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We propose the tensor-network compressed sensing (TNCS) by incorporating the ideas of compressed sens-
ing, tensor network (TN), and machine learning. The primary idea is to compress and communicate the real-life
information through the generative TN state and by making projective measurements in a designed way. First,
the state |Ψ〉 is obtained by the unsupervised learning of TN, and then the data to be communicated are encoded
in the separable state with the minimal distance to the projected state |Φ〉, where |Φ〉 can be acquired by partially
projecting |Ψ〉. A protocol analogous to the compressed sensing assisted by neural-network machine learning
is thus suggested, where the projections are designed to rapidly minimize the uncertainty of information in |Φ〉.
To characterize the efficiency of TNCS, we propose a quantity named as q-sparsity to describe the sparsity of
quantum states, which is analogous to the sparsity of the signals required in the standard compressed sensing.
The need of the q-sparsity in TNCS is essentially due to the fact that the TN states obey the area law of entan-
glement entropy. The tests on the real-life data (hand-written digits and fashion images) show that the TNCS
has competitive efficiency and accuracy.

I. INTRODUCTION

Hybridizing the ideas and techniques in information theo-
ries and quantum physics has given birth to significant and
fruitful achievements. On one hand, quantum physics may
enhance the communications of classical information. Tak-
ing dense/super-dense coding protocols [1–7] as examples,
the idea is to use previously shared entangled state between
a sender and the receiver(s) to send more classical informa-
tion than is possible without the resource of entanglement.
On the other hand, classical techniques can assist quantum
approaches. One example is to use compressed sensing [8]
(see also the book in Ref. [9]) to improve quantum state to-
mography [10–13].

We here consider to combine the ideas of compressed sens-
ing [8], quantum communication [14], and unsupervised ten-
sor network (TN) machine learning [15]. Compressed sensing
is a powerful scheme for classical data compression by sam-
pling, which is particularly useful when the samplings of the
data are difficult or expensive. For instance in the magnetic
resonance imaging, compressed sensing can largely compress
the required samplings, thus significantly improve the effi-
ciency [16].

In quantum communication, measurements are also expen-
sive, since quantum states are difficult to prepare and each
measurement will collapse or disturb the state to some extent.
Consequently, the quantum communications of real-life data
(e.g., images of O(103) bits or more), even including the cor-
responding simulations of the quantum processes on classical
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computers, are extremely challenging. For most of the exist-
ing quantum schemes, it is difficult to generalize them to im-
plement realistic tasks, by using many-qubit (or many-body)
states instead of the states with a small number of qubits. This
is also partially because the Hilbert space grows exponen-
tially with the number of qubits, and it is extremely challeng-
ing to use classical numeric simulations to guide the quantum
schemes with many qubits. Meanwhile, the quantum tech-
nologies are advanced rapidly, and the number of qubits that
can be entangled in a well-controlled way increases fast (see
for instance several recent progresses in [17–19]). Therefore,
developing algorithms and protocols to handle real-life prob-
lems using many-qubit states is important and urgent.

Recently, TN [20–24] is rapidly developed into a power-
ful quantum-inspired computational tool for machine learn-
ing, which brings new possibilities and wide perspectives to
process real-life data, such as images and texts, in the quan-
tum processes based on many-qubit (or many-body) states
[15, 25–32]. High efficiencies have been demonstrated at
least for the classical simulations of these quantum processes.
Meanwhile, the underlying relations between TN and the
models executable on quantum platforms (e.g., as quantum
circuits [31, 33] or through quantum channels [34]) are re-
vealed. These achievements allow and motivate to explore
novel quantum schemes that previously could not be effi-
ciently simulated even by classical simulations, which will
provide valuable results for the future investigations on the
genuine quantum hardware [31].

In this work, the tensor-network compressed sensing
(TNCS) is proposed. The main idea is to encode and commu-
nicate the information by implementing designed projections
on the state |Ψ〉 (also called Born machine [35]) that is trained
by the unsupervised TN machine learning algorithm [15]. To
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FIG. 1. (Color online) Illustration of the main steps of TNCS: (1)
train the Born machine |Ψ〉 representing the probability distribution
of the data that Alice considers to send; (2) encode the specific piece
of information to be sent by projecting |Ψ〉; (3) decode the informa-
tion as a generative process by the projected Born machine.

explain TNCS, let us consider the following scenario. Alice
wants to send a piece of classical information {x}, e.g., an
image of hand-written digit “3” consisting of O(102) pixels,
to Bob. She intends to send only a small number of pixels
(or features in the terminology of machine learning) denoted
by {xsent} to Bob by classical communication which might be
unsafe or even public. The rest of the information {xrest} (with
{x} = {xsent} ∪ {xrest}) will be encoded in the Born machine
|Ψ〉. To recover {xrest}, Bob projects |Ψ〉 that is previously
provided by Alice in the way determined by {xsent}. After the
projections, |Ψ〉 will be projected to another entangled state
denoted as |Φ〉, and by design, {xrest} will be encoded in the
separable state that has the minimal distance to |Φ〉. There-
fore, Bob can reliably recover {xrest} by implementing pro-
jections on |Φ〉, or generate {xrest} by sampling on |Φ〉 in the
terms of TN machine learning. A flowchart of TNCS is given
in Fig. 1.

There remain two key questions: how to construct |Ψ〉 and
how to design the projections on it, so that the information
to be sent can be optimally encoded in |Φ〉 in the above way.
Our proposal is the following. First, Alice trains |Ψ〉 by the
unsupervised TN machine learning algorithm [15], so that |Ψ〉
represents the probability distribution of a huge amount of in-
formation that Alice considers to send. |Ψ〉 is called a Born
machine since the probability of each piece of information is
the square of the corresponding coefficient in |Ψ〉 [35]. Then
to send a specific piece of information, she chooses to send
Bob the pixels, with which the uncertainty of the rest of the
pixels in the probability distribution will be minimized. The
full information {x} is efficiently compressed to (or in other
words, can be accurately reconstructed from) a small part of
the image {xrest} and the Born machine |Ψ〉.

We test our TNCS with the datasets of hand-written dig-
its and fashion images (namely MNIST [36] and fashion-
MNIST [37]) by classical simulations. Any image in the

training or testing sets can be reconstructed reliably and ef-
ficiently. The efficiency is indicated by the compression ratio
r = Nf/N ' 10%, where N = #{x} denotes the total
number of features in {x} and Nf = #{x[sent]} denotes the
number of the sent features. In other words, the information
Bob accesses is about 10 times of the information that Al-
ice needs to send through the classical channels. Most part
of the information is encoded in the Born machine (quantum
state). Similar to the compressed sensing, randomly choos-
ing {x[sent]} already leads to small compression ratios. Better
performance is reached by choosing {x[sent]} with a sampling
protocol based on the entanglement of |Ψ〉, and by implement-
ing post-selections to access {x[rest]}. Finally, q-sparsity to
characterize the sparsity of quantum state is proposed. For
TNCS, q-sparsity characterizes how fast the Shannon entropy
of the prbability distribution will decrease by projecting the
Born machine |Ψ〉, and how efficient the compressed sam-
pling can be via |Ψ〉. An empirical equation to estimate the
required number of pixels for reliable reconstructions is given.

Our proposal shares a similar spirit with the recent works
that combine the standard compressed sensing with the classi-
cal probabilistic models. For instance, the auto-encoders pa-
rameterized by deep neural networks are used to design an
efficient Markov sampling process to significantly reduce the
compression ratio [38, 39]. Here, we employ matrix product
state (MPS) [40] that possess simple and shallow architecture
to encode the information and to design the sampling strat-
egy based on the entanglement. While this work will focus
on demonstrating TNCS by classical simulations, our scheme
could in principle be implemented on quantum platforms. The
TNCS would pave a way to processing real-life data through
quantum many-body states. The possible advantages of the
TNCS in efficiency, security, and etc., when implemented on
quantum platforms are to be discussed in future.

This paper is organized as follows. In Sec. II, we explain
the basic concepts and theories of TNCS. In Sec. III, TNCS
is improved by introducing a quantum-inspired protocol and
post-selections. In Sec. IV, we introduce q-sparsity to char-
acterize the sparsity of quantum states based on entanglement
and projections, and in this work to qualitatively characterize
the efficiency of TNCS. At last, we present a summary and
the perspective on quantum communications in Sec. V.

II. TENSOR-NETWORK COMPRESSED SENSING

In this section, we will mainly explain TNCS as a TN
scheme that efficiently deals with quantum many-body states
(optimizations, projections, and etc.) by classical simulations.
Note that TNCS can in principle be generalized to quantum
platforms. Some discussions on the quantum nature of TNCS
can be found in Appendices D, E, and F from the perspectives
of entanglement, security, and efficiency.

Suppose Alice wants to send Bob an image of a hand-
written digit “3” by TNCS (Fig. 1). She firstly trains the state
|Ψ〉 as the generative model for the training set of many “3”
images in MNIST. This can be done with the unsupervised TN
machine learning algorithm [15]. The idea is to firstly map
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the images to quantum states. For example, the n-th pixel
(0 ≤ xn ≤ 1) is mapped to a state of a qubit as

xn → |s(xn)〉 = cos(xnπ/2)|0〉+ sin(xnπ/2)|1〉, (1)

with |0〉 and |1〉 the two eigenstates of the Pauli matrix σ̂z .
In this way, one image with pixels {x} = (x1, x2, · · · ) is
mapped to a separable state |ψ〉 =

∏
n |s(xn)〉. Then the Born

machine |Ψ〉 is optimized to capture the probability distribu-
tion of the training set, by minimizing the distance (negative-
log likelihood) to the probability distribution of the images
in the training set. See more details in Appendix A. Here, we
take |Ψ〉 in the form of MPS [40]. Note that TNCS is a general
scheme, where one may also choose other TN forms to repre-
sent |Ψ〉, such as tree TN or MERA [26, 31, 32], or simply a
quantum state without a specific entanglement structure.

In the sense of machine learning, though we only use the
“3” images in the training set to optimize |Ψ〉, it is expected
that |Ψ〉 approximately gives the probability distribution of
any “3” images. In other words, |Ψ〉 learns the probability dis-
tribution of the “3” images from a finite (training) set, but can
generalize to generate and/or recognize arbitrary “3” images
that |Ψ〉 might have never learned. The ability of a machine-
learning model to process the information beyond the training
set is known as the generalization power (see, e.g., [41]). As
shown in the previous works [15, 25, 26, 28–32], TN mod-
els (including MPS) possess remarkable generalization power
that is competitive to neural networks. Notably, TN models
surpass neural networks as they possess high interpretability
and allow to implement quantum processes.

As |Ψ〉 gives the probability distribution of the “3” im-
ages in the training set and beyond (due to its generalization
power), it is then possible to use |Ψ〉 to communicate any “3”
images. As a direct advantage, Alice can train |Ψ〉 without
knowing the specific “3” image that will be sent to Bob. In
other words, different “3” images can be communicated with
the same state |Ψ〉, as long as |Ψ〉 can “recognize” (in the
sense of machine learning) it as an image of “3” (see Ap-
pendix B for more discussions).

In the communication, Alice sends Bob only a small part of
this image {xsent} and |Ψ〉; then Bob projects |Ψ〉 according
to {xsent} as

|Φ〉 =
∏

xn∈{x[sent]}

〈s(xn)|Ψ〉/C, (2)

with C a constant to normalize |Φ〉. {xsent} should be selected
so that #{xsent} is small and meanwhile Bob can accurately
reconstruct the rest of the pixels {xrest} from |Φ〉. Note that
in the classical sense, Bob just needs the data of |Ψ〉 (e.g.,
the tensors in the MPS) to simulate the projections. When
considering TNCS as a quantum protocol, many copies of |Ψ〉
will be needed to obtain at least one expected projected state.
Some relevant discussions can be found in Appendix F.

The selection of {xsent} is analog to the sampling process
of compressed sensing [9]. In a standard compressed sensing
scheme, one may randomly choose a certain number of pixels
from the image as {xsent}. The sampling can be compressed
since the randomly selected pixels approximately lead to av-
eragely distributed frequencies, and meanwhile an image in

the frequency space is normally sparse. These are known as
incoherence and sparsity, which are the two conditions for the
compressed sensing to efficiently work.

For the TNCS, one may also randomly choose {xsent} from
{x}, which is denoted as random ordering (RO). Each pro-
jection by |s(xn)〉 in Eq. (2) projects the state towards the
separable state |ψ〉 =

∏
n |s(xn)〉. With sufficient data in

{xsent}, |Φ〉 will eventually be projected to such a state, where∏
n |s(xn)〉 (xn ∈ {xrest}) is the separable state that has the

minimal distance to |Φ〉 among all separable states. There-
fore, Bob can access {xrest} by simply projecting on |Φ〉. Till
now, we can already see that the data can be efficiently com-
pressed by the TNCS if

∏
xn∈{x[rest]} |〈Φ|s(xn)〉| → 1 with

#{xsent} � #{x}. In other words, Bob will accurately have
#{xsent} when |Φ〉 is mapped to a state that is close enough
to the separable state corresponding to #{xrest}. Later in Sec.
IV, we will give more discussions about the efficiency from
the sparsity of quantum states.

For extracting {xrest}, let us consider that Bob only samples
each pixel from |Ψ〉 once, dubbed as one-shot measurement.
When preparing |Ψ〉 as a quantum state (instead of the clas-
sical data as a TN), the one-shot measurement corresponds to
measuring only on one copy of |Ψ〉. To generate {xrest} from
|Φ〉, he measures the qubits in the basis of the Pauli matrix
σ̂z . The probability P (xn) of the n-th pixel xn = 0 or 1 is
determined by ρ̂n as P (xn) = 〈x|ρ̂n|x〉 with x = 0, 1, where
ρ̂n is the reduced density matrix with respect to the n-th qubit

ρ̂n = Tr/n|Ψ〉〈Ψ|, (3)

with Tr/n the trace over all degrees of freedom except for the
n-th qubit. Note

∑
x P (x) = Trρ̂n = 1 due to the normal-

ization of |Ψ〉. Considering TNCS as a quantum protocol, the
one-shot measurement will be quite cheap and feasible in ex-
periments as it requires only one copy of the state. One draw-
back is that only black-or-white pixels (x = 0 or 1) will be
generated, not gray-scale ones. From the perspective of ma-
chine learning on classical computers, such a way of obtain-
ing {xrest} is in fact to generate {xrest} by the Born machine
|Φ〉 [15], which involves the sampling processes based on the
probability distributions P (x).

We test the TNCS with RO and the one-shot measurement
on MNIST and fashion-MNIST datasets, which consists of the
real-life images of hand-written digits and Zalando’s articles,
respectively. Each dataset contains 10 classes of images, and
in total has 60,000 training images and 10,000 testing images.
Each image contains 28× 28 = 784 gray-scale pixels. In Fig.
2 (a) and (b), we show the accuracy of TNCS with different
compression ratios r = Nf/N (green solid and the purple
dash lines). The accuracy is characterized by the average peak
signal-to-noise ratio (PSNR), which (say between the original
data {x} and the reconstructed data {y} ) is defined as

PSNR({x}, {y}) = 10 log10

784∑
n(xn − yn)2

. (4)

We average the PSNR by the results of reconstructing all the
images in the testing set, which the Born machine did not learn
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FIG. 2. (Color online) Average peak signal-to-noise ratio (PSNR)
of the constructed images in the testing dataset of the handwriting
digits “3” in MNIST and the dresses in fashion-MNIST. The images
are generated from |Φ〉 in the one-shot way [(a) and (b)] or with
the post-selection [(c) and (d)]. The dimension of the MPS is taken
as χ = 16 or 40. The number of known pixels for reconstruction
ranges from about Nf/N = 0% to 10%. We try three orderings,
which are entanglement ordering (EO), variance ordering (VO) and
random ordering (RO). See the details in the text.

in the training process. We take the bond dimensions of the
MPS χ = 16 and 40. Generally, the PSNR increases with r
and χ as expected, and TNCS works well by simply sampling
a small number of {xsent} randomly from {x} and implement-
ing one-shot measurement on |Ψ〉.

III. IMPROVING EFFICIENCY WITH
ENTANGLEMENT-ORDERED SAMPLING PROTOCOL

AND POST-SELECTIONS

While RO works well for TNCS, in the following, we will
propose to improve the performance (i.e., of higher PSNR and
higher efficiency with smaller compression ratio) by incorpo-
rating with a quantum-inspired sampling protocol based on
entanglement and the post-selections of measurements.

Regarding the sampling, the results will change if Alice se-
lects differently the {xsent}. Other than RO, a natural selection
way dubbed as variance ordering (VO) is to select the pixels
according to the variance. The variance of the n-th pixel is
calculated from the training set as

Vn =
∑
i

[xi,n − (
∑
j

xj,n/K)]2/K. (5)

where xi,n is the n-th pixel in the i-th image of the training
set and K is the number of the training images. By choosing

{xsent} as the pixels with the highest variance, the PSRN is
obviously improved [see the black diamonds and orange pen-
tagons in Fig. 2 (a) and (b)].

A more reasoned way is to select based on the entanglement
of |Ψ〉, so that {xsent} will minimize the uncertainty of {xrest}
from the probability distribution given by the Born machine.
Knowing {x[sent]}, the (conditional) probability distribution of
{x[rest]} satisfies

P ({x[rest]}|{x[sent]}) = |
∏

xn∈{x[rest]}

〈s(xn)|Φ〉|2, (6)

where |s(xn)〉 stands for the state associated with the n-th
pixel xn [see Eq. (1)], and |Φ〉 satisfies Eq. (2). The task is to
find theNf pixels {x[sent]} that minimize the Shannon entropy

SShan =−
∑
{x[rest]}

P ({x[rest]}|{x[sent]})

lnP ({x[rest]}|{x[sent]}). (7)

Aiming at this task, let us begin with a simpler question:
which pixel should be sent if Alice sends only one pixel?
This can be determined by the single-site entanglement en-
tropy (SEE) that (say for the n-th qubit) is defined as

Sent
n = −Trρ̂n ln ρ̂n. (8)

Sent
n quantifies the information of the rest of the system that

will be gained if one has the information of the n-th qubit.
Such a quantity has been utilized to safely reduce the num-
ber of pixels for efficient supervised TN machine learning
[42]. With Sent

n , Alice can choose the ñ-th pixel with ñ =
arg maxn S

ent
n , so that Bob will gain as much information as

possible from one sent pixel.
Based on the above scheme, we propose the follow-

ing Markov sampling strategy to select {x[sent]}, dubbed as
entanglement-ordered sampling protocol (EOSP).

1. With an N -qubit state |Ψ(N)〉 (initialized as |Ψ〉), cal-
culate the SEE Sent

n of all qubits, and find the qubit that
has the maximal Sent

n , i.e., ñ = arg maxn S
ent
n .

2. From the reduced density matrix of the ñ-th qubit, ρ̂ñ,
calculate its dominant eigenstate |sñ〉.

3. projecting the ñ-th qubit of |Ψ(N)〉, a (N − 1)-qubit
state is obtained as |Ψ(N − 1)〉 = 〈sñ|Ψ(N)〉/C, with
C a constant to normalize |Ψ(N − 1)〉.

4. If Nf qubits have been projected, record the positions
of these qubits, and transfer the pixels at these positions
of the image to Bob. Note we have |Ψ(N−Nf )〉 = |Φ〉
[Eq. (2)]. Otherwise, go back to Step 1 with |Ψ(N −
1)〉.

In short, EOSP selects the pixels in the order of entanglement
(EO). A simple example that helps to understand the EOSP is
provided in Appendix C. We shall emphasize that the order of
projections in the EOSP is solely determined by the entangle-
ment properties of the generative MPS, and does not depend
on the specific images to be sent.
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To obtain better accuracy for reconstructing gray-scale im-
ages (note the images in the MNIST dataset are gray-scale),
we generate the pixels {x[rest]} by locating the separable state
with maximal probability, i.e.,

{x[rest]} = arg max
{x}
|
∏
n

〈s(xn)|Φ〉|2, (9)

where the product
∏

n goes through {x[rest]}. It means that
each projective basis |s(xn)〉 is the dominant eigenstate of the
corresponding single-site reduced density matrix of |Φ〉 [Eq.
(3)]. We dub such a generation way as “post-selection”, con-
sidering that post-selections [43] will be needed to reach the
maximum in Eq. (9) when the generative MPS is prepared as
a quantum state. Note for the classical simulations of TNCS,
the post-selection scheme will not increase the cost too much
compared with the one-shot scheme, as Bob can sample as
many times as he wants from one |Ψ〉, or he may simply cal-
culate the reduced density matrices and their dominant eigen-
vectors by classical computers from the MPS. Fig. 2 (c) and
(d) show the results with post-selections. One can see that the
PSNR’s for all three selection ways (EO, VO, and RO) are sig-
nificantly improved. With EO and post-selections, the image
can be accurately and efficiently communicated to Bob (with
PSNR' 20) for r ' 10%.

Combined with the classical compressed sensing, it was
proposed to utilize the classical probabilistic models to signif-
icantly reduce the compression ratio [38, 39]. For instance,
Ref. [38] investigated the compressed sensing assisted by
auto-encoders on MNIST and calculated the mean-square er-
ror (MSE) defined as MSE =

∑
n(xn−yn)

2

784 = 10−PSNR/10.
The auto-encoder is formed by two parts: a fully-connected
deep neural network as the so-called recognizer to encode the
data to some latent variables, and a neural network with the
same architecture as the generator to decode the latent vari-
ables. The auto-encoder is trained and tested on all images
of the ten classes in the dataset simultaneously. The MSE per
image ranges approximately as MSE ' 0.06 ∼ 0.01 when
taking the compressed ratio as r ' 1% ∼ 10% for all the
samples in testing dataset. For TNCS, we train the MPS by
the images in a single class of the train set, in order to control
the computational complexity and focus on the performances
of different reconstruction ways given a well-trained genera-
tive MPS. We obtain MSE ' 0.047 ∼ 0.016 for the samples
in each class of the testing set. More numerical results are
provided in the supplemental material [44].

IV. Q-SPARSITY

A prerequisite for the conventional compressed sensing to
work efficiently is the sparsity of the signals. For processing
images, it is known that the signals are usually not sparse in
the real space. Therefore, transformation (such as discrete co-
sine/wavelet transformation) is implemented to transform to
another space in which the signals are sparse.

In TNCS, the prerequisite is that the quantum probability
distribution, i.e., the state |Ψ〉, should be “sparse”. Here,

FIG. 3. (Color online) The single-site entanglement entropy (SEE)
[Eq. (8)] per site of |Φ〉 in the entanglement-ordered sampling pro-
tocol (EOSP) versus the number of the unprojected qubits N −Nf .
The more steeply the SEE per site decays, the faster the information
of a quantum state can be gained by projections.

the sparsity is gained in a completely different way from the
standard compressed sensing, which is by mapping the data
to the higher-dimensional quantum Hilbert space. This is
analog to the support vector machines [45] by mapping to a
higher-dimensional space where the data can be better clas-
sified. In the unsupervised TN machine learning algorithm,
each pixel x is mapped to the state of a qubit [Eq. (1)],
then one image is mapped to the direct product state of N
qubits with N the number of pixels. Such a vector is de-
fined in a (2N )-dimensional spaceH. The MPS |Ψ〉 describes
the joint probability distribution of the “vectorized” images in
H. Essentially, one still deals with the data in the real space.
However, the probability distribution becomes sparse in this
higher-dimensional space, since it can be well captured by an
MPS. An MPS is sparse because such a representation can
only reach a small corner of H that satisfies the so-call one-
dimensional area law of entanglement entropy [46, 47].

However, it is not easy to characterize the sparsity of a
many-qubit state (including MPS) by simply treating it as
a vector, as its dimension is exponentially large. We here
propose to use EOSP to do so. In each step of EOSP, the
qubit with the maximal SEE is projected. The entangle-
ment of the state |Φ〉 formed by the unprojected qubits de-
creases after each projection. Fig. 3 shows the SEE per site
S̄(ñ) =

∑
n S

ent
n (ñ)/ñ of |Φ(ñ)〉 [see Eq. (8)] with differ-

ent number of unprojected qubits ñ = N −Nf . One can see
that S̄(ñ) decays rapidly as ñ decreases, meaning the unpro-
jected qubits are almost in a separable state for small ñ. For
S̄(ñ) = 0, no information will be gained by knowing the un-
projected pixels. It means all information is contained in the
projected pixels, and there is no uncertainty for the rest pixels,
when S̄(ñ) becomes zero.

From the implication of S̄(ñ) discussed above, we define
q-sparsity to qualitatively describe the sparsity of a quantum
state (including MPS) as

Sq =

N∏
ñ=1

d
S̄(ñ)
ln d −1, (10)

with d the dimension of one vectorized pixel. In this work, we
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focus on qubits with d = 2. Q-sparsity characterizes how fast
the information of a quantum state can be extracted (or how
fast the uncertainty of the rest can be reduced) by projections.
Thus it characterizes the sparsity of quantum probability dis-
tributions in an essentially different way from the sparsity of
(classical) probability distributions, since quantum processes
(e.g., measurements) are involved.

For any given state, the q-sparsity satisfies

0 ≤ Sq ≤ 1. (11)

Obviously, we have Sq = 0 for separable states. Consider-
ing the maximally-entangled state [48], we have Sq = 1 since
S̄(ñ) = ln 2 for any ñ. For what is in the middle, we take
the N -qubit GHZ state as an example. We have S̄(N) = ln 2
originally, and S̄(ñ 6= N) = 0 after one projection. There-
fore, we have Sq = 2−N+1. For the conventional k-sparsity
in comparison, we have Sk = 2/2N = 2−N+1 = Sq since it
only has two non-zero coefficients in the 2N -component vec-
tor. For the generative MPS’s, we numerically have Sq =
2−768.6 and 2−765.6 with χ = 16 for MNIST and fashion-
MNIST, respectively, and Sq = 2−770.0 and 2−767.5 with
χ = 40.

For TNCS, Sq characterizes the efficiency, i.e., the com-
pression ratio. The smaller Sq is, the faster S̄(ñ) decays
in general with the projections, and the less {x[sent]} Bob
will require to accurately reconstruct the full information
by TNCS. Therefore, analog to the conventional compressed
sensing, TNCS requires the quantum probability distribu-
tion to be sparse in the higher-dimensional Hilbert space,
i.e., N + log2 Sq � N . Based on our results on MNIST
and fashion-MNIST (Fig. 2), we have Nf ' 10%N (with
N = 784) to reach PSNR ' 20 using EOSP, and

Nf ' c(N + log2 Sq), (12)

with c ' 6 (the precision of c is taken up to O(1) considering
the fluctuations of different classes and datasets). For other
orderings (RO and VO), c will be larger (meaning that more
pixels are required) to reach a comparable PSNR than the one
that EO achieves.

V. SUMMARY AND PERSPECTIVE

In this work, we propose a novel compressed sensing ap-
proach by combining the ideas of compressed sensing, quan-
tum communication, and unsupervised TN machine learning.
The key step is to train the state |Ψ〉 (a Born machine) by
the unsupervised TN machine learning algorithm, so that the
targeted piece of information can be encoded in the separa-
ble state with the minimal distance to |Φ〉 that is obtained by
implementing projections on |Ψ〉 in a designed way. The q-
sparsity is proposed as a property of any quantum states, and
is used to estimate the efficiency of TNCS. We apply TNCS to
the real-life datasets (hand-written digits and fashion images).

While the TNCS permits to compress and communicate
data with competitive efficiency and accuracy as a classical
method, the scheme can be potentially generalized to quantum

states on quantum setups. One may build and optimize the
Born machine on quantum platforms to compress and trans-
mit information based on quantum theories. In particular, one
could use TN to design the quantum circuit as the Born ma-
chine [31], or directly realize the Born machine as a many-
qubit state. The main difficulties are to implement TN mod-
els (or the many-qubit states) on quantum devices and also
the measurements of entanglement, which are not yet feasible
with nowadays technologies. But it is hopeful that quantum
devices will eventually surpass the classical counterparts in
the future, with which the relevant obstacles would be tack-
led. Our work provides new possibilities for processing real-
life data by secure quantum communications (see more dis-
cussions in Appendix E).
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Appendix A: Unsupervised tensor-network machine learning
algorithm

In the generative TN machine learning algorithm proposed
in Ref. [15], each image is mapped to a product state of N
qubits as

|φi〉 =
∏
n

|s(xi,n)〉, (A1)

with |s(xi,n)〉 = cos(xi,nπ/2)|0〉 + sin(xi,nπ/2)|1〉 and N
the total number of pixels in one image. Here, xi,n is the n-th
pixel (gray with 0 ≤ xi,n ≤ 1) of the i-th image. The coeffi-
cients in the quantum state |Ψ〉 are optimized to minimize the
negative log-likelihood (NLL) defined as

f = ln |〈Ψ|Ψ〉|2 −
∑

i ln |〈Ψ|φi〉|2

N
. (A2)
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The summation
∑

i is over all the training images. NLL char-
acterizes the resemblance between two probability distribu-
tions.

In this work, we choose the TN to be matrix product state
(MPS). The coefficients of |Ψ〉 are in a special form satisfying

|Ψ〉 =
∑
{a}

∏
n

∑
sn=0,1

A[n]
snan,an+1

|sn〉. (A3)

A[n] represents a tensor that corresponds to the n-th pixel. The
indexes {a} are known as virtual bonds of the MPS; their di-
mensions are bounded by dim(an) ≤ χ, with χ called vir-
tual bond dimension. MPS is an efficient representation of
quantum-many-body states where the total number of param-
eter scales linearly with N as ∼ 2Nχ2. Note that the di-
mension of the Hilbert space actually scales exponentially as
∼ 2N . The tensors in the MPS are updated alternatively by
the gradient method as A[n] ← A[n] − τ∂f/∂A[n], with τ the
gradient step; see Ref. [25] or [15] for more details.

After converging, |Ψ〉 gives the joint probability of the pix-
els. The probability for any image {x} in |Ψ〉 is given as

P ({x}) = |
∏
n

〈s(xn)|Ψ〉|2. (A4)

Note the probability is the square of the corresponding coef-
ficient, thus such a TN state is also called the Born machine
[35].

Appendix B: Ambiguous correlations of information in TNCS

Another immediate question about TNCS is how to deter-
mine the samples (denoted by A) for training the Born ma-
chine |Ψ〉, and what are the relations to the information (de-
noted by B) that can be transferred or reconstructed through
|Ψ〉. Obviously, we have A ⊆ B. The size of the complemen-
tary set C = B− A characterizes the generalization power of
the Born machine.

Evidently, C has to be “ambiguously” correlated to A some-
how. Let us consider an extreme situation, where all training
samples in A are formed by uncorrelated random numbers.
The trained state |Ψ〉 is an entangled state. However, such a
state obviously cannot be used to effectively transfer a random
image as no correlations exist between the random image and
the state.

In this work, we choose A and B as the training and testing
images of the same dataset, respectively. For instance, A and
B are handwritten digits “3” or images of dresses. Although
the “microscopic information” (pixels) of all the images in A
and B are different from each other, a human being can recog-
nize the “macroscopic information” of each image as a digit
“3” (or a dress) without any problem. This suggests that A
and B (thus A and C) must be correlated somehow. In other
words, we here ensure the existence of the “ambiguous” cor-
relations between A and B by the “macroscopic” information.

With the TN machine learning, we can define the “ambigu-
ously” correlation in a relatively more rigorous way: A and B

are “ambiguously” correlated if the Born machine trained by
A can accurately recognize the data in B. For instance, one
may train two Born machines by the “3” and “4” images in
the training set, respectively, and construct a classifier that ac-
curately recognizes “3” and “4” images [49]. To classify an
image in B or the testing set, one compares the probability of
have this image in the two Born machines, and classification
is given by finding the largest probability.

The above recognition scheme can give us many useful in-
formation. For instance, the Born machine trained by the “3”
images can be used to implement the TNCS for an image “3”
written by the reader, as long as it can be recognized by the
Born machine. Obviously, the TNCS cannot be implemented
by the Born machine of “3” if the reader writes a “4”. How
to more rigorously characterize and quantify such ambiguous
correlations is an important issue to TNCS. One direction is
to develop more universal classifiers for pattern recognition
(not limited to digits or some certain kind of data). This will
also be helpful to further understand and model the recogni-
tion process.

Appendix C: A simple example to understand
entanglement-ordered sampling protocol

To explain why the entanglement-ordered sampling proto-
col (EOSP) works, let us consider the following four-qubit
state as an example,

|Ψ〉 = (

√
2

2
|01〉+

√
2

2
|10〉)⊗ (

1

2
|01〉+

√
3

2
|10〉)

=

√
2

4
|0101〉+

√
6

4
|0110〉+

√
2

4
|1001〉+

√
6

4
|1010〉.

(A1)

Such a state can describe a dataset of four images (0, 1, 0, 1),
(0, 1, 1, 0), (1, 0, 0, 1), and (1, 0, 1, 0), with the probability
P = 1/8, 3/8, 1/8, and 3/8, respectively.

If Alice wants to send two pixels and encode the rest two
in the state, the pixel that Alice should firstly choose is obvi-
ously the first (or the second) pixel. Since the first two qubits
are in the maximally entangled state, one of the pixels can be
determined by knowing the other pixel. The second pixel Al-
ice chooses should be the third or the forth one. These two
qubits are entangled (but not maximally), thus knowing one
of them will gain certain (but not the full) information of the
other. In all, Alice should send the first (or second) and the
third (or the forth) pixels to Bob.

The EOSP gives the same answer. The SEE of |ψ〉 sat-
isfies Sent

1 = Sent
2 = ln 2 ' 0.693, and Sent

3 = Sent
4 =

− 1
4 ln 1

4 −
3
4 ln 3

4 ' 0.562. In the step 1 of the EOSP, Al-
ice chooses the first or the second pixel. The reduced density
matrices satisfy ρ̂1 = ρ̂2 = I/2, with I the 2 × 2 identity.
Therefore, Alice decides to measure the first qubit by |0〉〈0|
or |1〉〈1|. In either case, the resulting three-qubit state will be
|Ψ(3)〉 = |x〉 ⊗ ( 1

2 |01〉 +
√
3
2 |10〉) with x = 0 or 1. In the

second iteration, Alice has Sent
2 = 0 and Sent

3 = Sent
4 ' 0.562,

thus she decides to send the third (or forth) pixel. In com-
parison, Alice will choose to send the first and second pixels
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FIG. A1. The images by taking simple average of each pixel and
by taking the quantum average (generated by MPS with no known
pixel).

FIG. A2. (Color online) Which Nf pixels are selected in EO and
VO. To illustrate the orders by color, we mark a pixel redder than
those behind this pixel in the order.

according to the variance, which is not a good idea since Bob
will not be able to gain any information about the third and
forth pixels. Again, we would like to emphasize that this ex-
ample is to help understand EOSP; it is too simple to draw
any general conclusions about the advantages/disadvantages
of quantum methods over classical ones.

Appendix D: Quantum nature in TNCS

With Nf = #{xsent} = 0, Bob will randomly generate an
image according to the probability distribution give by |Ψ〉.
If the post-selections are used, the result will approach to the
separable state that has the minimal distance to |Ψ〉. This sep-
arable state gives the image that has the maximal probability
in the probability distribution. We dub such an image from
no known pixel as the quantum average. One |Ψ〉 gives one
unique quantum average (we assume that all ρ̂n’s have non-
degenerated eigenvalues). As shown in Fig. A1, the quantum
average is different from the simple average x̄n =

∑
i xi,n/K

where no correlations are considered. Correlations (and en-
tanglement) are considered in the quantum average when cal-
culating the reduced density matrix.

Fig. A2 shows which pixels are selected in EO and VO
with different values of Nf . To illustrate the orders, we mark
a pixel redder than those pixels that are behind this pixel in
the order. Both EO and VO manage to capture the general

shapes. Particularly, the “checker-board” pattern appears in
EO with relatively large Nf . This brings higher efficiency for
the following reason. Since each two nearest-neighbor pixels
should possess a strong correlation, the corresponding qubits
are expected in a highly entangled state. It means that one
only needs to know the information of one qubit (pixel) to
access the information of the other qubit (pixel). Taking the
maximally entangled two-qubit state |01〉 + |10〉 as an exam-
ple, if one knows that the first qubit is in the state |0〉 (or |1〉),
meaning that the first pixel x1 = 0 (or x1 = 1), one will know
that the second qubit is in the state |1〉 (or |0〉), meaning that
the second pixel x2 = 1 (or x2 = 0). In this case, one only
needs to send the information of one of the pixels, and the rest
will be obtained from the state.

Intuitively, both the quantum entanglement and the (classi-
cal) variance measure the amount of the carried information.
For instance, considering a pixel (labeled as n) that is always
black in all the training images, such a pixel obviously car-
ries no information, and we have Sn = Vn = 0. On the other
hand, if a pixel changes dramatically with the training images,
not necessarily but normally, this pixel may contain more in-
formation, and we will have large Sn and Vn. One essential
difference is that Sn and Vn are properties from the quantum
state and the classical data, respectively. In our case, the quan-
tum quantity (EO) outperforms the classical one (VO), provid-
ing an evidence of the quantum advantage in the TNCS.

However, we cannot state here any general quantum ad-
vantages over classical information with these two specific
methods. As we stated before, EO considers certain non-local
properties while VO is purely local. Nevertheless, TNCS in-
deed provides a new path to investigate quantum advantages
over classical information techniques. Several important and
interesting questions are to be investigated, such as how to de-
fine new (classical or quantum) quantities that better suppress
the compression ratio and/or increase the accuracy. Possible
choices include the (classical) co-variance of the training data,
the (quantum) correlation functions from |Ψ〉, and the multi-
partite entanglement. The performance of both quantum and
classical methods for selecting {xsent} need to be pushed to
their limits to discuss more clearly about the possible quan-
tum advantages.

Appendix E: Security of TNCS with quantum many-body states

In the scenario depicted above, TNCS can be potentially
used to securely send information via quantum many-body
states. The information is secure under the assumption that
|Ψ〉 cannot be intercepted or replaced without letting Alice or
Bob know, and those without |Ψ〉 cannot reconstruct the full
information solely from Nf � N pixels.

With a subset of the pixels of the image sent by Alice, Bob
will need many copies of the state (the generative model) to
project the corresponding qubits onto a product state accord-
ing to the values of the sent pixels. An attacker Eve may just
intercept the entire communication to get the information in-
tended for Bob. Eve may also be able to hide her presence
by sending Bob the same pixels she intercepted and certain
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new many-body states, e.g., the product states, which encode
the image she received. As we argue below, this interception
attack of Eve can be detected if the sent states are highly en-
tangled.

Let us remind the readers that security in the “standard”
quantum cryptographic protocols relies on shared non-locality
in the Ekert’s scheme [50], or on the entanglement of the ef-
fective shared two-party density matrix (c.f. [51, 52]) in the
prepare&measure schemes like the Bennett-Brassar one [53].
Since in the present situation, Alice sends to Bob many copies
of a quantum many-body state, she may restrict herself to
sending a (moderately or highly) entangled state. Our scheme
belongs to such a case according to the entanglement proper-
ties of the generative models shown in Fig. 3. Moreover, for
Bob, who has the access to many copies of this state, he can
measure and detect this entanglement using many entangle-
ment witnesses [54], for instance the ones aimed at measur-
ing the many-body Bell correlations with pair-correlators (c.f.
[55–59]). The witness operators for these protocols might be
even announced publicly.

If Eve intercepts the communication, she needs to send to
Bob the states having the same entanglement properties: not
too weak, but also not too strong. Thus she has to measure
what she needs to send on several, say initial copies, and
replace them by something completely unrelated. Bob by
performing the same measurement on these unrelated copies
should be able to detect interception. Of course, this way
of assuring security is not easy or cheap, but in a sense it
consists in using necessary methods to characterize the sent
state, which might be useful and even necessary for its appli-
cation for other quantum protocols (simulation, computation,
metrology, and etc.).

In this scheme, there is a possible leak of the information
from {x[sent]} that are sent by classical channels. Regarding
this issue, there are many ways to enhance the security clas-
sically. For example, Alice can introduce a one-to-one (re-
versible) deterministic map {y[sent]} = F ({x[sent]}; {x[rest]})
to encrypt {x[sent]}. Without F , the {x[sent]}, which might
be unsafe, could contain critical information (see for example
Fig. A2, which are almost meaningful images for Nf > 40).
The purpose of F is to avoid containing any meaningful infor-
mation in {x[sent]}.

Such a F -encrypted TNCS will contain the following steps:
1) Alice designs the function F , and trains |Ψ〉 by the im-
ages formed by {x[rest]} and {y[sent]}; 2) Alice sends |Ψ〉 to
Bob; 3) For the information to be sent, Alice sends {y[sent]} =
F ({x[sent]}; {x[rest]}) and the function F to Bob through clas-
sical channels that may not be safe; 4) Bob obtains {x[rest]}
by |Ψ〉 and {y[sent]} (same to the standard TNCS), and obtains
{x[sent]} by {y[sent]}, {x[rest]}, and the inverse of F . Then Bob
will have the full information {x[sent]}+{x[rest]}. The informa-
tion will be safe since those without |Ψ〉 cannot have {x[rest]},
thus cannot obtain {x[rest]}) even if they have F and {y[sent]}.

Since the information to be sent is not restricted to the data
that train |Ψ〉, Alice can provide previously the copies of |Ψ〉
to multiple parties, and send any piece of “ambiguously” cor-
related information to each party anytime afterwards. Differ-
ent pieces of information can be sent via the copies of the

same state.
Meanwhile, Alice does not allow other parties to access the

coefficients of |Ψ〉, to guarantee herself as the only provider
of the state. One potential risk is that Alice provides too many
copies of |Ψ〉 to others, with which the coefficients of |Ψ〉 can
be cracked by, e.g., quantum state tomography [60]. In our
case, this risk should be low since N is large. Specifically, as
the state is designed in the form of MPS, Alice should avoid
to send out polynomially many states or more [61].

In the scenario discussed above, Alice sends a small part
of the classical information {x[sent]} and the whole state |Ψ〉
to Bob. Bob then generates the missing information {x[rest]}
from |Ψ〉 and {x[sent]}. In this scenario, one does not need
stabilize the entanglement between the qubits that are far sep-
arated.

This process can be replaced by a more standard quantum
communication scheme. First, Alice trains and prepares |Ψ〉.
Then she sends the qubits corresponding to {x[rest]} to Bob,
and keeps those corresponding to {x[sent]} to herself. Note that
these qubits of {x[sent]} and {x[rest]} form the whole entangled
state |Ψ〉. To send the information, Alice projects her qubits
according to {x[sent]}. Afterwards, Bob generates the {x[rest]}
from his qubits.

In this scenario, Alice only gives a part of the qubits in |Ψ〉
to Bob or other receivers, and does not need to transfer the
information of {x[sent]} through classical channel. It avoids
the risks in communicating {x[sent]} classically. The disad-
vantage is that the qubits with Alice and the receivers need to
be kept entangled in certain distance until Alice implements
measurements on her qubits. The discussions about security
given above also apply to this scheme.

Appendix F: Efficiency of TNCS with quantum many-body
states

It is not obvious whether the TNCS with quantum many-
body states could exhibit any advantages over the one using
classical computers from the perspective of efficiency. Let us
try to give some preliminary discussions by considering the
total number of qubits in the copies that Bob needs to recon-
struct the information by measurements, and the number of
bits to send the state in the form of MPS classically. For the
quantum-state scheme, we consider that Bob uses one-shot
measurement for generating {xrest} for simplicity. Therefore,
the number of the copies of the state |Ψ〉 that Bob need is
determined by how efficiently |Ψ〉 can be projected to the tar-
geted state |Φ〉 [Eq. (2)].

The probability of projecting |Ψ〉 to |Φ〉 can be estimated as

P = 1− 〈Φ̃|Φ̃〉, (A1)

with |Φ̃〉 =
∏

xn∈{x[sent]}〈s(xn)|Ψ〉 the measured “state” with-
out normalization. If Bob hasM copies of |Ψ〉, the probability
of obtaining at least one |Φ〉 satisfies

P̄ (M) = 1− (1− P )M . (A2)

To further simplify our discussion on estimating P , let us
consider the following “ideal” case. We assume that the im-
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FIG. A3. (Color online) The estimated probability P̄ = 1 − (1 −
1/Ni)

M of having at least one expected projected state |Φ〉 [Eq. (2)]
given M copies of the state |Ψ〉. Ni is the number of images. See
the details in Appendix F.

ages are binary, meaning each pixel can only take the value 0
(black) or 1 (white). Then one can see that the product states
{|φi〉} [Eq. (A1)] are orthonormal to each other. We also sup-
pose that |Ψ〉 that gives the minimum of the loss function [Eq.
(A2)] can be reached. In this case, we consider to send any
images in the training set and have |〈Ψ|φi〉|2 = 1/Ni with Ni

the total number of the training images. In other words, the
probabilities of the images are equally distributed at the min-
imal point. Due to the orthonormal properties of {|φi〉}, we
have 〈Φ̃|Φ̃〉 = |

∏
xn∈{x[sent]}〈s(xn)|Ψ〉|2 ' 1/Ni when the

{x[sent]} of any two images are not identical. In other words,
|Ψ〉 will be projected to any one of {|φi〉} with an equal prob-
ability. We have P = 1−1/Ni and P̄ (M) = 1−(1−1/Ni)

M .
Fig. A3 demonstrates P̄ (M) versus Ni and M . With P̄ (M),
one can estimate the number of needed copies (M ) to obtain
at least one expected projection with a given probability. The
total number of needed qubits will be Nqubit = MN with

N the number of pixels in one image, which is the number
of qubits in one copy. The bits to send an MPS classically is
estimated as NMPS

bit = 2kNχ2 with k = 64 if one takes the
double-float precision for each element of the tensors in the
MPS. Compared with NMPS

bit with χ = 40 as an example, we
have M ∼ O(105) so that Nqubit ' NMPS

bit . With this num-
ber of copies and supposing Ni ∼ O(103), the probability of
having at least one expected projected state is high.

We shall stress that the case with the fashion-MNIST
dataset (and most other real-life cases) is much more com-
plicated than the ideal one discussed above. The images are
gray-scale (or colorful), where the number of values each
pixel can take is much larger than 2. The images to be sent
are normally not restrained to the training set. Consequently,
|〈Ψ|φi〉|2 will probably suffer from large fluctuations for, e.g.,
different images (indexed by i) and different datasets. Mean-
while, it is unclear if any tricks (e.g., state tomography) can be
used to reduce the number of needed copies. Therefore, sys-
tematic investigations and thorough simulations are needed to
draw any conclusions, which we leave for our future study.

Appendix G: Images generated by TNCS

Fig. A4 provides some reconstructed images with different
numbers Nf of {xsent} to give some intuitive impressions of
how the accuracy increases with Nf . The pixels {xsent} are
picked in three different orders (EO, RO, and VO). Take the
reconstruction of a dress image as an example (last three rows
in Fig. A4). The quantum average (Nf = 0) is quite different
from the image to be sent. With only Nf ' 5 known pixels
picked by EO, the sleeves emerge. In contrast, the sleeves
appear until 50 pixels are known if they are picked randomly.
For the VO, the sleeves also emerge with 5 pixels but in a bad
shape. The shape of the sleeves is reconstructed withNf ' 20
in VO to a similar quality as Nf ' 5 in EO. The length of the
sleeves is corrected with Nf ' 50 for EO and Nf ' 110 for
RO and VO.
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