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THE UNIVERSALITY OF THE RESONANCE ARRANGEMENT AND ITS
BETTI NUMBERS

LUKAS KÜHNE

ABSTRACT. The resonance arrangement An is the arrangement of hyperplanes which has
all non-zero 0/1-vectors in Rn as normal vectors. It is the adjoint of the Braid arrangement
and is also called the all-subsets arrangement. The first result of this article shows that any
rational hyperplane arrangement is the minor of some large enough resonance arrangement.

Its chambers appear as regions of polynomiality in algebraic geometry, as generalized
retarded functions in mathematical physics and as maximal unbalanced families that have
applications in economics. One way to compute the number of chambers of any real ar-
rangement is through the coefficients of its characteristic polynomial which are called Betti
numbers. We show that the Betti numbers of the resonance arrangement are determined by a
fixed combination of Stirling numbers of the second kind. Lastly, we develop exact formulas
for the first two non-trivial Betti numbers of the resonance arrangement.

1. INTRODUCTION

1.1. The Resonance Arrangement. The main object considered in this article is the reso-
nance arrangement:

Definition 1.1. For a fixed integer n ≥ 1 we define the hyperplane arrangement An
as the resonance arrangement in Rn by setting An := {HI | ∅ 6= I ⊆ [n]}, where the
hyperplanes HI are defined by HI :=

{∑
i∈I xi = 0

}
.

Figure 1. The resonance arrangement A3 projected onto the hyperplane H{1,2,3}.
There are 16 chambers visible and another 16 antipodal chambers hidden. Thus,A3

has 32 chambers in total.

The term resonance arrangement was coined by Shadrin, Shapiro, and Vainshtein in their
study of double Hurwitz numbers stemming from algebraic geometry [SSV08]. Billey,
Rhoades, and Tewari proved that the product of the defining linear equations ofAn is Schur
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positive via a so-called Chern phletysm from representation theory. Recently, Gutekunst,
Mészáros, and Petersen established a connection between the resonance arrangement and
the type A root polytope [GMP19].

The arrangementAn is also the adjoint of the braid arrangement [AM17, Section 6.3.12].
It was studied under this name by Liu, Norledge, and Ocneanu in its relation to mathemat-
ical physics [LNO19]. The relevance of the resonance arrangement in physics was also
demonstrated by Early in his work on so-called plates, cf. [Ear17].

In earlier work, the arrangement An was called (restricted) all-subsets arrangement by
Kamiya, Takemura, and Terao who established its relevance for applications in psychomet-
rics and economics [KTT11, KTT12].

A first contribution of this article is a universality result of the resonance arrangement for
rational hyperplane arrangements:

Theorem 1.2. Let B be any hyperplane arrangement defined over Q. Then B is a minor
of An for some large enough n, that is B arises from An after a suitable sequence of re-
striction and contraction steps. Equivalently, any matroid that is representable over Q is a
minor of the matroid underlying An for some large enough n.

The proof is constructive and the size of the requiredAn depends on the size of the entries
in an integral representation of B.

1.2. Chambers of An. The chambers of An are the connected components of the comple-
ment of the hyperplanes in An within Rn. We denote by Rn the number of chambers of the
arrangement An. The arrangement A3 for instance has 32 chambers as shown in Figure 1.

These chambers appear in various contexts, such as quantum field theory where these re-
gions correspond to generalized retarded functions [Eva95]. Cavalieri, Johnson, and Mark-
wig proved that the chambers ofAn are the domains of polynomiality of the double Hurwitz
number [CJM11].

Billera, Tatch Moore, Dufort Moraites, Wang, and Williams observed that the chambers
of An are also in bijection with maximal unbalanced families of order n + 1. These are
systems of subsets of [n + 1] that are maximal under inclusion such that no convex combi-
nation of their characteristic functions is constant [BTD+12]. Equivalently, the convex hull
of their characteristic functions viewed in the n + 1-dimensional hypercube does not meet
the main diagonal. Such families were independently studied by Björner as positive sum
systems [Bjö15].

The values of Rn are only known for n ≤ 8 and are given in Table 1, cf. also [Slo,
A034997]. There is no exact formula known for Rn. Combining the work of Zuev [Zue92]
with the one by Gutekunst, Mészáros, and Petersen [GMP19] gives the bounds

(1) n2 − 10n2/ ln(n)− n+ log2(n+ 1) < log2(Rn) < n2 − 1,

which in turn yields the asymptotic behavior log2(Rn) ∼ n2.
Due to a theorem of Zaslavsky the number of chambers of any arrangement over R equals

the sum of all Betti numbers of the arrangement [Zas75]. The Betti numbers can be defined
via the characteristic polynomial of an arrangement:

Definition 1.3. For any arrangement of hyperplanes A in Fn for any field F its charac-
teristic polynomial χ(A; t) is defined to be

χ(A; t) :=
∑
S⊆A

(−1)|S|tr(A)−r(S),

where for any subset S ⊆ A we set r(S) := codim∩H∈SH . The absolute value of the
coefficient of tn−i in the characteristic polynomial χ(A; t) is called i-th Betti number. One
always has b0(A) = 1 and b1(A) = |A|.
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In the case of a complex arrangement of hyperplanes, the Betti numbers coincide with the
topological Betti numbers of the complement of the arrangement Cn \ (∪H∈AH) with coef-
ficients in Q, cf. [OT92, Chapter 5] for an overview of the topological study of arrangement
complements.

A formula for χ(An; t) would also yield a formula for Rn. Unfortunately, there is also no
such formula known for χ(An; t). In fact, the polynomial χ(An; t) itself is only known for
n ≤ 7 as computed in [KTT11].

The next result of this article proves that the Betti numbers bi(An) for any fixed i > 0 can
be computed for all n > 0 from a fixed finite combination of Stirling numbers of the second
kind S(n, k) which count the number of partitions of n labeled objects into k non-empty
blocks. The proof is based on Brylawski’s broken circuit complex [Bry77].

Theorem 1.4. There exist some positive integers ci,k for all i ≥ 0 and i + 1 ≤ k ≤ 2i

such that for all n ≥ 1,

bi(An) =
2i∑
k=1

ci,kS(n+ 1, k).

Moreover, the constants ci,k are bounded by ci,k ≤
(
2i−1
k−1

) (k−1)!
i!

.

The first two trivial cases of this theorem are

b0(An) = S(n+ 1, 1), b1(An) = S(n+ 1, 2).

One can obtain exact formulas for the higher Betti numbers bi(An) from Theorem 1.4 if one
knows bi(An) for all 1 ≤ n ≤ 2i since the matrix of Stirling numbers (S(n, k))n,k=1,...,2i

is invertible. Unfortunately, this already fails for b3(An) since χ(An; t) is only known for
n ≤ 7.

Combining the upper bound on the constants ci,k given in Theorem 1.4 with the formula
for the Stirling numbers given in (5) yields the upper bound bi(An) < 2in

i!
for i, n ≥ 1.

Summing up these bounds for i = 0, 1, . . . , n we obtain

log2(Rn) < n2 − n+ 1,

for n > 1 which is a slight improvement of the bound given in (1).
Analyzing the triangles in the broken circuit in detail we obtain exact formulas for the

first two non-trivial coefficients of χ(An, t), namely b2(An) and b3(An), in terms of Stirling
numbers of the second kind. That is, we determine the exact constants c2,k and c3,k for all
relevant k. The resulting values of b2(An) and b3(An) are displayed in Table 1.

Theorem 1.5. For any n ≥ 1 it holds that

(i) b2(An) =2S(n+ 1, 3) + 3S(n+ 1, 4),

=
1

2
(4n − 3n − 2n + 1) and

(ii) b3(An) =9S(n+ 1, 4) + 80S(n+ 1, 5) + 345S(n+ 1, 6)

+ 840S(n+ 1, 7) + 840S(n+ 1, 8),

=
1

4!
(4 · 8n − 15 · 6n + 15 · 5n − 14 · 4n + 18 · 3n − 7 · 2n − 1).

Example 1.6. Using Theorem 1.5 we can compute χ(A3; t) as

χ(A3; t) = t3 − 7t2 + 15t− 9.

Thus, the above mentioned result by Zaslavsky again yields R3 = 1 + 7 + 15 + 9 = 32.

Remark 1.7. The formula for b2(An) in Theorem 1.5 (i) was also found earlier by Billera
(personal communication). It also appeared in [JK99], cf. also [Slo, A036239].
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n 1 2 3 4 5 6 7 8 9

b1(An) = |An| 1 3 7 15 31 63 127 255 511

b2(An) 0 2 15 80 375 1652 7035 29360 120975

b3(An) 0 0 9 170 2130 22435 215439 1957200 17153460

b4(An) 0 0 0 104 5270 159460 3831835 ? ?

Rn 2 6 32 370 11292 1066044 347326352 419172756930 ?

Table 1. The known values of bi(An) for 1 ≤ i ≤ 4 and Rn which is the number
of chambers of An. The values for b2(An) and b3(An) were computed using Theo-
rem 1.5.

This article is organized as follows. After reviewing necessary definitions of matroids
and their minors in Section 2 we will prove Theorem 1.2 in Section 3. Subsequently, we
state the necessary facts on broken circuit complexes in Section 4 and prove Theorem 1.4
in Section 5. Lastly, we give the proof of Theorem 1.5 in Sections 6 and 7.
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2. MATROIDS AND THEIR MINORS

In this section we review some basics of matroids and their minors. Details can be found
in [Oxl11].

Definition 2.1. A matroid M is a pair (E, I) where E is a finite ground set and I is a
non-empty family of subsets of E, called independent sets such that

(i) for all A′ ⊆ A ⊆ E if A ∈ I then A′ ∈ I and
(ii) if A,B ∈ I with |A| > |B| then there exists a ∈ A \B such that B ∪ {a} ∈ I.

Given some set finite set E and an r×E-matrix A with entries in some field F we obtain
a matroid M(A) on the ground set E whose independent sets are the columns of A that are
linear independent. A matroid M is called representable over a field F if there exists an
r × E-matrix A such that M =M(A).

An arrangement of hyperplanes A also gives rise to a matroid by writing the coefficients
of a linear equation for eachH ∈ A as columns in a matrix and applying the above construc-
tion. Similarly, we also get a matroid M(A) underlying an arrangement A with ground set
A whose independent set are precisely those whose hyperplanes intersect with codimension
equal to the cardinality of the subset.

Definition 2.2. Let M = (E, I) be a matroid and S ⊆ E. Then one defines:
(a) The restriction of M to S, denoted M |S, is the matroid on the ground set S with

independent sets {I ∈ I | I ⊆ S}.
(b) Assume that S is independent inM . Then, the contraction ofM by S, denotedM/S,

is the matroid on the ground setE\S with independent sets {I ⊆ E\S | I∪S ∈ I}.
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A matroidN is called a minor ofM ifN arises fromM after a finite sequence of restrictions
and contractions.

Minors play a central role in the theory of matroids. For instance, Geelen, Gerards and
Whittle announced a proof of Rota’s conjecture which asserts that matroid representability
over a finite field can be characterized by a finite list of excluded minors [GGW14].

The restriction of a representable matroid to some subset S is again representable by the
same matrix after removing the columns that are not in S. The following lemma establishes
a similar connection for contractions of representable matroids. This also motivates the term
minor of a matroid as it corresponds to a minor of a matrix in the representable case.

Lemma 2.3. [Oxl11, Proposition 3.2.6] Let E be some finite set and A an r × E matrix
over a field F. Suppose e ∈ E is the label of a non-zero column of A. Let A′ be the matrix
arising from A through row operations by pivoting on some non-zero element in the column
e. Let A′/e be the matrix A′ where one removes the row and column containing the unique
non-zero entry in the column e. Then,

M(A)/e =M(A′)/e =M(A′/e).

3. UNIVERSALITY OF THE RESONANCE ARRANGEMENT

Let M be a matroid of rank r and size n that is representable over Q. Thus after scaling,
we can assume that there is a r × n matrix A with entries in Z that represents M . Let
a1, . . . , an ∈ Zr be the column vectors of the matrix A. Expressing each vector ai for
1 ≤ i ≤ n as a sum of positive and negative characteristic vectors yields

(2) ai =

m+
i∑

j=1

χP i
j
−

m−i∑
k=1

χN i
k
,

for some m+
i ,m

−
i ∈ N and P i

j , N
i
k ⊆ [n] for all 1 ≤ j ≤ m+

i and 1 ≤ k ≤ m−i .
We work in the extended vector space

QN := Qr ×Qm−1 ×Qm+
1 ×Qm+

1 × · · · ×Qm−n ×Qm+
n ×Qm+

n ,

for some appropriate N ∈ N. Hence, the vectors a1, . . . , an naturally live in the first fac-
tor Qr of QN . We fix the standard basis of QN as

e1, . . . , er, e
1,−
1 , . . . , e1,−

m−1
, e1,+1 , . . . , e1,+

m+
1

, e1,++
1 , . . . , e1,++

m+
1

, . . . .

Now, we describe a construction which will be used in the proof in Theorem 1.2. To this
end, we define 0/1-vectors v1, . . . , vn which will eventually represent the matroid M after
contracting several other 0/1-vectors. We define for each 1 ≤ i ≤ n:

vi :=

m+
i∑

j=1

ei,++
j +

m−i∑
k=1

ei,−k ,

ri,−k :=χN i
k
+ ei,−k for 1 ≤ k ≤ m−i ,

ri,+j :=χP i
j
+ ei,+j for 1 ≤ j ≤ m+

i ,

ri,++
j :=ei,+j + ei,++

j for 1 ≤ j ≤ m+
i .

We collect these vectors in the sets V := {v1, . . . , vn} and

R := {ri,−k , ri,+j , ri,++
j | 1 ≤ i ≤ n, 1 ≤ k ≤ m−i and 1 ≤ j ≤ m+

i }.
Before presenting the proof of Theorem 1.2, we give an example of this construction.



6 LUKAS KÜHNE

Example 3.1. Consider the vectors a1 := (1,−2,−1)T and a2 := (−1, 0,−1)T in Z3.
They can be expressed as a1 = χ{1} − χ{2,3} − χ{2} and a2 = −χ{1,3}.

Thus, m−1 = 2,m+
1 = 1,m−2 = 1, and m+

2 = 0. The above construction yields the
following column vectors in Q8 depicted in the left matrix below. The matrix on the right
arises from the one on the left after suitable row operations as described below in the proof
of Theorem 1.2.

v1 r1,−1 r1,−2 r1,+1 r1,++
1 v2 r2,−1

0 0 0 1 0 0 1

0 1 1 0 0 0 0

0 1 0 0 0 0 1

1 1 0 0 0 0 0

1 0 1 0 0 0 0

0 0 0 1 1 0 0

1 0 0 0 1 0 0

0 0 0 0 0 1 1


;



1 0 0 0 0 −1 0

−2 0 0 0 0 0 0

−1 0 0 0 0 −1 0

1 1 0 0 0 0 0

1 0 1 0 0 0 0

−1 0 0 1 0 0 0

1 0 0 0 1 0 0

0 0 0 0 0 1 1


.

All columns apart from v1, v2 became standard basis vectors and removing those columns
together with all rows apart from the first three yields the matrix with columns a1, a2.

Proof of Theorem 1.2. Assembling the vectors in R and V to a matrix yields:

(3)

v1 r1,−∗ r1,+∗ r1,++
∗ v2 r2,−∗ r2,+∗ r2,++

∗ · · ·

e∗

e1,−∗

e1,+∗

e1,++
∗

e2,−∗

e2,+∗

e2,++
∗

...



0 0
... ∗ ∗ 0

... ∗ ∗ 0 · · ·
0 0
1 0
... Im−1 0 0

... 0 0 0 · · ·
1 0
0 0
... 0 Im+

1
Im+

1

... 0 0 0 · · ·
0 0
1 0
... 0 0 Im+

1

... 0 0 0 · · ·
1 0
0 1
... 0 0 0

... Im−2 0 0 · · ·
0 1
0 0
... 0 0 0

... 0 Im+
2

Im+
2
· · ·

0 0
0 1
... 0 0 0

... 0 0 Im+
2
· · ·

0 1
...

...
...

...
...

...
...

...
. . .



.
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Now, we perform row operations on the matrix in (3) to ensure that all columns correspond-
ing to vectors in R are standard basis vectors. To this end, we apply the following steps for
all 1 ≤ i ≤ n:

(a) We pivot on the entry in row ei,−k and column ri,−k for each 1 ≤ k ≤ m−i .
(b) Lastly, we pivot on the entry in row ei,sj and column ri,sj for each 1 ≤ j ≤ m+

i and
each s ∈ {+,++}.

By construction and Equation (2), this procedure yields the following matrix:

(4)



a1 0 0 0 a2 0 0 0 · · ·

1 0
... Im−1 0 0

... 0 0 0 · · ·
1 0
−1 0
... 0 Im+

1
0

... 0 0 0 · · ·
−1 0
1 0
... 0 0 Im+

1

... 0 0 0 · · ·
1 0
0 1
... 0 0 0

... Im−2 0 0 · · ·
0 1
0 −1
... 0 0 0

... 0 Im+
2

0 · · ·
0 −1
0 1
... 0 0 0

... 0 0 Im+
2
· · ·

0 1
...

...
...

...
...

...
...

...
. . .



.

Therefore, we obtain the matrix A from the one given in Equation (4) by removing all
columns corresponding to vectors in R and all rows apart from the first r ones. Hence,
Lemma 2.3 implies that the matroid M equals the matroid of the resonance arrangement
AN restricted to V ∪R and contracted by R, that is M is a minor of the matroid ofAN . �

4. THE BROKEN CIRCUIT COMPLEX

The Stirling numbers of the second kind are denoted by S(n, k) and count the number
of ways to partition n labeled objects into k nonempty unlabeled blocks. We will use the
standard formula

(5) S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n.

A tool to compute the Betti numbers of an arrangement is the broken circuit complex:
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Definition 4.1. Let A be any arrangement and fix any linear order < on its hyperplanes.
A circuit of A is a minimally dependent subset. A broken circuit of A is a set C \ {H}
where C is a circuit and H is its largest element (in the ordering <). The broken circuit
complex BC(A) is defined by

BC(A) := {T ⊂ A | T contains no broken circuit}.
Its significance lies in the following result:

Theorem 4.2. [Bry77] Let A be any arrangement in a vector space Fn for some field F
with a fixed linear order < on its hyperplanes. Then for any 1 ≤ i ≤ n it holds that

bi(A) = fi−1(BC(A)),
where fi is the f -vector of the broken circuit complex.

For the rest of the article we will study the broken circuit complex of the resonance
arrangement An. Each subset of I ⊆ [n] can be encoded as a binary number

∑
i∈I 2

i. This
gives rise to a natural ordering of the hyperplanes in An which we will use as to obtain its
broken circuit complex. In the subsequent proofs we will identify a hyperplane HA with its
defining subset A or its corresponding characteristic vector χA if no confusion arises.

5. PROOF OF THEOREM 1.4

Throughout this section we use the following notation: Taking all possible intersections
of the sets in an i-tuple (A1, . . . , Ai) of pairwise different non-empty subsets of [n] yields a
partition π = {P1, . . . , Pk} of [n+1] into k blocks with i+1 ≤ k ≤ 2i (the block containing
n + 1 exactly contains all elements of [n] which are not contained in any of the sets Aj for
1 ≤ j ≤ i. We order the blocks in the partition π by their binary representation as detailed
above; in particular we have n+ 1 ∈ Pk.

We can recover the tuple (A1, . . . , Ai) from the partition π through a map

f : [k − 1]→ P([i]) \ {∅},
` 7→ {j ∈ [i] | P` ⊆ Aj},

Note that such a map is injective since the sets in the (A1, . . . , Ai) are assumed to be pairwise
different. We call any injective map f : [k − 1]→ P([i]) \ {∅} an (i, k)-prototype.

Conversely, given any partition π = {P1, . . . , Pk} of [n + 1] and a (i, k)-prototype f we
obtain an i-tuple (A1, . . . , Ai) which we denote by Af,π by setting for 1 ≤ j ≤ i

Aj :=
⋃
`∈Ifj

P`,

where we define Ifj := {` ∈ [k−1] | j ∈ f(`)} for 1 ≤ j ≤ i and call these sets the building
blocks of f .

In total, this construction gives a bijection between i-tuples of pairwise different non-
empty subsets of [n] and pairs of (i, k)-prototypes together with partitions of [n + 1] into k
blocks with i+ 1 ≤ k ≤ 2i.

Now the main observation is the following. Whether an i-tuple Af,π is a broken circuit
depends only on the prototype f but not on the partition π:

Proposition 5.1. In the above notation, let f : [k − 1] → P([i]) \ {∅} be an (i, k)-
prototype. Assume there exists a partition π = {P1, . . . , Pk} of [n + 1] such that the i-
tuple Af,π = (A1, . . . , Ai) is a broken circuit of An (in the order induced by the binary
representation).

Let π̃ = {P̃1, . . . , P̃k} be any partition of [ñ+ 1] for some ñ ≥ 1 into k non-empty parts.
Then the i-tuple Af,π̃ = (Ã1, . . . , Ãi) is also a broken circuit of Añ.
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Proof. By assumption, the tuple Af,π = (A1, . . . , Ai) is a broken circuit. Thus, there exists
some C ⊆ [n] and λ1, . . . , λi ∈ R∗ such that

(6)
i∑

j=1

λjχAj
= χC ,

and Aj < C for all 1 ≤ j ≤ i.
This implies that C is also a union of the first k − 1 parts of the partition π, that is there

exists some IC ⊆ [k − 1] such that C =
⋃
`∈IC P`. Hence, we can rewrite Equation (6) as

(7)
i∑

j=1

λj
∑
`∈Ifj

P` =
∑
`∈IC

P`,

Subsequently, the fact Aj < C yields Ifj < IC for all 1 ≤ j ≤ i where Ifj are the building
blocks of the prototype f and the order is the one induced by the binary representation of
subsets of [k − 1].

Now consider the partition π̃ of [ñ + 1]. Using the building block IC of C we can define
a corresponding subset of [ñ] by setting C̃ :=

⋃
`∈IC P̃`. Thus, Equation (7) implies

i∑
j=1

λj
∑
`∈Ifj

P̃` =
∑
`∈IC

P̃`.

Therefore, the tuple (Ã1, . . . , Ãi, C̃) is a circuit of Añ. Using the fact Ifj < IC we obtain
again Ãj < C̃ for all 1 ≤ j ≤ i which completes the proof that Af,π̃ is a broken circuit
in Añ. �

In light of Proposition 5.1 we can subdivide prototypes into two sets. We call those which
contain a broken circuit for some partition, and thus for all partitions, broken prototypes.
Otherwise, we call a prototype functional.

Proof of Theorem 1.4. As explained above, any i-tuple of subsets of [n] can be obtained
from an (i, k)-prototype and a partition π of [n + 1] into k blocks with i + 1 ≤ k ≤ 2i.
Theorem 4.2 then implies that we can compute the Betti number bi(An) for any i ≥ 0
through functional prototypes and partitions. We correct the fact that latter yields ordered
tuples unlike the elements in the broken circuit complex by multiplying the Betti numbers
bi(An) by i! in the following computation:

bi(An)i! =|{X = (A1, . . . , Ai) | Aj ∈ P([n]) \ {∅}, Aj 6= Aj′ for all j 6= j′ and

X does not contain a broken circuit}|

=
2i∑

k=i+1

|{Af,π | f functional (i, k)-prototype and

π partition of [n+ 1] into k blocks}|

=
2i∑

k=i+1

|{functional (i, k)-prototypes}|S(n+ 1, k).

This already proves that for each i ≥ 0 the Betti number bi(An) can be computed by a
combination of Stirling numbers which is independent from n. This settles the first claim of
the theorem.
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For the second claim, note that the above argument shows

ci,k =
|{functional (i, k)-prototypes}|

i!
,

for all i ≥ 1 and i + 1 ≤ k ≤ 2i. Bounding the number of functional (i, k)-prototypes
by the number of all (i, k)-prototypes which are merely injective functions f : [k − 1] →
P([i]) \ {∅} immediately yields for all i ≥ 1 and i+ 1 ≤ k ≤ 2i

ci,k ≤
(
2i − 1

k − 1

)
(k − 1)!

i!
. �

Remark 5.2. The above upper bound on c2,22 and c3,23 actually agrees with the actual value
of these constants given in Theorem 1.5 (3 and 840). It can be shown that the given bound
on ci,2i is attained for all i ≥ 1, that is all (i, k)-prototypes are functional. For ci,k with i ≥ 1
and k < 2i the upper bound is not tight in general.

6. THE BETTI NUMBER b2(An)
We compute b2(An) using Theorem 4.2.

Proposition 6.1. For all n ≥ 1 it holds that

f1(BC(An)) = 2S(n+ 1, 3) + 3S(n+ 1, 4).

Proof. The only circuits of An of cardinality three are of the form {HA, HB, HA∪B} where
A,B are disjoint subsets of [n]. Hence, the only broken circuits of cardinality two are of the
form {HA, HB} where A,B are disjoint subsets of [n]. Therefore, we are left with counting
subsets of the form {HA, HB}where bothA,B are non-empty subsets of [n] andA∩B 6= ∅.

Assume A 6⊆ B and B 6⊆ A. This case corresponds to a partition of [n+ 1] into four
nontrivial blocks P1, P2, P3, P4 where we assume that n + 1 ∈ P4. Subsequently, we can
choose any Pi with 1 ≤ i ≤ 3 to be the intersection and set A := Pj ∪ Pi and B := Pk ∪ Pi
where {j, k} := {1, 2, 3} \ {i}. Thus, there are 3S(n+ 1, 4) many possibilities of that type.

Now assume A 6⊆ B. The subsets of the form {HA, HB} with A ⊆ B corresponds to a
partition of [n+ 1] into three nontrivial blocks P1, P2, P3 where we again assume n+1 ∈ P3.
In this situation we have the two families {HP1 , HP1∪P2} and {HP2 , HP1∪P2} which yields
2S(n+ 1, 3) possibilities in total of that type. �

Remark 6.2. In the language of the previous section, the above proof implies that all three
(2, 4)-prototypes are functional whereas only two of the three (2, 3)-prototypes are func-
tional.

Combining this proposition with Theorem 4.2 and Equation (5) yields a proof of the
announced formula for b2(An):
Proof of Theorem 1.5 (i). We compute:

b2(An) =2S(n+ 1, 3) + 3S(n+ 1, 4)

=
2

3!
(3n+1 − 3 · 2n+1 + 3)

3

4!
+ (4n+1 − 4 · 3n+1 + 6 · 2n+1 − 4)

=
1

2
(4n − 3n − 2n + 1). �

7. THE BETTI NUMBER b3(An)
To compute b3(An) we again use the broken circuit complex with the ordering induced by

the encoding in binary numbers. Hence, we need to understand which families {HA, HB, HC}
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form a broken circuit of An where A,B,C are subsets of [n] that are pairwise not disjoint.
We use the following result due to Jovovic and Kilibarda:

Theorem 7.1 ([JK99]). For any n ≥ 1, the number of families {A,B,C} where A,B,C
are subsets of [n] that are pairwise not disjoint is

1

3!
(8n − 3 · 6n + 3 · 5n − 4 · 4n + 3 · 3n + 2 · 2n − 2).

Expanding this numbers as sum of Stirling number of the second kind we obtain the equiv-
alent formula

(8) 13S(n+ 1, 4) + 92S(n+ 1, 5) + 360S(n+ 1, 6) + 840S(n+ 1, 7) + 840S(n+ 1, 8).

We call such families pairwise intersecting.

As a first step we will classify the circuits of An of cardinality four. To determine the
broken circuits it suffices to consider circuits whose first three elements in the ordering <
are pairwise intersecting. Otherwise, the edges between these elements are already broken
circuits and therefore not part of BC(An).

Definition 7.2. We call a circuit in An relevant if the corresponding subsets of [n] which
are not maximal in the circuit are pairwise intersecting.

Proposition 7.3. For n ≥ 1, a four element family in An is a relevant circuit if and only
if it is one of the following types for subsets A1, A3, X ⊆ [n] such that

(?) A1 ∩ A3 6= ∅, A1 \ A3 6= ∅, A3 \ A1 6= ∅ and A1 ∩ A3 ∩X = ∅ :
(i) {HA1 , HA3 , HA14A3 , HA1∪A3},

(ii) {HA1 , HA3 , HA1∩A3 , HA14A3},
(iii) {HA1 , HA3 , HA1∩A3 , HA1∪A3} or
(iv) {HA1 , HA3 , H(A1∩A3)∪X , H(A1∪A3)\X}.

In each case, we assume that the last element in each set is the largest with respect to the
ordering <.

Before proving this proposition, we give examples for each such type of circuit of cardi-
nality four.

Example 7.4. Consider the following families in the arrangement A4 corresponding to
the cases of Proposition 7.3.

(i) The family {H{1,2}, H{1,3}, H{2,3}, H{1,2,3}} is a circuit ofA4 since there is the relation
χ{1,2} + χ{1,3} + χ{2,3} = 2χ{1,2,3}.

(ii) The family {H{1,2}, H{1,3}, H{1}, H{2,3}} is a circuit of A4 since there is the relation
χ{1,2} + χ{1,3} = 2χ{1} + χ{2,3}.

(iii) The family {H{1,2}, H{1,3}, H{1}, H{12,3}} is a circuit of A4 since there is the relation
χ{1,2} + χ{1,3} = χ{1} + χ{1,2,3}.

(iv) Setting A1 := {2, 4}, A3 := {1, 3, 4} and X := {1} yields the family {H{2,4}, H{1,3,4},
H{1,4}, H{2,3,4}}. This is a circuit of A4 since there is the relation χ{2,4} + χ{1,3,4} =
χ{1,4} + χ{2,3,4}.

Proof of Proposition 7.3. Generalizing the relations given in Example 7.4 to arbitrary sets
A1, A3, X satisfying the conditions in Equation (?) shows that these given families are in-
deed families of four different subsets of [n] which form relevant circuits in An.

Conversely, let {A1, . . . , A4} be a family of subsets corresponding to a relevant circuit
in An with Ai 6= Aj for any i 6= j, Ai ∩ Aj 6= ∅ for 1 ≤ i, j ≤ 3 and A4 is the maximal
element in the ordering <. Since the hyperplanes form a circuit in An there is a relation
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i=1 λiχAi

= 0 for some λi ∈ Z for 1 ≤ i ≤ 4. The coefficients λi need to be non-zero
since the circuit would otherwise satisfy a dependency of cardinality less than four.

Using the symmetry of the setsA1, . . . , A3 it suffices to consider the two cases λ1, λ2, λ3 >
0 and λ4 < 0 or λ1, λ3 > 0 and λ2, λ4 < 0. Note, that the case λ1 > 0 and λ2, λ3, λ4 < 0
cannot occur since A4 is the maximal element.

Case 1: λ1, λ2, λ3 > 0 and λ4 < 0: In this case, the relation implies A1 ∪ A2 ∪ A3 =
A4. Since the sets A1, A2, A3 are by assumption pairwise intersecting every element
in A4 is contained in at least two of the sets A1, A2, A3. Not all elements of A4

appear in all of the sets A1, A2, A3 since otherwise these four sets would all be equal.
Hence, the relation then implies that every element in A4 is contained in exactly two
of the sets A1, A2, A3 which means that we can without loss of generality assume
A2 = A14A3. Therefore, the family is a circuit of type (i).

Case 2: λ1, λ3 > 0 and λ2, λ4 < 0: Analogously to the first case, the relation now yields
A1 ∪ A3 = A2 ∪ A4. Hence, the maximality of A4 yields A1 6⊆ A3 and A1 6⊇ A3.
Thus, the elements in A1 ∪A3 are partitioned into the three blocks A1 \A3, A3 \A1

and A1 ∩ A3 appearing with positive coefficients λ1, λ3 and λ1 + λ3 respectively in
the relation.

Assume there is an element a ∈ (A1 ∪ A3) \ A2. Then, a ∈ A4 which implies
λ4 = λ1 + λ3 since a 6∈ A2. This yields A4 ⊆ A1 ∩ A3 which contradicts the
maximality of A4. Therefore, we must have A1∩A3 ⊆ A2 and it suffices to consider
the following two subcases:

Case 2.1: A1 ∩ A3 = A2: Then we obtain A14A3 ⊆ A4. Since the positive co-
efficients in the relation are constant on the block A1 ∩ A3 we must have either
A14A3 = A4 or A1 ∪ A3 = A4. The former case yields a circuit of type (ii)
and the latter one of type (iii) as described in the statement of Proposition 7.3.

Case 2.2: A1 ∩ A3 ( A2: Assume (A1 ∩ A3) ∪ X = A2 for some non-empty
subset X ⊆ A14A3. Now, we must have A4 ⊇ (A14A3) \X since A1 ∪A3 =
A2 ∪ A4. Since X ⊆ A14A3, the coefficient λ2 can be at most λ1 or λ3.
However, the positive coefficient of the elements in A1 ∩A3 is λ1 + λ3. Hence,
A4 ⊇ (A1∩A3). So in total A4 ⊇ (A1∪A3)\X . Since the positive coefficients
of the elements in A1 ∩A3 and A14A3 are different we must have A4 ∩X = ∅.
Therefore, A4 = (A1 ∪ A3) \X and the circuit is of type (iv). �

Proposition 7.3 implies that all broken circuits of An of cardinality three are of the form
{HA1 , HA3 , HA14A3} or {HA1 , HA3 , H(A1∩A3)∪X} for A1, A3, X ⊆ [n] with A1 ∩ A3 6=
∅, A1 6⊆ A3, A1 6⊇ A3 and X ⊆ A14A3. The former ones correspond to circuits of
type (i) with the relation χ{A1}+χ{A2}+χ{A3} = 2χ{A4}. We call them tetrahedron circuits
since they exhibit a tetrahedron if we regard the elements as vertices of the n-dimensional
hypercube.

The latter broken circuits might not stem from a unique circuit of cardinality four. We can
however fix a bijection between these broken circuits and the circuits of type (iii) and (iv)
in Proposition 7.3. These all satisfy the relation χ{A1} + χ{A3} = χ{A2} + χ{A4}. The char-
acteristic functions of these circuits viewed in the n-dimensional hypercube form rectangles
which is why we call these circuit rectangle circuits in the following.

Using again Theorem 4.2 to determine b3(An) we will therefore start from Theorem 7.1
and subtract the number of tetrahedron and rectangle circuits which give broken circuits of
cardinality three by removing the largest element in each circuit. Note that a broken circuit
can not stem from a tetrahedron and rectangle circuit simultaneously since it can not satisfy
a tetrahedron and a rectangle relation at the same time.

Proposition 7.5. For any n ≥ 1 there are S(n+ 1, 4) tetrahedron circuits in An.
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Proof. Let P1, P2, P3, P4 be any partition of [n+ 1] where we label the parts so that n+1 ∈
P4. Set A4 := [n+ 1] \ P4 and Ai := A4 \ Pi for 1 ≤ i ≤ 3.

We claim that the hyperplanes corresponding to A1, . . . , A4 form a tetrahedron circuit
in An. By definition we have Pk = Ai ∩ Aj for any possible ordering {k, i, j} = {1, 2, 3}
and Ai ⊂ A4 for all 1 ≤ i ≤ 3 Hence, the family A1, . . . , A4 is pairwise intersecting, i.e.
Ai∩Aj 6= ∅ for all i 6= j. Next, consider l ∈ A4 such that l ∈ Pi for some 1 ≤ i ≤ 3 and set
{j, k} := {1, 2, 3} \ {i}. Then, we conclude that l ∈ Aj, l ∈ Ak and l 6∈ Ai which implies
that A1, . . . , A4 corresponds to a tetrahedron circuit.

Conversely, given the subsets A1, . . . , A4 of [n] corresponding to a tetrahedron circuit
with largest subset A4 we can define a partition of [n+ 1] by setting P4 := [n+ 1] \A4 and
Pi := A4 \ Ai for 1 ≤ i ≤ 3. We claim this defines a partition of [n+ 1]. By definition
we have Pi ∩ P4 = ∅ for all 1 ≤ i ≤ 3. The assumption of A1, . . . , A4 corresponding to a
tetrahedron circuit implies that every l ∈ A4 is contained in exactly two subsets Ak, Aj for
some 1 ≤ k < j ≤ 3. This implies that every l ∈ A4 is contained in exactly one block Pi
which proves that P1, . . . , P4 is a partition of [n+ 1].

Since these two constructions are inverse to each other the claim follows. �

To count the rectangle circuits we construct corresponding tuples which will be easier to
count. Throughout the subsequent discussion we regard the indices cyclically, i.e. given any
family of sets X1 . . . Xn we set X0 := Xn and Xn+1 := X1.

Proposition 7.6. Let (A1, . . . , A4) be a family of distinct and non-empty subsets of [n]
forming a relevant rectangle circuit, i.e. χA1 + χA3 = χA2 + χA4 and Ai ∩ Aj 6= ∅ for
1 ≤ i < j ≤ 3 with maximal element A4. Then ,we define its midpoint as M :=

⋂4
i=1Ai

and the sides of the rectangle as Si := (Ai ∩ Ai+1) \M for 1 ≤ i ≤ 4.
In this case, the tuple (S1, . . . , S4,M) satisfies
(S1) Si ∩ Sj = ∅ for all i 6= j and in particular Si 6= Sj for all i 6= j,
(S2) M ∩ Si = ∅ for all 1 ≤ i ≤ 4,
(S3) M 6= ∅, and
(S4) at most one of two opposite sides are empty.

We will call a tuple (S1, . . . , S4,M) satisfying (S1) to (S4) a side-midpoint tuple.

Example 7.7. Figure 2 depicts the general case of a rectangle circuit together with its
corresponding side-midpoint tuples as defined in Proposition 7.6 and two examples in A5.

A1 A2

A3A4

M

S1

S2

S3

S4

{1} {1, 2}

{1, 2, 3}{1, 3}

{1}

∅

{2}

{3}

∅

{1, 2, 3} {1, 2, 4}

{1, 4, 5}{1, 3, 5}

{1}

{2}

{4}

{5}

{3}

Figure 2. Three examples of rectangle circuits together with their side-midpoint tuples.

Proof of Proposition 7.6. To prove (S1) assume for a contradiction a ∈ Si ∩ Sj . Without
loss of generality we can assume a ∈ S1 ∩ S2. By definition this yields a ∈ A1, A2, A3 but
a 6∈ M . Thus a 6∈ A4. This contradicts the relation χ{A1} + χ{A3} = χ{A2} + χ{A4} in the
element a. Thus, Si ∩ Sj = ∅ for all i 6= j.

The sides Si are defined as Si := (Ai ∩ Ai+1) \M . This immediately implies property
(S2) namely Si ∩M = ∅.



14 LUKAS KÜHNE

By assumption, we have A1 ∩A3 6= ∅. The relation χ{A1} + χ{A3} = χ{A2} + χ{A4} then
yields A1 ∩ A3 = A2 ∩ A4. Therefore, A1 ∩ A3 =M 6= ∅ which proves property (S3).

Lastly, assume without loss of generality S1 = S3 = ∅. This implies A1 = M ∪ S4 ∪ Ã1

for some Ã1 ⊆ [n] disjoint from M and S4. This yields Ã1 ∩ A4 = ∅ since any intersection
of these sets disjoint from M would be contained in S4. Hence using the fact A1 ∪ A3 =

A2 ∪ A4, we obtain Ã1 ⊆ A2. Thus,

Ã1 ⊆ (A1 ∪ A2) \M = S1 = ∅.

Hence, Ã1 = ∅ and A1 =M ∪S4. Analogously, we obtain A4 =M ∪S4 which contradicts
A1 6= A4. �

The next proposition shows that we can obtain a rectangle circuit from a side-midpoint
tuple:

Proposition 7.8. Let (S1, . . . , S4,M) be a side-midpoint tuple. Set Ai :=M ∪Si−1 ∪Si.
Then, the family (A1, . . . , A4) corresponds to a relevant rectangular circuit which means it
satisfies

(C1) Ai 6= Aj for all i 6= j,
(C2) Ai 6= ∅ for all 1 ≤ i ≤ 4,
(C3) Ai ∩ Aj 6= ∅ for all i 6= j and
(C4) it forms a rectangle circuit, i.e. χA1 + χA3 = χA2 + χA4 .

Proof. Assume A1 = A2. This implies M ∪ S4 ∪ S1 = M ∪ S1 ∪ S2. Hence, S4 = S2.
By assumption (S1) these sets are disjoint which yields S4 = S2 = ∅. This contradicts the
assumption (S4) that at most one of two opposite sets is empty. Now assume A1 = A3.
This implies M ∪ S4 ∪ S1 = M ∪ S2 ∪ S3. Thus, we have two partitions of the same set
by pairwise disjoint sets which can not all be empty which is impossible. Thus we have
without loss of generality proven (C1).

By assumption we have M 6= ∅. Our construction of the sets Ai yields M ⊆ Ai for all
1 ≤ i ≤ 4. This immediately implies Ai 6= ∅ for all 1 ≤ i ≤ 4 and Ai ∩ Aj 6= ∅ for all
i 6= j. Hence, properties (C2) and (C3) hold.

Lastly, we have by construction of the setsAi and due to the fact that the sets S1, . . . , S4,M
are pairwise disjoint

χA1 + χA3 = χM +
4∑
i=0

χSi
= χA2 + χA4 . �

Proposition 7.9. The constructions defined in Propositions 7.6 and 7.8 are inverse to
each other.

Proof. Let (A1, . . . , A4) be the vertices of a relevant rectangle circuit satisfying (C1) to
(C4). This yields by Proposition 7.6 the side-midpoint tuple with midpoint MA :=

⋃4
i=1Ai

and sides (Ai−1∩Ai)\MA. Fix some 1 ≤ i ≤ 4. The relation in property (C4) then implies
Ai ⊆ Ai−1 ∪ Ai+1. Hence, we obtain Ai = (Ai−1 ∪ Ai) ∪ (Ai ∪ Ai+1). This yields,

Ai =MA ∪ ((Ai−1 ∪ Ai) \MA) ∪ ((Ai ∪ Ai+1) \MA).

Thus, the vertices Ai equal the resulting vertices from the construction in Proposition 7.8.
Conversely, let (S1, . . . , S4,M) be a side-midpoint tuple. This yields by Proposition 7.8

the vertices of a rectangle circuit M ∪Si−1 ∪Si for 1 ≤ i ≤ 4. Since the sets S1, . . . , S4,M
are pairwise disjoint the construction of Proposition 7.6 applied to these vertices yields the
side-midpoint tuple (S1, . . . , S4,M). �
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In total we have established a bijection between relevant rectangle circuits and side-
midpoint tuples. The former correspond to broken circuits of An of the form {HA1 , HA3 ,
H(A1∩A3)∪X} for A1, A3, X ⊆ [n] with A1 ∩A3 6= ∅, A1 6⊆ A3, A1 6⊇ A3 and X ⊆ A14A3.
We are now able to determine the number of these broken circuits by counting side-midpoint
tuples.

Proposition 7.10. For any n ≥ 1 there are 3S(n+1, 4)+12S(n+1, 5)+15S(n+1, 6)
side-midpoint tuples in [n]. This number equals the relevant rectangle circuits in An.

Proof. We split up the side-midpoint tuples in [n] into three cases depending on how many
sides are empty. Since at most one of two opposite sides can be empty these cover all
side-midpoint tuples.

Case 1: Two adjacent sides are empty.: Say S1 = S2 = ∅. In this case, we need to
count partitions of a subset of [n] into three blocks, one for each of the sets S3, S4

and M . The sets S3 and S4 are symmetric and we can choose any of the three blocks
for the distinguished set M . Therefore, we obtain 3S(n+ 1, 4) side-midpoint tuples
in this case.

Case 2: Exactly one side is empty.: Say S1 = ∅. In this case, we need to count par-
titions of a subset of [n] into four blocks, one for each of the sets S2, S3, S4 and
M . There are S(n + 1, 5) such partitions. We can choose any of the four blocks as
the distinguished midpoint M . The remaining three blocks can be assigned to the
sets S2, S3, S4 in exactly three non-equivalent ways. These choices correspond to the
identity permutations and the two transposition (1 2) and (2 3) in S3 Therefore there
are in total 12S(n+ 1, 5) side-midpoint tuples in this case.

Case 3: All sides are non-empty.: This case works almost analogously to Case 2. This
time we need to count partitions of a subset of [n] into five blocks, one for each of
the sets S1, S2, S3, S4 and M . There are S(n + 1, 6) such partitions. We can choose
any of the blocks as the midpoint. Subsequently, we can fix S1 as the first free block
without any choices due to the symmetry of the sets S1, . . . , S4. As in Case 2 there
are now three choices for the assignment of the last three sets. In total we obtain
15S(n+ 1, 6) side-midpoint tuples without any empty sides. �

Putting the above statements together we can prove the announced formula for b3(An):
Proof of Theorem 1.5 (ii). By Theorem 4.2, the Betti number b3(An) equals the number of
intersecting families of cardinality three minus the number of broken circuits of cardinality
three. Hence, we can compute b3(An) using Equation (8) in Theorem 7.1 subtracted by
the number of tetrahedron and rectangle circuits computed in Proposition 7.5 and Proposi-
tion 7.10. Thus, we obtain

b3(An) = 9S(n+1, 4)+80S(n+1, 5)+345S(n+1, 6)+840S(n+1, 7)+840S(n+1, 8).

Expanding this equation via the formula for the Stirling numbers in Equation (5) yields

b3(An) =
1

4!
(4 · 8n − 15 · 6n + 15 · 5n − 14 · 4n + 18 · 3n − 7 · 2n − 1). �
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