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Abstract. In the paper, we consider a kind of generalized harmonic maps, namely,

the V T -harmonic maps. We will prove an existence theorem for Dirichlet problems of

V T -harmonic maps from compact manifolds with boundaries.
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1. Introduction

For a map u from a Riemannian manifold (Mm, g) to a Riemannian manifold

(Nn, h), the energy functional is defined as

E(u) =

∫
M

|du|2

2
dνg,

its critical point is called harmonic map. The Euler-Lagrange equation is:

(1.1) τ(u) = 0,

where τ(u) = trg(∇du) is the tension field of u. Another way to define harmonic map is:

consider the second fundamental form ∇du of the map u defined using the Levi-Civita

connections on M and N , taking the trace of it with respect to the metric g on M , one

obtains the tension field τ(u) and then the equation (1.1).

Harmonic map has many generalizations, an important one is Hermitian harmonic

map introduced by Jost and Yau ([10]), which are maps from Hermitian manifolds to

Riemannian manifolds satisfying a nonlinear elliptic system. Along this line, affine har-

monic map ([9]) and V-harmonic map [2] were investigated. Recently, in [1] the authors

introduced the following generalized harmonic maps:

Definition 1 (V T -harmonic map, c.f. [1]). Let (M, g) be a compact manifold with

boundary, (N, h) a compact Riemannian manifold. A map u : (M, g)→ (N, h) is called
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a V T -harmonic map iff u satisfies

(1.2) τV u+ TrgT (du, du) = 0,

where τV u = τ(u) + du(V ), τ(u) = Trg(∇du), V ∈ Γ(TM), T ∈ Γ(⊗1,2TN).

In particular, if T ≡ 0, u is called a V -harmonic map ([2]).

Recall that when considering harmonic maps from Hermitian manifolds (affine man-

ifolds resp.) M into Riemannian manifolds N , one obtains Hermitian harmonic maps

(affine harmonic maps resp.), they are both V -harmonic maps with V being the dif-

ference between the underlying connections and the Levi-Civita ones on M (c.f. [2],

[9]). More generally, if we consider harmonic maps between two Hermitian manifolds

(affine manifolds resp.) M and N , then we will have V T -harmonic maps, with V , T

being the differences of the underlying connections and the Levi-Civita ones on M , N

respectively. It is expected that V T -harmonic maps will have interesting applications

in the geometry of the underlying manifolds equipped with natural connections rather

than the Levi-Civita ones (see e.g. [10]).

Existence is a fundamental problem for harmonic maps. Eells and Sampson [3] used

the heat flow method to obtain the existence of harmonic map from compact Riemannian

manifold without boundary to nonpositivey curved Riemannian manifold. Also using

the heat flow method, Hamilton [5] obtained the existence result for Dirichlet problems

and Neuman problems of harmonic maps from manifolds with boundary to nonpositively

curved Riemannian manifolds with convex boundaries. When the curvature of the target

manifold is positive, Hildebrandt, Kaul and Widman (see e.g. [6, 7, 8]) established

existence results for Dirichlet problems by assuming the image of the map is contained

in a suitable geodesic ball in the target manifold.

In this paper, we will consider existence of solutions for the following Dirichlet

problem for V T -harmonic maps:

(1.3)

{
τV u+ TrgT (du, du) = 0, on M,

u = Φ, on ∂M,

where Φ ∈ C1+α(∂M,N).

In local coordinates, the above equation can be written as

∆V u
l + (Γlik + T jik)g

αβDαu
iDβu

k = 0, 1 ≤ l ≤ n, ∀t ∈ [0, 1].(1.4)

where, operator ∆V u := ∆M,gu+ 〈V,∇u〉g, u ∈ C2(M), V ∈ Γ(TM).

In general, the equation of V T -harmonic maps has no variational structure, this

makes the existence problem more difficult than that of the usual harmonic maps.
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Jost and Yau [10] investigated the existence of Hermitian harmonic maps from

Hermitian manifolds into compact nonpositively curved Riemannian manifolds through

the heat flow method.

By using maximum principle to establish a priori estimates, in [2] the authors ob-

tained the existence of V -harmonic maps from Riemannian manifold with boundary into

geodesic ball in targeted manifold. This was extended to the case of V T -harmonic maps

in [1]:

Theorem 1 (Theorem 3 in [1]). Let (Mm, g) be a compact Riemannian manifold with

nonempty boundary ∂M and (Nn, h) a complete Riemannian manifold without boundary.

Let d : N ×N → R be the distance function on N and B(1+σ)R(p) := {q ∈ N : d(p, q) ≤
(1 + σ)R} a regular ball in N , that is, disjoint from the cut locus of its center p and of

radius (1 + σ)R < π
2
√
κ

, where κ = max{0, supB(1+σ)R(p) KN} and supB(1+σ)R(p) KN is an

upper bound of the sectional curvature K of N on B(1+σ)R(p), and σ > 0 is any given

constant.

Suppose u0 ∈ H2,q(M,N)(q > m) with u0(M) ⊂ BR(p). For appropriate σ and R,

there exists a constant C0 depending only on κ, σ,R and the geometry of N , such that if

max |∇T |+ max |T | ≤ C0,

then the initial-boundary value problem

(1.5)

{
∂tu = τ(u) + du(V ) + TrgT (du, du),

u− u0 ∈ H2,q
0 (M,N), u(0) = u0, u(M × [0,∞)) ⊂ BR(p),

admits a unique global solution u which subconverges to a unique solution u ∈ H2,q(M,N)

of the Dirichlet problem

(1.6)

{
τ(u) + du(V ) + TrgT (du, du) = 0,

u− u0 ∈ H2,q
0 (M,N),

such that u(M) ⊂ BR(p).

In this paper, by using the Leray-Schauder theory as in [6] we will derive the exis-

tence of V T -harmonic maps from Riemannian manifold with boundary into geodesic ball

in targeted manifold, which relaxes the smallness conditions on radius of the geodesic

ball B(1+σ)R(p) and the tensor T in the result of [1] by giving explicit upper bounds for

them.

Before stating our main result, we first give some definitions.

Definition 2 (c.f. [7]). A set A ⊂ N is within normal range of a point q ∈ N iff its

distance to the cut locus of q is positive, and A is within normal range of a closed set
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B ⊂ N iff its distance to the cut locus of every point of B is positive. The q-star hull

of a set A ⊂ N which is within normal range of the point q is the union of all shortest

geodesic arcs connecting q and the points in A.

The function aν(t) in our theorems is defined as (c.f. [7])

aν(t) =

{
t
√
ν cot(t

√
ν), if ν > 0, 0 ≤ t < π√

ν
,

t
√
−ν coth(t

√
−ν), if ν ≤ 0, 0 ≤ t <∞.

For ν > 0, the function is decreasing , which belongs to (−∞, 1], as t → π√
ν
, a → −∞,

when t = 0, it is equal to 1. For ν < 0, the function is increasing , which belongs to

[1,∞), as t→∞, a→∞, when t = 0, it is equal to 1.

Now we can state our main result:

Theorem 2. Let (Mm, g) be a compact manifold with boundary, (Nn, h) a complete

Riemannian manifold without boundary. Fix a point q ∈ N , suppose the map Φ : ∂M →
BR(q) ⊂ N which belongs to class C1+α(∂M,N), α ∈ (0, 1), where R = sup∂M

√
dqΦ <

π
4
√
κ
, where dqΦ(p) := dN(q,Φ(p)), p ∈ ∂M. In addition, BR(q) is in the normal range of

the q-star hull of Φ(∂M). Assume the tensor T satisfy the following assumption:

(1.7) max
N
{‖T‖L∞ , ‖∇T‖L∞} < min{

√
κ,

(
2κ(4s0 − πs0 + π)

(7π + 8
√
κ)s0

) 1
2

}.

where the constant κ > 0 is the upper bound of the sectional curvature of N , s0 =

min{m,n}.
Then there exists a constant V0 > 0 such that when ‖V ‖C0(M) < V0, the Dirichlet

problem (1.3) admits a solution, namely, a V T− harmonic map U in C1+α(M,N) ∩
C3(M̊,N) satisfying U(M) ⊂ BR(q).

Remark 1. The bound of maxN{‖T‖L∞ , ‖∇T‖L∞} depends on our choices of ε2 and ε3
in (3.2).

Remark 2 (c.f. pp 4-5 in [8] ). One can verify the assumption that BR(q) is in the

normal range of all of its points if one of the following four condition holds:

• N is simply connected and KN ≤ 0 ([4, p. 201])

• N is compact, connected and non-orientable, n is even, 0 < K ≤ κ and R < π
4
√
κ

([4, pp. 227-228], [11, pp. 3-4]).

• N is connected and orientable, n is even, 0 < K ≤ κ and R < π
4
√
κ

([4, pp.

229-230]).

• N is simply connected , n is even, κ
4
< K ≤ κ and R < π

2
√
κ

([4, p. 254]).
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Remark 3. The q-star hull of Φ(∂M) belongs to BR(q) by the conditon of R. The

normal range condition implies that Φt (see Theorem 3) can be represented in normal

coordinates around any point of Φt(∂M).

2. Some lemmas

Before proving our main theorem, we first give some lemmas.

Lemma 1 (c.f. [1], page 90). Let (M, g) be a compact manifold with boundary, (N, h)

a complete Riemannian manifold without boundary.. Suppose u : (M, g) → (N, h) is a

V T -harmonic map. Then

(2.1)
1

2
∆V e(u) ≥ −A1e(u)− A2(κ, T,∇T )e(u)2,

where A1 = (1− ε3)‖V ‖2
L∞ + A + ε2, A2(κ, T,∇T ) = (1− ε3 + 1

ε3
)‖T‖2

L∞ + κ(1− 1
s0

) +
1

4ε2
‖∇T‖2

L∞ , s0 = min{m,n}. Constant A > 0 depends only on V and RicM , ε2, ε3 are

arbitrary small positive constants.

Remark 4. In fact, by the computatation in [1], page 90, one has

(2.2)
1

2
∆V e(u) ≥ −A1e(u)− A2(κ, T,∇T )e(u)2 + (1− ε3)(1 +

1

m
)|∇
√
e(u)|2.

We can choose suitable constants ε2, ε3 to get the inequality in the lemma while keeping

A1, A2 ≥ 0.

Lemma 2. Assume the conditions in Theorem 2 hold and let U ∈ C2(M,N) be a

map whose image lies in BR(q), which solves the following equation written in normal

coordinates centered at q:

(2.3) ∆V u
l + t(Γlik + T lik)g

αβDαu
iDβu

k = 0, 1 ≤ l ≤ n, ∀t ∈ [0, 1].

where u is the representation of the map U in this normal coordinates. Then we have

∆V |u|2 ≥ 2t(aκ(R)− ‖T‖∞R)e(u).

In particular, if u ∈ C2(M,N) is a V T -harmonic map, then for a fixed p ∈ BR(q), we

have

(2.4) ∆V d
p ≥ 2(aκ(R)− ‖T‖∞R)e(u),

where dp(x) := [dist(u(x), p)]2, for x ∈M .

Proof. The conditions of Theorem 2 imply that we can compute in a fixed normal coor-

dinates in N .

∆V |u|2 = 2uj∆V u
j + 2gαβDαu

jDβu
j



6 XIANGZHI CAO AND QUN CHEN

= 2t

(
δik − Γlik(u)ul − T likul

)
gαβDαu

iDβu
k + 2(1− t)gαβDαu

jDβu
j

≥ 2t

(
hik(u) + Γikj(u)uj

)
gαβDαu

iDβu
k − 2tT liku

lgαβDαu
iDβu

k

≥ 2taκ(R)e(u)− 2tT liku
lgαβDαu

iDβu
k

≥ 2te(aκ(R)− ‖T‖∞R),

where in the second equality, we have used the V T -harmonic map equation, and in the

second inequality, we have used the curvature upper bound on N, i.e., KN ≤ κ, thus [7,

Lemma 1, (3.1)] implies that

aκ(R)ξiξk ≤ hik(u) + Γikju
jξiξk,∀ξ ∈ Rn,

where R is the constant in supM |u| = R < π√
κ
. The second part follows , noting that V T -

harmonic map satisfies equation (2.3) for t = 1 and dp = |u|2 using normal coordinates

centered at point p ∈ N .

�

Theorem 3. Let (Mm, g) be a compact manifold with boundary, (Nn, h) a complete

Riemannian manifold without boundary. Fix a point q ∈ N , suppose the map Φ : ∂M →
BR(q) ⊂ N which belongs to class C1+α(∂M,N), α ∈ (0, 1), where R = sup∂M

√
dqΦ <

π
4
√
κ
, where dqΦ(p) := dN(q,Φ(p)), p ∈ ∂M . Denote φ the representation of Φ with respct

to any normal chart around q. In addition, BR(q) is in the normal range of the q-star

hull of φ(∂M). Assume the tensor T satisfy the following assumption:

(2.5) ‖T‖L∞R < aκ(R),

where the constant κ ≥ 0 is the upper bound of the sectional curvature of N .

Set φt = tφ, t ∈ [0, 1], let φt be the representation of Φt. If Ut : M → N is a V T−
harmonic map in the space C1+α(M,N)∩C3(M̊,N) satisfying U(M) ⊂ BR(q), Ut|∂M =

Φt for some t ∈ [0, 1], then there exists a constant C1 > 0 such that when ‖V ‖∞ < C1,

(2.6) sup
∂M

e(Ut) ≤ Ω.

where Ω is a constant depending on R,α, q,Φ, C1, ‖T‖∞, N.

Proof. We choose normal coordinates U = (u1, u2, · · · , un) around Ut(p) which belongs

to Ut(∂M). There exists a constant Λ1(α, q,Φ) such that

‖Φt,Ut(p)‖C1+α(∂M,Rn) ≤ Λ1.

for t ∈ [0, 1].

Let h = ht,p solves the Dirchlet problem
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{
∆V h = 0, on M̊

h = Φt,u(p), on ∂M

for t ∈ [0, 1], p ∈ ∂M.

The Schauder theory implies that

‖ht,p‖C1+α(M) ≤ C2(‖Φt,u(p)‖C1+α(∂M) + ‖〈V,∇ht,p〉‖C0(M) + ‖h‖C0(M)).

By the maximum princinple and Schauder theory, there exists a constant C3 > 0

depending only on m,n,R, ϕ and a constant Λ2(α, q,Φ, C3, R) such that such that when

‖V ‖C0(M) < C3, we have

∆M |ht,p|2 + ‖ht,p‖C1(M,Rn) ≤ Λ2.

Since u is V T -harmonic map,

∆V u
l + (Γlik + T lik)g

αβDαu
iDβu

k = 0, 1 ≤ l ≤ n.(2.7)

There exists a constant Λ3(α, q,Φ, ‖T‖∞, S) such that

n∑
l=1

|∆V u
l|2 ≤ (Λ3e(Ut))

2.

Let w ∈ C2(M,R) solves the Dirichlet problem{
∆Vw = cΛ2, on M̊

w = 0, on ∂M.

where c = Λ3

2aκ(R)−2‖T‖∞R
. Thus, there exists a constant C4 > 0 depending only on

m,n,R, ϕ such that such that when ‖V ‖C0(M) < C4, we have

sup
M
|∇w| ≤ Λ4.

for some constant Λ4(α, q, u,R,C4, ‖T‖∞, N).

Let ut be the representation of Ut in terms of normal coordinates u1, u2, · · · , un

around Ut(p). Let p ∈ ∂M, through coordinates change, without loss of generality, we

choose unit vector v ∈ TpM pointing outwards such that at p:

‖∂Ut
∂v
‖N =

∂u1
t

∂v
.

Using the auxillary function above, we can consider the function defined by

g = c|ut|2 − c|ht,p|2 − u1
t + h1

t,p + w.

By the assumption and Lemma 2, we have
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c∆V |ut|2 ≥ 2c(aκ(R)− ‖T‖∞R)e = Λ3eut .

Consequently, we have

∆V g = c∆V |ut|2 − c∆V |ht,p|2 −∆V u
1
t + ∆V h

1
t,p + ∆Vw ≥ 0.

The strong maximum princinple and Hopf maximum princinple implies that

−∂g
∂v
≤ 0,

considering the facts that uit(p) = hit,p = 0, p ∈ ∂M, 1 ≤ i ≤ n, g|∂M = 0. Therefore, we

have at p:

‖∂Ut
∂v
‖N =

∂u1
t

∂v
= −∂g

∂v
+
∂w

∂v
+
∂h1

t,p

∂v
≤ Λ2 + Λ4.

Therefore,

eUt(p) ≤ m sup
v
‖∂Ut
∂v

(p)‖2
N ≤ m(Λ2 + Λ4)2 = Ω(α, q,Φ, ‖T‖∞, C3, C4, R).

�

Lemma 3. Let A1, A2 be constants as in Lemma 1, and R,M1 be positive numbers where

R < π
4
√
κ

, let U ∈ C1(M,N) ∩ C3(M,N) be a V T -harmonic map whose image lies in

BR(q) satisfying

sup
M

dqU ≤ R2, sup
M

e(u) ≤M1

and the tensor T satisfy the following assumption:

(2.8) ‖T‖L∞R < aκ(R),

where the constant κ ≥ 0 is the upper bound of the sectional curvature of N . Then

(2.9) ∆V

(
e(u) +

A1 + A2M1

aκ(R)− ‖T‖∞R
dq(u)

)
≥ 0, on M.

Proof. By (2.2) and A2 ≥ 0, we have

1

2
∆V e(u) ≥ −A1e(u)− A2(κ, T,∇T )e(u)2

≥ −A1e(u)− A2(κ, T,∇T )M1e(u)

By (2.4), we have

∆V d
q ≥ 2(aκ(R)− ‖T‖∞R)e.

Thus

∆V

(
e(u) +

A1 + A2M1

aκ(R)− ‖T‖∞R
dq
)
≥ 0.
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�

3. Proof of Theorem 2

Proof of Theorem 2. We choose normal coordinates U = (u1, u2, · · · , un) around Ut(p)

in the q-star hull of u(∂M). As usual, the representationsof mappings U,Φ etc. in these

coordinates we shall denote by u, φ, etc. We define R = sup∂M
√
dqΦ < R0 <

π
4
√
κ
.

Firstly, we introduce two auxillary equations:{
∆V ψ

l = −(Γljk + T ljk)γ
αβDαu

jDγu
k, 1 ≤ l ≤ n

ψl = 0, on ∂M

and {
∆V h = 0, in M

h = φ, on ∂M

Next, we introduce a compact map{
Θ : C1(M,Rn)→ C1(M,Rn)

Θ : u 7→ ψ.

It is enough to find a solution of

(3.1) u = Θ(u) + h, u ∈ C1(M,Rn).

By the Leray-Schauder theory, it is enough to prove firstly deg( Ft,0) = 1 , then deg(

F1,s) = 1 for the map Ft,s = Id− tΘ− sh, where 0 ≤ t, s ≤ 1. In order to apply Lemma

2 and Theorem 3, we introduce a set A ⊂ C1(M,Rn) which is defined by

A = A(R0,M1) = {u ∈ C1(M,Rn); ‖dqu‖C0(M,RN ) < R0, ‖e(u)‖C0(M,RN ) < M1},

whose boundary is

∂A = {u ∈ C1(M,Rn); ‖dqu‖C0(M,RN ) = R0 or ‖e(u)‖C0(M,RN ) = M1},

where R0,M1 are positive constants, dqu(p) := dN(q, u(p)), p ∈M .

If 0 ∈ Ft,0(∂A), which amounts to the fact that there exists u ∈ ∂A such that

Ft,0(u) = 0, i.e. {
u = tΘ(u); on M

u = 0, on ∂M

But in this case, u solves equation (2.3), then Lemma 2 with the maximum principle

implies that u = 0 , which contradicts to the fact that u ∈ ∂A. Then homotopy invariance

of topology degree implies that deg(Ft,0) = 1, since deg(F0,0) = 1.
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Next we prove deg(F1,s) = 1 by the similar argument. To this end, we choose

sup
∂M
|φ|2 < R0 <

π

4
√
κ

; M1 > Ω +
A1 + A2M1

aκ(R0)− ‖T‖∞R0

R2
0.

The latter inequality is equivalent to

(aκ(R0)− ‖T‖∞R0 − A2R
2
0)M1 > (aκ(R0)− ‖T‖∞R0)Ω + A1R

2
0.

Recall

A2(κ, T,∇T ) = (1− ε3 +
1

ε3
)‖T‖2

L∞ + κ(1− 1

s0

) +
1

4ε2
‖∇T‖2

L∞ .

We expect to prove the following inequality holds by our assumption:(
aκ(R0)− ‖T‖∞R0 − (1− ε3 +

1

ε3
)‖T‖2

L∞R2
0 − κ(1− 1

s0

)R2
0 −

1

4ε2
‖∇T‖2

L∞R2
0

)
M1

> (aκ(R0)− ‖T‖∞R0)Ω + A1R
2
0.

(3.2)

The assumption in the theorem implies that

(3.3) aκ(R0)− ‖T‖∞R0 > 0.

We choose ε2 = 1
4
, ε3 = 1

2
in inequality (3.2), it is enough to require that

(3.4) κ(1− 1

s0

)R2
0 +

5

2
‖T‖2

L∞R2
0 + ‖∇T‖2

L∞R2
0 < aκ(R0)− ‖T‖∞R0.

which is equivalent to

(3.5) κ(1− 1

s0

) +
5

2
‖T‖2

L∞ + ‖∇T‖2
L∞ <

aκ(R0)− ‖T‖∞R0

R2
0

.

By the decreasing peroperty of aκ(t) for 0 ≤ t < π
4
√
κ
, we have

inf
0≤R< π

4
√
κ

aκ(R)

R
=
√
κ.

It suffice to require that

(3.6) κ(1− 1

s0

) +
5

2
‖T‖2

L∞ + ‖∇T‖2
L∞ <

4
√
κ

π
(
√
κ− ‖T‖∞).

By the assumption,

(3.7) max
N
{‖T‖L∞ , ‖∇T‖L∞} <

(
κ( 4

π
− 1 + 1

s0
)

7
2

+ 4
√
κ

π

) 1
2

=

(
2κ(4s0 − πs0 + π)

(7π + 8
√
κ)s0

) 1
2

.

Thus, the inequality (3.6) can be solved to make sure that the coefficient of M1 in (3.2)

is positive. Then we can choose M1 to satisfy (3.2).
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If 0 ∈ F1,s(∂A), which amounts to the fact that ∃u ∈ ∂A such that F1,s(u) = 0,

which is {
u = Θ(u) + sh; on M

u = sφ, on ∂M

However, in this case, u is a V T -harmonic map with boundary value sφ. By Theorem

3, we have

sup
M

e ≤ sup
M

(e+
A1 + A2M1

aκ(R)− ‖T‖∞R
dq) ≤ sup

∂M
(e+

A1 + A2M1

aκ(R)− ‖T‖∞R
dq)

≤ sup
∂M

(e) +
A1 + A2M1

aκ(R0)− ‖T‖∞R0

R2
0 ≤ Ω +

A1 + A2M1

aκ(R0)− ‖T‖∞R0

R2
0 < M1.

this again contradicts to the fact that u ∈ ∂A. Thus, we have proved deg( F1,s) = 1

which implies the existence.

�
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