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Abstract

Genuine multipartite entanglement plays important roles in quantum information processing.
The detection of genuine multipartite entanglement has been long time a challenging problem in
the theory of quantum entanglement. We propose a criterion for detecting genuine tripartite entan-
glement of arbitrary dimensional tripartite states based on quantum Fisher information. We show
that this criterion is more effective for some states in detecting genuine tripartite entanglement by
detailed examples.

1 Introduction

Multipartite entanglement, as one of the most remarkable resources in the theory of quantum in-
formation processing and quantum computation, has been investigated extensively in the last two
decades. Detecting multipartite entanglement, especially genuine multipartite entanglement of quan-
tum systems is becoming a fundamental issue, due to its various applications in quantum information
science [1]. A multipartite quantum state is called genuine multipartite entangled if it is not sepa-
rable with respect to any bipartition [2]. This special type of multipartite entanglement plays an
important role in various quantum information processing tasks such as in the context of extreme
spin squeezing [3] and highly sensitive metrological tasks [4,5]. It is also the basic ingredient
in the measurement-based quantum computation [6] and in various quantum communication pro-
tocols [7-11]. However, characterization and detection of quantum entanglement is a formidably
difficult task, and no efficient methods have been developed so far. Researchers have devoted much
to detect quantum entanglement [12-22]. As a special class of multipartite entanglement, genuine
multipartite entanglement also attracts researchers’ attention. To better detect genuine multipartite
entanglement, a series criteria have been presented such as linear and nonlinear entanglement wit-
nesses [23-28], Bell-like inequalities [29], and the norms of the correlation tensors [30-32] and
genuine multipartite entanglement concurrence [31,33-35].

In Ref. [21], the authors developed a method to detect bipartite entanglement by use of quantum
Fisher information. They proposed an alternative entanglement criterion complementing to the crite-
ria based on variance and local uncertainty relations. After then Akbari-Kourbolagh et al. introduced
another entanglement criterion for multipartite systems based on quantum Fisher information [22].
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In this paper, inspired by the method in [21], we provide new criteria in detecting genuine tri-
partite entanglement based on quantum Fisher information. We show that the new criteria are better
than the existing ones by detailed example of tripartite states.

2 Genuine entanglement criteria

As we all know, there have been many genuine multipartite entanglement criteria. Usually, re-
searchers creat genuine multipartite entanglement criteria by entanglement witness, the norms of the
correlation tensors, genuine multipartite entanglement concurrence and so on. Now we review some
criterias.

In [27], Clivaz et al. proposed a genuine multipartite entanglement criteria based on positive
maps: Letpe Hi @ H, ®---H,, and A C {1,2,...,n} denote a proper subset of the parties. A state
P2-sep 18 biseparable if and only if it can be decomposed as

A A A
prsep =Y. > PN @p, p >0, 3T p =1, (1
A i A i

where p4 denotes a quantum state for the subsystem defined by the subset A and ), stands for the
A

sum over all bipartitions A|A. Then they sought for maps of the form

Dyr = Z Aa®L; o UD + M, 2)
A

where M is a positive map, UV [p] = 3, pPUWp (UfA))j is a family of convex combinations of
local unitaries, and ®gpe[p2-sep] = 0 for any pr_gp.

In [35], Li et al. gave two methods to detect genuine tripartite entanglement. First, they proposed
a criteria by the norms of the correlation tensors. That is, p is genuine tripartite entangled if

22 -1 T
Mk@)>Tf(2@+l)%1/d; CVk=1.2....d -1, 3)

k

where My(p) = % (IT1asll + 172130l + 73121l ). 1Ml = 3 7; denote the k norm for an n X n matrix
- - - i=1

M withn;,i=1,2,...,n are singular values of M in decreasing order, and T be the corresponding

correlation matrix for p. Then they provided another method via genuine multipartite entanglement
concurrence Cg . For a tripartite qudit state p,

1 d-1
— |7 - —,0}. )
22 d

From (4), one can see p is genuine entangled if 2+5||T(123)|I -£lso.

Come = max{
Now we first briefly introduce some basic concepts about quantum Fisher information. The
quantum Fisher information F(p, A) of a state p with respect to an observable A is defined by [36-38]
1
Flp,A)= S pL?, 6))
where L is the symmetric logarithmic derivative determined by

1
ilp,Al = E(L,O +pL),

with the square bracket denoting the commutator.



When the spectral decomposition of p is known,

p = Ak, ©)
k

where A; are the non-negative eigenvalues and |k) are the corresponding eigenvectors of p, then for
any observable A on the system Hilbert space, the quantum Fisher information of (5) can be

v = )? 2
F(p,A) = 2 kalAW ; O

where the sums run over only those indices for which 4; + 4; is nonzero [4,38].
The quantum Fisher information has the following remarkable information-theoretic properties
[39,40]: (1) Additivity:

F(p*®p’,A®T’ +1°® B) = F(o*, A) + F(o”, B),

where p® and p” are the local quantum states associated with the subsystems a and b, A and B are
observables, and I* and I? stand for the identity operators on subsystems a and b, respectively.

(2) Convexity:
F {Z Aip j,A] <D AF(pj, A)
J J

for quantum states p;, where 3;4; = 1, 4; > 0.
(3) For any pure state p,
F(p,A) = (M), ®)

where (AA)% = (Az)p - (A)f, is the variance (uncertainty) of the observable A with respect to the state

p.
(4) For an N-qudit quantum pure state |/) mixed with the white noise, p = ply )| + (1 — p)dLN,

p2

NS =

F(ly), A). ©))

As the formula (9) is used many times in our paper, we give a brief proof for it. Assume the
spectral decomposition of |y){y] is

UEIR
k
with A} = 1, and A, = -+ A,y = 0. Then the corresponding spectral decomposition of p can be

p =) AlkXK
k

with 2] = p + IJ—NP, and Ay = --- A, = 1(1;,5’. Thus,
davy ’ 7\2 daN
(A =4 2 P 2 P2
F(p,A) = ——(kA|D|]” = KA|ID|" = ————F(|y), A).
(0,A) 24301, +/112)K |AlD g:z 2+ 2 —p)d-N)K |AID] 5201 = pyd N (I, A)

We first present the following lemmas.

3
Lemma 1. For any qubit state p, Y, F(p,0;) < 2, where o; are Pauli matrices.
i=1



Proof: Any qubit state p can be written as p = %(I + 7 ) = %(l + rio| + r0p + 1303), where
7 is the 3-dimensional Bloch vector with [/ < 1. For a qubit pure state |), [/ = 1, we have

3 3
> F(), o) = 3 = |A? = 2. Hence, for any qubit state p = 3} ; ;[ ;){y;l, we obtain 3. F(p,0;) <
i=1 i=1

3
Z/lile(llﬁj%O'i):Z- |
=

Lemma 2. For any bipartite qubit state p°°,

3
ZF(p“b,o-?@I[bHI“@a?) <8, (10)

i=1
where o and a'f.’ are Pauli matrices on subsystems a and b, respectively.

Proof: By the convexity of quantum Fisher information, we only need to prove that the inequality
holds for pure states. Any bipartite qubit state p*” can be expressed as p® = }1(1 QI+7-FRI+I®
5.7+ Z?,j:l 10 ® 0 ), where 7 = (r1,r2,r3)" and § = (s1, 52, s3)" are real 3-dimensional vectors,
with T denoting transpose. Since the rank of a bipartite pure state [i){(¢/| is one, one has

(ti1 + 1) + (112 — 121)* = (1 = 133)* = (13 — 53)%.

Therefore, we have

t + 1y = £(1 = 133)2 = (r3 — 53)2 = (t1 — 1)
From Eq. (8) it also holds that
3 3 3
F(pylof @l + ' @0t) =6 +2 > 1= ) (i + 5.
= i=1 i=1

1

Hence, we get

w

F ()l ot o + 1 @ ?)
i=1

3
<6+2 Z tii
i=1
<6+ 2133 + 2(1 = 133)2 = (13 — 53)% = (t12 — 1a1)?

<6+ 2633 +24/(1 — t33)2 =8.

The equality in (10) holds for #1, = 151, 3 = s3 = 0, and r; + 51 = r, + 55 = 0, for instance, #;; = —1,
ty = t33 = 1, and the rest parameters are zero. [ |

Now we generalize Lemmas 1 and 2 to qudit and 2-qudit states conditions by Gell-Mann matri-
ces, respectively. The Gell-Mann matrices are defined as

o = R+, 0<j<k<d-1, (11)

o = —iljyk + ikl 0<j<k<d-1, (12)

L 7 -1 o )
77 \/;[FZOWA lll><ll], 1<i<d-1. (13)

Lemma 3. For any d-dimensional qudit state p,

D, Fleal)+ > Fleol)+ > Flpo)<2d-, (14)

0< j<k<d-1 0<j<k<d-1 1<l<d-1

and

where o-f;k, 0"3’:](, and o' are Gell-Mann matrices defined in (11), (12), and (13).



Proof: By the convexity of quantum Fisher information, we only need to prove the inequality holds

d-1 d-1
for pure states. Any d-dimensional pure state can be expressed as |¢) = Y ¢ |s) with Y |o|* = 1.
5=0 5=0

Then one has

ik * *
>0 F(enal)= D el +lad - (piei + o). (15)
0<j<k<d-1 0<j<k<d—1
Fllenol)= > leif +lal + (06t - i) (16)
I<I<d-10< j<k<d-1 0<j<k<d-1
and
% F(le) o)
0<j<k<d-1
: [(§. ¢ 2 &R s ’
= Y &5 (zw ~lig )—(zw +l|¢l|) (17
0<j<k<d-1 j=0 Jj=0
= X AeilPled.
0<j<k<d—1
Thus,
ik ik
> F(ena)+ > Flehat)+ D F(leh o) =2d- 1. (18)
0< j<k<d-1 0<j<k<d-1 1<i<d-1
|
Lemma 4. For any 2-qudit state p® € Hy, with dim(H,) = dim(H,) = d,
. o\b . \b
5 Flen () et s () ) s 3 P (o) el + e (o))
0<j<k<d-1 0<j<k<d-1
+ 3 Fet () 8T + 1o (o)) < L,
1<l<d-1
(19

where 0’#, a'ﬁk, and o are Gell-Mann matrices defined in (11), (12), and (13).
Proof: By the convexity of quantum Fisher information, we only need to prove the inequality holds

d-1 d-1
for pure states. Any pure state |¢) € H,;, canbe expressed as @) = 3 @ulmn) with Y |@ul> = 1.

m,n=0 m,n=0

Then one has

a (|¢>, () er+1e (a{")b)

0<j<k<d-1

d-1
— 2 12 2 2 * P * . % .
= (EO (I + e + Lo + loul?) + 2 (&5 00 + @il + 950 + & ,-%k))
d-1 2
0<j<ked-1 |:t§:) (‘Rir‘pk[ + ()Djt‘pkt + gofj()olk + ‘ptj‘lotk):|

—2d-1)
d-1 2
+2 X (éﬂjjfﬁkk + Q)i+ Pubrj Sﬁzj%k) - [Z (‘/’;,wkr + @iy, + @ ok + %j%ofk)] ,
0< j<k<d-1 =0

(20)

. -
0<j<%<d—1 F (|¢>’ (O-ik)a o' +I'® (O-i‘k) )

d-1
0</‘<%<d—l (Eb (|<sz|2 +lusl® + loul® + |<sz|2) +2 (<P;k90kj + @ik = PPk — ¢jj<PZk))
¥ < = »

d-1
5 |5 - )+ (i - 0y
2d-1)

d-1 2
+ 3 (2 (@tens + op 0 — @on — wii) — | = (i (030 — i) + i (5t - t,ofkso,*j))] ]
0<jksd—1 ' =0
(21



and
> F (p, (Ul)a I’ +1°® (o'l)b)

I<i<d-1

d-1
4d-8 2 2
=*=+4 3 ol = X —[
d me0 o i<ieger D

d- (22)

1i-1 ) 5 5 2
% (Il + Il lhpul® = lipul )] .
t=0 j=0

Thus,

i\a b a .
0<j<%<d_1 F (|‘;0>7 (O'Zk) 24 ]Ib +I’® (o—?k) ) + 0<j<%<d_1 F (|¢>’ (a-ik) ® ]Ib +f® (o'jk> )

b
+ 3 F(|90>, (o")a QP +1°® (o-’) ) g XD
1</<d-1
(23)
| |

Here, we note that the equality in (19) can hold when ¢,,,,, = % fori=0,1,...,d—-1.
Now consider tripartite states puc in systems a, b and c. Let {A,}, {B,} and {C,} be the sets of
local observables with respect to subsystems a, b and c, respectively. From Ref. [21], there exists

Fx and Fyy such that

DT F(*, X, < Fx, (24)
7

for any reduced local state p¥, where X stands for any subsystem a, b or ¢, and

Z F(X", A, ®1" + ¥ ® B,) < Fxy, (25)
M

where pXY stand for reduced state associated with the subsystems XY, where XY € {ab, ac, bc}. Here,
we note that Fxy and Fyy are only depend on the local observable X and XY, respectively.

Though there are different criteria, such as entanglement witness and other methods, one often
considers the genuine entanglement criteria based on biseparable state.

Let Hy denote the Hilbert space of the systems X. Consider tripartite states p“”“ in H,9H, @H.,
with dim H,, = dim H, = dim H,.. p® is said to be genuine entangled if it cannot be written in the
following form,

P = Y it @pl + Y gl @ pt+ ) npl @ ps. (26)
i j 1
A state of the form (26) is called bi-separable. For a bi-separable state, it can be verified that
F,=Fy,=F,and Fp = Fu = Fpe.

Theorem 1. A tripartite state p™ € H, ® Hy, @ H. with H, = H, = H. = d is genuine entangled if

Z F(p™, A, ®1" + B, ®1“ + 1 ® C,) > F + Fa, 27)
u

where F1 = F,=F,=F, and Fy = Fy, = Fy. = Fy,.

Proof: By the additivity and convexity of quantum Fisher information, if p is defined as (26), we



have
Y F(p, A, ®1" + B, @ I + I ® C,))
7
<SEEpiZFpl@pl A ®1" + B, @I + 1 ® C,,)
J7)
+§§quF(p§®ij,A,,®ﬂbc+B,4®}1“C+]Iab®c,,)
+ NN Y FP ®p5A, @1 + B, ®1“ + 1 ® C,)
uol
= pi Z(F(p A+ F(p}, B, ®T + @ C)) + ¥ q; X(F (0%, By) + F(p, A, @ I + I ® C))
i J H
+zr,z(F(p,,C)+F(pabA ®I’+1°® B,))
l M
sz(FA+FBC)+ZC]j(FB+FAC)+zl:rl(FC+Fab)
i J
=F + F;.

| ]
If we choose A,, By, and C, in (27) as Gell-Mann matrices, from Lemmas 1, 2 one gets the
following two corollaries.

Corollary 1. A tripartite state p°*° € H, ® H, ® H. with H, = Hy, = H,. = d is genuine entangled
if
be (N o b K\ | rab K\C
0<;‘<%<d—1 F(pa C,(o-, ) I +]I“C®(0' ) +1I¢ ®(a' ) )

’ ()<j<%<d—l F (pabc’ (O—‘j;k)a eI +I*e ( ) +1"® ( Sk)c)

e ot e e(e))
> ANGdd

(28)

>

Corollary 2. For a three-qubit state p™, if
3
Z F(o™, +0 @1 = 0, @ 1 + 1 @ o) > 10, (29)
i=1
then p*BC is genuine entangled.
Let us consider the following examples.

Example 1. Consider the mixture of the three-qubit GHZ state and W state,

1 — —
p = ——g—1+ XIGHZXGHZ| + W)W, G0
where (GHZ) = <5(1000) + [111)), and [W) = -=(1100) +1010) +[001)). Set Ay = By = C = o,
A, = By = Cy = 0y, and Az = By = —C5 = 05. Then we have

F(p,A; @1 + By ® 1 +I* ® Cy)

= F(p,Ay @I + B, ® 1 + I** @ C»)

: 62 N 22y? 6(x — y)?
1+3x—y 1+3y—-x 1+3x+3y’

and
F(p,A3 ® I + B3 @ I + 1% ® C3)

B 4x* N 128y?
T 1+3x-y 9(1+3y-x)




Figure 1: f(x,y) v.s. x and y. Here, f(x,y) stands for the function defined in Example 1.

fy)
5l
02 04 08 10’
_g|
_10—
Figure 2: From Lemma 2, p is genuine entangled if £(0,y) = 9?33)%{21) —10 > 0. From the figure above,

one can see that it means when y > 0.647236, p is genuine entangled.

Thus
Y F(p,A,®1" + B, @1“ + 1’ ® C,)
u
o lex? . 524y? 12(x — y)?
T 143x—y 91 +3y-x) 1+3x+3y
1622 524y 12(r-y)°

Denote f(x,y) = Ty T oty T Tandy 10. From Corollary 1 the three-qubit state (30) is
genuine entangled if f(x,y) > 0, see Fig. 1.

We can see that for some states our method is more efficient. For instance, take x = 0. Then

1_
p=—g I +)WYWL 0<y<1 31)

is genuine entangled when y > 0.647236, see Fig. 2.

It has been obtained in [28] and [35] that the state (31) is genuine entangled for y > 0.90 and
y > 0.738549, respectively. Obviously, our criterion is better than the one presented in [28] and [35]
for detecting the genuine entanglement of the state defined in (31). Thus, better than Vicente criterion
by Theorem 2 in [30], since the criteria proposed in [35] is more efficient of the state defined in (31).

Example 2. Consider quantum state p € H, @ H, @ H,, p = l;—gpﬂ + plGHZ)YGHZ|, where \GHZ) =
d-1

\/LE > |jjJj) is the Greenberger-Horne-Zeilinger (GHZ) state. Then one has
j=0

F(IGHZ).(o]) o1 +1* (a-,’"‘)" +1? g (cr{")c) =3(d-1), (32)
0< j<k<d-1

F(GHZ), (o) o1 +1“ @ (1) + 17 @ (a{")c) =3d-1), (33)
0< j<k<d—1



and
> F(|GHZ), () o +1°0 (o) +1”® (o-l)c) - @. (34)
1<i<d-1

Thus, from (9), one has

L P o e ) s (o)
T e
N o b N qab ; “) (35)
+1<l§1_1F(p,(0') QI C+1I“C®(a') + ¢ ®(0')

_ & 18(d—1)
= ot (6(d —1)+6(d - 1)+ 2D )

= 6p°dXd-1)(d+3)
2+(@-2)p

2 1207 _ .
Define g(d, p) = bp 2‘1& _1;()‘;3) — 2 l§3d+4). By Corollary 1, one can find p is genuine entangled

. . ((4+34)(16+124+56d3 +12d*+4d0+3d7)) +(4+3d)(~2+d°)
ifgd,p) >0, ie, p> V oD . Ford = 2, one can see p >

0.728714 which is better than the criteria given in [28] since in [28], p > % ~ (0.733333.

Our criterion can be generalized to the general tripartite systems with different local dimensions,
dimH, = d,, dim‘H;, = d» and dim H,. = d;. We have

Theorem 2. Any bi-separable tripartite state p € H, ® Hy, ® H, satisfies

D F(p, Ay @1 + B, @1 + [ @ C,) < Fy + Fa, (36)
“
where Fi = max{F,, Fp, F.}, and F» = max{F ,, Fpc, F}.
Proof: From the proof of Theorem 1, one has
Y F(p,A,®1" + B, @I“ + 1" ® C,,)
< ﬁpi(Fa # Foc) + 24i(Fs + Fac) + 3 1iFe + Fan) (37)

< Fi+ F.

3 Conclusion

Detecting genuine multipartite entanglement is a fundamental and significant task in quantum in-
formation theory. We have obtained a criteria to detect genuine tripartite entanglement based on
quantum Fisher information. Particularly, for three-qubit state systems, example shows that our
criterion detects better the genuine entanglement than the existing criterion. Moreover, we have
generalized the results to any tripartite systems with arbitrarily different local dimensions.

4 Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos.
11805143 and 11675113, Beijing Municipal Commission of Education (KZ201810028042) and
Academy for Multidisciplinary Studies of Capital Normal University.



References

[1] M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge
University Press, Cambridge, 2000).

[2] O. Guhne, and G. Toth, Entanglement detection, Phys. Rep. 474, 1 (2009).

[3] A.S. Sgensen, and K. Mgmer, Entanglement and extreme spin squeezing, Phys. Rev. Lett. 86,
4431 (2001).

[4] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezzé,
and A. Smerzi, Fisher information and multiparticle entanglement, Phys. Rev. A 85, 022321
(2012).

[5] G. Téh, Multipartite entanglement and high-precision metrology, Phys. Rev. A 85, 022322
(2012).

[6] H. J. Briegel, D. E. Browne, W. Diir, R. Raussendorf, and M. Van den Nest, Measurement-
based quantum computation, Nat. Phys. 5, 19 (2009).

[7] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74,
145 (2002).

[8] R. Raussendorf, and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86, 5188
(2001).

[9] Z.Zhao, Y. A. Chen, A. N. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, Experimental demon-
stration of five-photon entanglement and open-destination teleportation, Nature (London) 430,
54 (2004).

[10] Y. Yeo, and W. K. Chua, Teleportation and dense coding with genuine multipartite entangle-
ment, Phys. Rev. Lett. 96, 060502 (2006).

[11] P. X. Chen, S. Y. Zhu, and G. C. Guo, General form of genuine multipartite entanglement
quantum channels for teleportation, Phys. Rev. A 74, 032324 (2006).

[12] Y. Hong, T. Gao, and F. L. Yan, Measure of multipartite entanglement with computable lower
bounds, Phys. Rev. A 86, 062323 (2012).

[13] T. Gao, F. Yan, and S. J. van Enk, Permutationally invariant part of a density matrix and non-
separability of N-qubit states, Phys. Rev. Lett. 112, 180501 (2014).

[14] J. Sperling, and W. Vogel, Multipartite entanglement witnesses, Phys. Rev. Lett. 111, 110503
(2013).

[15] C. Eltschka, and J. Siewert, Entanglement of three-ugbit Greenberger-Horne-Zeilinger Csym-
metric states, Phys. Rev. Lett. 108, 020502 (2012).

[16] Y. Maleki, and A. M. Zheltikov, Witness quantum entanlement in ensembles of nitrogen—
vacany centers coupled to a superconducting resonator, Opt. Express 26,14 (2019).

[17] Y. Maleki, and A. M. Zheltikov, A high-NOON output of harmonincally driven cavity QED,
Sci. Rep. 9, 16780 (2019).

[18] Y. Guo, and L. Zhang, Multipartite entanglement measure and a complete monogamy relations,
Phys. Rev. A 101, 032301 (2020).

[19] Y. Maleki, and A. Maleki, Entangled multimode spin coherent states of trapped ions, J. Opt.
Soc. Am. B 35, 6 (2018).

10



[20] Y. Maleki, and A. M. Zheltikov, Generating maximally-path-entangled number states in two
spin ensembles coupled to a superconducting flux qubit, Phys. Rev. A 97, 012312 (2018).

[21] N. Li, and S. L. Luo, Entanglement detection via quantum Fisher information, Phys. Rev. A
88, 014301 (2013).

[22] Y. Akbari-Kourbolagh, and M. Azhdargalam, Entanglement criterion for multipartite systems
based on quantum Fisher information, Phys. Rev. A 99, 012304 (2019).

[23] M. Huber, F. Mintert, A. Gabriel, and B. C. Hiesmayr, Detection of high-dimensional genuine
multipartite entanglement of mixed states, Phys. Rev. Lett. 104, 210501 (2010).

[24] M. Huber, and R. Sengupta, Witnessing genuine multipartite entanglement with positive maps,
Phys. Rev. Lett. 113, 100501 (2014).

[25] J. Y. Wu, H. Kampermann, D. Bru3, C. Klockl, and M. Huber, Determining lower bounds on
a measure of multipartite entanglement from few local observables, Phys. Rev. A 86, 022319
(2012).

[26] J. D. Bancal, N. Gisin, Y. C. Liang, S. Pironio, Device-independent witnesses of genuine mul-
tipartite entanglement, Phys. Rev. Lett. 106, 250404 (2011).

[27] M. Huber, M. Perarnau-Llobet, and J. I. de Vicente, Entropy vector formalism and the structure
of multidimensional entanglement in multipartite systems, Phys. Rev. A 88, 042328 (2013).

[28] F. Clivaz, M. Huber, L. Lami , and G. Murta, Genuine-multipartite entanglement criteria based
on positive maps, J. Math. Phys. 58, 082201 (2017)

[29] M. Li, and S. M. Fei, Bell inequalities for multipartite qubit quantum systems and their maxi-
mal violation, Phys. Rev. A 86, 052119 (2012).

[30] J. I. de Vicente, and M. Huber, Multipartite entanglement detection from correlation tensors,
Phys. Rev. A 84, 062306 (2011).

[31] M. Li, S. M. Fei, X. Li-Jost, and H. Fan, Genuine multipartite entanglement detection and
lower bound of multipartite concurrence, Phys. Rev. A 92, 062338 (2015).

[32] J. Y. Zhao, H. Zhao, N. H. Jing, and S. M. Fei, Detection of genuine multipartite entanglement
in multipartite systems, Int. J. Theor. Phys. 58, 3181 (2019).

[33] Z. H. Ma, Z. H. Chen, J. L. Chen, C. Spengler, A. Gabriel, and M. Huber, Measure of genuine
multipartite entanglement with computable lower bounds, Phys. Rev. A 83, 062325 (2011).

[34] Z. H. Chen, Z. H. Ma, J. L. Chen, and S. Severini, Improved lower bounds on genuine-
multipartite-entanglement concurrence, Phys. Rev. A 85, 062320 (2012).

[35] M. Li, L. X. Jia, J. Wang, S. Q. Shen, and S. M. Fei, Measure and detection of genuine multi-
partite entanglement for tripartite systems, Phys. Rev. A 96, 052314 (2017).

[36] C. W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York, 1976).

[37] A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Ams-
terdam, 1982).

[38] S. L. Braunstein, and C. M. Caves, Statistical distance and the geometry of quantum states,
Phys. Rev. Lett. 72, 3439 (1994).

[39] G. Toth, and I. Apellaniz, Quantum metrology from a quantum information science perspective,
J. Phys. A 47, 424006 (2014).

11



[40] P. Hyllus, W. Laskowski, R. C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezz¢, and A.
Smerzi, Fisher information and multiparticle entanglement, Phys. Rev. A 85, 022321 (2012).

12



