deaths. As shown below, our model implies a relation between log
(
d log Γt
dt

)
versus Γt and also log

(
d logDt
dt

)
versus Dt.

First, observe from Theorem 2.5 that I(Γ)
Γ is decreasing in Γ, hence it follows from (2.13) that

d log Γt
dt = dΓt

Γtdt
is a decreasing function of Γt, and so is log

(
dΓt
Γtdt

)
. In addition, for Γt � 1 one can

approximate

log
( dΓt

Γtdt

)
= log β0 + log(1− Γt) + logG(Γt) + log

I(Γt)

Γt

≈ log β0 − Γt + logG(Γt) + log
I(Γt)

Γt
. (3.7)

Using (2.10) and the fact that I(0) = 0, one can use Taylor’s expansion to approximate, provided
that Γt � 1,

I(Γt)

Γt
≈ I ′(0) +

1

2
I ′′(0)Γt = (1− 1

κ0
) +

1

2κ0
(G′(0)− 1)Γt.

As a result, it follows from (3.7) that for Γt � 1

log
(d log Γt

dt

)
≈ log

[
β0(1− 1

κ0
)
]
− Γt + logG(Γt) + log

[
1 +

G′(0)− 1

2(κ0 − 1)
Γt

]
≈ log

[
β0(1− 1

κ0
)
]

+
[G′(0)− 1

2(κ0 − 1)
− 1
]
Γt + logG(Γt). (3.8)

Hence, under the assumption G(Γt) = e−αΓt , (3.7) yields

log
(d log Γt

dt

)
≈ log

[
β0(1− 1

κ0
)
]
− (α+ 1)

[ 1

2(κ0 − 1)
+ 1
]
Γt. (3.9)

Figure 7 shows relation (3.9) in the selected countries, the steeper the curve, the faster it would
reach the saturation phase. It is important to note that the linear regression is only broken at the
saturation phase, when Γt approaches the theoretical limit Γ∞ with I(Γ∞) = 0 thus making log I(Γt)

Γt
in (3.7) to deteriorate very fast to negative values and the linear regression (3.9) is no longer true.

Figure 8 describes also a similar relation between the logarithm of the log-growth rate of the

total deaths log
(
d logDt
dt

)
and the total deaths Dt, although it would be complicated to derive a

quantitatve analysis for it as above using (2.20) and (2.21). The patterns in Figure 7 and 8 show
that in general

log
(d log Γt

dt

)
= H−1(Γt), log

(d logDt

dt

)
= K−1(Dt), (3.10)

where H,K are decreasing sigmoid-type functions.
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Figure 7: Total infection log-growth (logarithmic) versus total infections in countries: Austria,
Brazil, Colombia, Germany, Hungary, Italy, India, Russia, South Africa, Switzerland, Turkey, USA.
Data source: Worldometer.

3.2 An epidemic model with a scale-free contact number distribution

Since contacts take place locally, it might seem natural to include some spatial structure to obtain a
more realistic model. This has been abundantly discussed in the literature, and in particular, there
are many models for epidemic spread on networks. In this section, we provide a possible explanation
of the observed behavior by considering a structured population. The population is structured by
the contact numbers of individuals. Thus, the local structure of contacts is only implicitly contained
in the model. This makes the model analytically tractable, while allowing for capturing some of the
observed phenomena. – In a later section, we shall also consider an age-structured population.

A possible explanation of the decrease of the contact rate comes from an epidemic model with a
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Figure 8: Death log-growth (logarithmic) versus total deaths in countries: Austria, Brazil, Colombia,
Germany, Hungary, Italy, India, Russia, South Africa, Switzerland, Turkey, USA. Data source:
Worldometer.

scale-free contact number distribution. In fact, Zipf’s law, many social distributions are scale-free.
Thus, we develop here a model where the number of people with k contacts follows such a scale-free
distribution. This can be seen as a special case of a structured population model (see e.g. [14]).
Also, there are network models available which attempt to explain the transmission mechanism [5],
[18].

Thus, let Nk = Nk(t) be the number of persons in the population with k contacts at time t.
Then N =

∑M
k=1Nk is the whole population with P (k) = Nk

N the probability that a person is
connected to k other persons, where M is the maximal contact number in the population. The
average contact is 〈k〉 :=

∑M
i=1 iP (i), which is also called the average connectivity of the individuals

in the contact network [23].
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It is often assumed that this connectivity distribution follows a power law [25], [23], i.e. P (k) ≈
k−λ with some exponent λ ∈ (2, 3]. Denote by β0, µ0, γ0 respectively the transmission, death and
recovery coefficients, which characterize the disease and are usually assumed as independent of
the contact networks in regions or countries. Following [12] and [23], we assume that the mixing
pattern of the population is random, and the probability that a contact of a person is a person
with i contacts depends only on the connectivity distribution of the population, i.e. this probability
is given by iP (i)∑M

j=1 jP (j)
. In particular, there are no assortativity or other effects that depend on a

specific contact network topology. For simplicity of the model, assume that Nk is slowly changing
over time (but might be abruptly set to zero if the network connectivity topology is changed due
to the social distancing policies). An SIR model (which can be generalized to an SEIR model [28])
for such a population then has different equations for each k for the part of the population with k
contacts, because persons with more contacts have a higher chance of getting infected and in turn
can also spread the disease to more others. As we shall explore below, this suggests the strategy of
reducing the average contact rate. These equations are of the form

dSk
dt

= −β0kSk

M∑
j=1

jP (j)∑M
j=1 jP (j)

Ij
Nj

= − β0

N〈k〉
kSk

M∑
j=1

jIj (3.11)

dΓk
dt

= β0kSk

M∑
j=1

jP (j)∑M
j=1 jP (j)

Ij
Nj

=
β0

N〈k〉
kSk

M∑
j=1

jIj , (3.12)

where Sk, Ik,Γk are the numbers of susceptible, infected, and total infections with degree k for k =
1, . . . ,M . The total numbers of susceptible, infected, recovered and death individuals are denoted
by S, I,Γ. Γk = Ik + Dk + Rk counts the total infections with k contacts, and Γ = I + D + R the
total number of infections, where Dk(D), Rk(R) are the number of deaths (respectively recovered)
with k contacts. Then Nk = Sk + Γk and N = S + Γ.

By summing all equations (3.12) over k, one obtains

dS

dt
= − β0

N〈k〉

M∑
k=1

kSk

M∑
k=1

kIk (3.13)

dΓ

dt
=

β0

N〈k〉

M∑
k=1

kSk

M∑
j=1

jIj . (3.14)

According to the data, Γ ≤ ρN where ρ < 0.03, hence it makes sense to assume that Γk almost
contributes only a small part in Nk, so that in distribution Sk

S ≈
Nk
N . As a result

1

N〈k〉

M∑
k=1

kSk =
S

N

∑M
k=1 k

Sk
S∑M

k=1 k
Nk
N

≈ S

N
.

Therefore, equation (3.14) yields an approximation

dΓ

dt
= β0

S

N

M∑
i=1

kIk = β0
S

N
I
( M∑
i=1

k
Ik
I

)
= β0

S

N
I〈k, I〉, (3.15)

where 〈k, I〉 :=
∑M

i=1 k
Ik
I is the average contact of the infected group. The contact rate β(Γ) in

(3.1) can then be estimated as

β(Γ) =
dΓ
S
N Idt

≈ β0〈k, I〉. (3.16)
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Since β0, µ0, γ0 are epidemic coefficients independent of the network, the aim is then to minimize
〈k, I〉. Observing that

〈k, I〉 ≤M
M∑
k=1

Ik
I

= M,

one way to do that is by social distancing policies, which aim to disable any type of meeting with
more than m individuals, so that the maximum contact would be a time dependent number Mt

which gradually decreases from M0 to only m � M0, hence finally 〈k, I〉 ≤ m. Therefore, using
(3.16) one obtains

β(Γ) ≤ β0m. (3.17)

In particular, if the distribution of the currently infected group follows a power law with the time
varying maximum contact Mt and the exponent λ ∈ (2, 3), it follows from (3.16) that

log β(Γ) ≈ log
(
β0

Mt∑
k=1

kk−λ
)
≈ log

(
β0CλM

2−λ
t

)
= log(β0Cλ)− (λ− 2) logMt. (3.18)

It is not clear how to relate logMt with Γt, hence it remains to show quantitatively how the
mechanism that works on the contact network affects the contact rate as in the form of (3.1)-(3.5),
which is confirmed by empirical data. The intensity of the social distancing policies varies from
country to country, and so we witness a sharp decrease of 〈k, I〉 = 〈k, I〉t from close to M0 to a much
smaller m over time in Asian countries like China, Taiwan, South Korea, Thailand, while there is a
more gradual decrease of 〈k, I〉t in European countries. In countries like Brazil, Colombia, India or
South Africa, with either no or very little effective social distancing policies, Mt can remain little
changed over time, resulting in a constant contact rate.

4 Estimating the death rate and the recovery rate

We test the relation (2.6) in the discrete form

µ(Γt) :=
Dt+1 −Dt

It
= µ0P

( Γt
Nt

)
⇔ logµ(Γt) = log µ0 + logP

( Γt
Nt

)
. (4.1)

Figure 9 shows the relation of the logarithmic death rate logµ(Γt) and the total infection Γt. While
in some countries like Austria, Germany and Switzerland the death rate has some time lag before
fluctuating around a constant rate (thus δ can be switched off to zero), other countries in Figure
9 show a remarkable downtrend regression (4.1), which suggests a model for the death rate of the
form µ(Γt) = µ0e

−δΓt as in Example 2.3. A possible explanation might come from differences in
the age structure between the entire population and the infected group. In principle, old people are
more vulnerable and would take social distancing measures more seriously than the young group.
As a result, while the number of novel deaths is proportional to the currently infected old aged
group, it is possible that the currently infected old aged group is decreasing exponentially relatively
to the currently infected group. In other words

µ(Γt) :=
Dt+1 −Dt

It
=
Dt+1 −Dt

Iold
t

× Iold
t

It
= µ0 × e−δΓt . (4.2)

On the other hand, figure 10 shows the relation of the logarithmic recovery rate in the discrete form

γ0(Γt) :=
Rt+1 −Rt

It
= γ0 ⇔ log γ0(Γt) = log γ0, (4.3)
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which implies that the recovery rate only fluctuates around a constant value and thus can be
considered as constant. This is not surprising given the fact that almost 80% of the infected group
of Covid1-19 will recover after a time lag of 2 to 3 weeks regardless of the social distancing policies
or the public health care system.

In countries like Brazil, Colombia, India and South Africa, the recent situation is that the contact
rate stays little changed (so that α is set to zero) while the death rate decreases exponentially (δ > 0).

As a result, P (Γt)
G(Γt)

= e−δΓt is no longer an increasing function of Γt and we could observe the death

ratio Dt
Γt

to top at some point and to decline slowly after that.
Both figure 9 and figure 10 show some noisy fluctuations in the first and in the saturation phase,

which comes from the technical issue of taking the logarithm of the small number of novel deaths
and novel recoveries.

4.1 A model with an age-structured population

Above, we have structured the population by contact numbers. Here, instead, we structure it
according to age cohorts. Empirical data show that the contact, mortality and recovery rates vary
considerably between age groups. Younger people may have more contacts, but older ones tend
to be more severely affected by the disease. Therefore, it makes a difference whether contacts
preferably take place between people in the same age group or between different age groups. Thus,
we need to develop a model with an age-structured population. This may then suggest more targeted
containment measures that vary between the different age groups.

An age-structured population can be modelled as follows (see [14, p. 288]). For simplicity, we
only consider two groups, young people (below 50) and old people (over 50), but it is not difficult
to extend the model to finer age divisions. Denote by (So,Γo, Io, Do, Ro) and (Sy,Γy, Iy, Dy, Ry)
the corresponding variables in the two groups, where we assume for simplicity that the distribution
of the two group stays static so that So + Γo = No = λ ≤ 1

2 , S
y + Γy = Ny = 1 − λ ≥ 1

2 . The

mechanism of contacts between the susceptible Sy/o and the infected Iy/o in the two groups is
then characterized by parameters (βy,y, βy,o, βo,y, βo,o). Likewise, we have parameters (µo, γo) and
(µy, γy) for the death and recovery rates of the two groups. System (2.1)-(2.3) can be rewritten as

dSyt
dt

= −Syt (βy,yIyt + βy,oIot )e−αΓt (4.4)

dIyt
dt

= Syt (βy,yIyt + βy,oIot )e−αΓt − µyIyt − γyI
y
t (4.5)

dRyt
dt

= γyIyt ,
dDy

t

dt
= µyIyt ; (4.6)

dSot
dt

= −Sot (βo,yIyt + βo,oIot )e−αΓt (4.7)

dIot
dt

= Sot (βo,yIyt + βo,oIot )e−αΓt − µoIot − γoIot (4.8)

dRot
dt

= γoIot ,
dDo

t

dt
= µoIot ; (4.9)

where Γt = Γyt + Γot , St = Syt + Sot , It = Iyt + Iot , Dt = Dy
t + Do

t , Rt = Ryt + Rot are respectively the
total infections, the susceptible, the currently infected, the total deaths and total recoveries. α is a
control varible which can be switched off to zero. Moreover, it is reasonable to assume

βy,y ≥ βy,o, βo,y, βo,o ≥ 0; µo � µy; γy ' γo. (4.10)

When social distancing control policies are in force, the total infections Γo,Γy,Γ take a negligible
amount of the population and we may approximate Syt ≈ 1− λ, Sot ≈ λ. Hence the equations (4.5),
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Figure 9: Death rate (logarithmic) versus total infections in countries: Austria, Brazil, Colombia,
Germany, Hungary, Italy, India, Russia, South Africa, Switzerland, Turkey, USA. Data source:
Worldometer.

(4.8) for currently infected groups can be approximated by

dIyt
dt

=
(

(1− λ)βy,ye−αΓt − µy − γy
)
Iyt + (1− λ)βy,oe−αΓtIot (4.11)

dIot
dt

= λβo,ye−αΓtIyt +
(
λβo,oe−αΓt − µo − γo

)
Iot . (4.12)

Wehn in addition to the social distancing measures, contact between the two age groups are strictly
prevented, we can assume that

β0,y � 1, (4.13)

so that the term λβo,ye−αΓtIyt in (4.12) can be neglected. In that case, system (4.11)-(4.12) can be
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Figure 10: Recovery rate (logarithmic) versus total infections in countries: Austria, Brazil, Colom-
bia, Germany, Hungary, Italy, India, Russia, South Africa, Switzerland, Turkey, USA. Data source:
Worldometer.

approximated by a triangular time varying system

dIyt
dt

=
(

(1− λ)βy,ye−αΓt − µy − γy
)
Iyt + (1− λ)βy,oe−αΓtIot (4.14)

dIot
dt

=
(
λβo,oe−αΓt − µo − γo

)
Iot . (4.15)

As a result, if we assume further that

(1− λ)βy,ye−αΓt − µy − γy ≥ λβo,oe−αΓt − µo − γo + δ, (4.16)

then it is easy to solve the triangular system (4.14)-(4.15) explicitly and prove that there exists a
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generic constant C such that
Iot
Iyt
≤ Ce−δt. (4.17)

Hence (4.17) and the assumption µo � µy in (4.10) yield

dDt

It
=
dDy

t + dDo
t

Iyt + Iot
=
µyIyt + µoIot
Iyt + Iot

≈
µy + µo

Iot
Iyt

1 +
Iot
Iyt

≈ µy + Cµoe−δt

1 + Ce−δt
≈ µy + Cµoe−δt, (4.18)

which explains the empirical evidence that the death rate decreases exponentially for some time
and then stays constant after that. Similarly

dRt
It

=
dRyt + dRot
Iyt + Iot

=
γyIyt + γoIot
Iyt + Iot

≈ γy, (4.19)

which explains the empirical evidence that the recovery rate only fluctuates around a constant value.

Finally, since (4.17) implies that
Iot
It
≈ Ce−δt and

Iyt
It
≈ 1, it follows from (4.5) and (4.8) that

dΓt
StItdt

≈
(

(1− λ)βy,y + λβo,y
)
e−αΓt ,

which matches (3.3).
One could also combine an age-structured model with another one that is structured by some

other criterion, like the contact number above, but we do not pursue that here.

5 Discussion: the effect of the time lag

To make the model more realistic, we also need to include factors like the incubation time that
induce delays into the epidemic. In particular, because of the varying incubation time, the number
It+1 − It of new infected cases depends on the frequency of social contacts between the susceptible
and infected groups at a time t − τ in the past. Likewise, the death rate and the recovery rate
should be considered as a function of the infections at a time in the past. We therefore propose
a variational SIR discrete model which takes into account three time delay factors. In empirical
models, the distribution of the random delay time of course should represent the available data as
closely as possible, in order to make proper quantitative predictions.

Infection mechanism with time delay

We now develop some more details. Denoting by τ the incubation time, then τ is a random variable
with a distribution Pτ and is bounded from above by a non-random constant r (for other studies,
τ is often assume to be non-random for simplicity, see e.g. [1], [8], [3], [9], [21],[32], [34]). It is clear
that all the social contacts in the past between the susceptible group and the infected group need
some incubation time for the susceptible group to show symptoms of infection. Therefore, from
time t to time t+ 1, the new infected cases Γt+1 − Γt depend on the expected number of all social
contacts between the susceptible group and the infected group at a random time in the past t− τ .
The explicit formula is given by

Γt+1 − Γt = β0

r∑
i=1

G(Γt−i)St−iIt−iPτ (τ = i) = β0EPτG(Γt−τ )St−τIt−τ . (5.1)
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Death and recovery mechanism with time delay

Also, assume that the change of deaths (recoveries) over time also depends on some death random
interval (recovery random interval) τD with distribution PτD and bounded by r (τR, with distribution
PτR and bounded by r). In addition, assume that the number of deaths (recoveries) with death
interval τD is also proportional to the infected number It−τD (respectively It−τR). Then we derive
the following equations which help to determine the death and recovery rates

Dt+1 −Dt = µ0EPτDP (Γt−τD)It−τD = µ

r∑
i=1

P (Γt−i)It−iPτD(τD = i) (5.2)

and

Rt+1 −Rt = γ0EPτR It−τR = γ0

r∑
i=1

It−iPτR(τR = i). (5.3)

While the delay effect would result in a more difficult problem on the asymptotic stability of the
epidemic model, determining the time lags quantitatively is also another challenge. Practically,
τ, τD and τR are often assumed to be lognormal, Weibull or Gamma distributed [19], [20], [29].
However, their mean and standard deviation values are either unknown or very uncertain. Recent
studies [4], [15], [17], [19], [20], [29], [31] with different data sets show that the incubation time τ
ranges from 2 to 14 days, with mean value varying from 4.6 to 6.5 days. The mean time from the
onset of the symptom to death also fluctuates from 7 to 21 days [15], [20], [29], [30], while the mean
time from being infected to recovered ranges from 2 to 3 weeks [4], [20], [29]. This lack of detailed
and accurate information really poses a data issue before reaching any reliable model or prediction,
as discussed in [6].

Disclaimer

We evaluate the data provided by WORLDOMETER (https://www.worldometers.info/coronavirus/)
on a daily basis, concerning the numbers of persons infected, deceased or recovered from the COVID-
19 virus in different countries. We exclude any liability with regard to the quality and accuracy of
the data in use. The data are usually based on information provided by national governments or
authorities. The number of cases reported may be significantly lower than the number of people
actually infected, and these discrepancies may be different in different countries.
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