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Abstract

We provide an analytic approach to study the asymptotic dynamics of rough differential
equations, with the driving noises of Holder continuity. Such systems can be solved with Lyons’
theory of rough paths, in particular the rough integrals are understood in the Gubinelli sense
for controlled rough paths. Using the framework of random dynamical systems and random
attractors, we prove the existence and upper semi-continuity of the global pullback attractor
for dissipative systems perturbed by bounded noises. Moreover, if the unperturbed system is
strictly dissipative then the random attractor is a singleton for sufficiently small noise intensity.

Keywords: stochastic differential equations (SDE), rough path theory, rough integrals, random
dynamical systems, random attractors, stochastic perturbation, stochastic stability.

1 Introduction
This paper studies the asymptotic behavior of the stochastic differential equation

dyy = f(yr)dt + g(y)d X (1.1)

where f: R — R? g : R* = L(R™,R%) are of enough regularity, and X; € R™ is a stochastic
process with stationary increments, such that almost sure all realizations are v - Hélder continuous
for some v € (3,1) and d,m € N (e.g. fractional Brownian motions [32] with Hurst indices H €
(%, 1)). Tt is well known that such equation can be solved by using Lyons’ theory of rough paths
(see [30], [31] and also [14]), namely one attempts to solve the controlled differential equation

dyy = f(ye)dt + g(y¢)dzy, (1.2)

for the driving path z to be a realization of X in the space C” (R, R™) of continuous paths with finite
v - Holder norm on any finite time interval, such that  can be lifted to a rough path x = (z,X). The
solution of (1.2) is often understood in the sense of either Lyons-Davie [30], [31], or of Friz-Victoir
[14], [35], which needs not to specify rough integrals. On the other hand, equation (1.2) can also be
understood in the integral form

t t
Yt :yo+/ f(ys)d8+/ 9(ys)dxs, Vt>0, (1.3)
0 0

where the second integral is a rough integral for controlled rough paths in the sense of Gubinelli
[17]. As such, system (1.3) is recently proved in [10] to admit a unique path-wise solution given the
initial condition. An alternative approach is to define rough integrals using fractional calculus, as
studied for example in [25], [16], [24].

Our aim is to investigate the role of the driving noise in the longterm behavior of system (1.1).
This question is studied in a probabilistic approach in the series [18], [19], [20], [21], in which they
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prove that, under the dissipativity and some additional regularity conditions there exists a unique
adapted stationary solution for (1.1) in the sense that the generated stochastic dynamical system
over a stationary noise process has a unique invariant probability measure [19]. Moreover, the
convergence is of probability type, i.e. other probability measures converge to the unique invariant
measure in the total variation norm.

In this paper, we propose an analytic approach to study the stochastic perturbation problem.
Namely we impose assumptions for the drift coefficient so that there exists a global attractor for
the deterministic system

= F(u) (14)

which is asymptotically stable, and then raise the questions on the asymptotic dynamics of the per-
turbed system (1.1), in particular the existence of stationary states and their asymptotic (stochastic)
stability with respect to almost sure convergence.

Note that the classical methods [36], [26], [33] on stochastic stability depends crucially on the
nature of It6 calculus, since one can take advantage of the martingale property of the noise to apply
Ito’s formula for a Lyapunov function and then take the expectation to eliminate the noise part.
As a result, the expectation of the solution norm can be proved to decay exponentially to zero,
which is enough to prove that the solution norm itself converges exponentially and almost surely
to zero due to Borel-Catelli lemma. The situation is however different here with a general noise Z,
which is neither a Markov process nor a semimartingale (e.g. fractional Brownian motion B [34]),
hence the noise part does not vanish by taking the expectation. This challenge suggests that a new
approach to study stochastic stability is necessary.

Results in [15] and recently in [2], [11], [12], [7] suggest that the above questions could be
studied in the framework of random dynamical systems [1], hence asymptotic structures like random
attractors are well-understood. In this scenarios, system (1.1) has no deterministic equilibrium but
is expected to possess a random attractor, although little is known on the inside structure of the
attractor and much less on whether or not the attractor is a (random) singleton.

Assumptions and main results

Throughout the paper, we will assume that.
(Hy) f is locally Lipschitz continuous and dissipative, i.e. there exist constants Dy > 0, Dy > 0
such that

(W, f)) < llyll(D1 = Dellyll), Yy € RY (1.5)
in addition f is of linear growth in the perpendicular direction, i.e. there exists Cy > 0 such that
fW),y
s = L2 < s (1wl w0, (1.6

(H,) g belongs to C3(R%, L(R™,RY)) such that

Cy i= max {glloe: [ Dglloo: [D2loos 1D 1o } < o0 (L.7)

(Hx) for a given v € (%, 1), z belongs to the space C*(R,R™) of all continuous paths which is
of finite v—Holder norm on any interval [s, t]. In particular, x is a realization of a stochastic process
X (w) with stationary increments, such that x can be lifted into a realized component x = (z, X)

of a stochastic process (z.(w),X..(w)) with stationary increments, and the estimate
B(llwsill” + 1%oa?) < Crolt = s, ¥s,t € 0,7 (1.8)

holds for any [0, T], with pv > 1,¢ = § and some constant Cr,,.



Let us comment on the assumptions. As presented in Remark 3.1, assumption (Hx) is satisfied
if X is a fractional Brownian motion B [32] with Hurst exponent H & (%, 1), i.e. a family of
centered Gaussian processes B = { B/ },cr with continuous sample paths and

E|BI — BE| = |t — s|*H vt,s € R.
Meanwhile, the local Lipchitz continuity, condition (1.6) and the one-sided Lipschitz continuity
3C>0:(y, f(y)) <CA+ [y, vyeR?

are require for f in order to prove the existence and uniqueness of the solution of (1.2), as well
as the continuity of the solution semiflow and the generation of a continuous random dynamical
system, see e.g. [35, Theorem 4.3] and [2]. In our situation, condition (1.5) is stronger than the
one-sided Lipschitz continuity, and in fact is equivalent to the classical dissipativity, as shown in
the following lemma.

Lemma 1.1 Condition (1.5) is equivalent to the following condition: there exist constants di >
0,d2 > 0 such that
(y, f(y)) < di — dally|?, ¥y eRY (1.9)

Proof: Assume (1.5) is satisfied, then Cauchy inequality yields

D? Dy 1 D1 \2 _D? Dy
W, F W) < o = 2l = 5 (VDallyl - &) < o = Dyl

— 2Dy v Doy — 2Ds 2
2
which proves (1.9) by choosing d; := 2%2 and do := %. For the other direction, one can easily
show that

(w, f ) < Dyl ( sup )] +ds +d = dllyl), vy € R,
Y=

Indeed, if |ly|| < 1, then

(£ < ol sup £+ el = ) < ol ( sup 17+ e+ da = daly])
yll< yll<

On the other hand, if ||y|| > 1 then by (1.9)

@) < dy = dalll < il = dalyl* < Iy sup £+ s +dz = dally]).
Y=

Hence (1.5) is followed by choosing Dy := supyj, <1 [|f(¥)|| + di + d2 and Dy := da.

U
Due to Lemma 1.1, the deterministic system (1.4) is dissipative and admits a global attractor. In
addition, the addition technical condition (1.6) is equivalent to the following: for y € R? and y # 0,
f(y) is decomposed in the unique form

fy) = Wy T+ rt(f(9)), where mt =1 — m, and [t (F@)] < Cr A+ ). (1.10)

Condition (1.6) is automatically satisfied if f is globally Lipschitz continuous, i.e.

1f () — fFw2)ll < Lllyr —vall, Yur,y2 € R, (1.11)

or if f is simply of linear growth, i.e. || f(y)|| < L;(1+ |ly||). Thus the assumption (Hy) is weaker
than the one in [19]. Nontrivial examples are presented in the following examples.



Example 1.2 Consider the vector field f(y) = xy— ||ly||?y for all y € R, where x > 0 is a constant.
Then it follows from Cauchy inequality that

(w, FW)) =yl = llwll?) < Iyl +2 = 3lyl)).

On the other hand, Trj/-(f(y)) = 0 whenever y # 0. Hence (1.5) and (1.6) are satisfied.
By similar computations, one can easily check that the Poincaré-Andronov-Hopf vector field [22,
Example 7.26, p. 208]

byz + y1(a — yi — y3) T _ w2
= Yy = R
f(y) < _byl yQ(a _ y% . y%) >7 Yy <y17y2) S )

for constants a,b > 0, also satisfies conditions (1.5) and (1.6). The function a — y? — y3 can also
be generalized to F'(a, |ly||) for a function F' that makes f dissipative in the strong sense (see [22,
Example 11.13, p.345]).

In addition, (1.5) ensures that there exists a global attractor A for the deterministic system
(1.4) satisfying: for any solution yu; starting at point ug € A, we have

e[ < max{llpel] = po € Aj,
=4

t
s el < / max{[|f(py) : p1 € A} du = [ flloc,a(t =), VO <s <t

~
::”f”oo,A

(1.12)

thus p € C1—var,

One approach to show stochastic perturbation is to prove that a global random attractor does
exist and is upper semi-continuous w.r.t the intensity of the stochastic noise (see e.g. [3], [4], [23],
[38]). To do that, we need to impose an additional property of uniform attraction for the global
attractor A as follows.

(H4) There exists a duration 7 > 0 and constants D3 > 0 of the deterministic system (1.4) such
that, for any starting point yo ¢ A, there exists a point g = po(yo) € A satisfying

e (y0) — e (10) || < € P2 |lyo — poll- (1.13)

For instance, asumption (H 4) is satisfied when f is strictly dissipative, i.e. D1 =0 in (1.5), by
choosing D3 = Dy and r = 1. Another example is any planar system satisfying (Hy) which admits
a periodic orbit that also acts as the boundary of the global attractor, see e.g. [22, Chapter 11].
Condition (1.13) is then equivalent to the exponential stability of the fixed point of the Poincaré
map.

Our main results (Theorem 3.3, Theorem 3.4, Theorem 3.7) show that, under the assumptions
(Hy), (Hy), (Hx), there exists a random pullback attractor A(w) such that |A(-)] € L for any
p > 1. In addition, if condition (Hy) is replaced by conditions on the relative dissipativity (will be
specified later in Theorem 3.4), the global Lipschitz continuity (1.11) and (H 4), then the random
attractor is upper semi-continuous with respect to the noise intensity in the sense that A(w) — A
(w.r.t. the Hausdorff semi-distance) as C; — 0, both in the almost sure and in £” senses. Moreover,
if f is strictly dissipative then A(w) is a singleton provided that Cy is sufficiently small.

Our idea of the proof uses a well-known Doss-Sussmann technique [37], which was developed
in [28], [27], [35], [10] for stochastic systems, i.e. using the transformation y; = ¢¢(x, 2z:) generated
from the pure rough differential equation d¢; = g(¢¢)dx. The solution of the transformed system

4= [gf(t,x, zt)} T (%, 21)) (1.14)
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can then be estimated on each interval of a greedy sequence of stopping times generated from the
rough path x [5]. The case v > % is therefore just for the aim of simple presentation. Our results
and methods in this paper still hold for smaller v, provided that almost all realizations of the
stochastic noise are truly rough so that the Gubinelli derivative can be uniquely defined (see details
in Subsection 2.2). Plus, we would need additional information in the signatures of rough paths to
define rough integrals for controlled rough paths.

Finally, we emphasize here that there is of course a similar way to achieve the results for solutions
of (1.2) understood in the sense of Lyons-Davie, by using [5]. However, our usage of rough integrals
in the Gubinelli sense is not just a matter of taste, but because it provides short and self-contained
proofs, and can be generalized for studying infinite dimensional systems with rough noises, as partly
seen in [7] for stochastic systems with time delays.

2 Preliminaries

2.1 Rough paths

Let us introduce the concept of rough paths, following [30] and [13]. Given any compact time

interval I = [min [/, maxI] C R, we write |I| :== max] — min[ and I? := [ x I. For any finite
dimensional vector space W, denote by C(I,W) the space of all continuous paths y : I — W
equipped with the sup norm || - ||, given by ||y|/oo,r = Supsers ||y:l|, where || - || is the norm in W.

We write ys ¢ := y+ — ys. For p > 1, denote by CP~¥* (I, W) C C(I, W) the space of all continuous
1/p
paths y : I — W of finite p-variation [ly[|,_,, ; = (supn(l) > ”yti;tiJral) < 00, where the

supremum is taken over the whole class of finite partition of I. It is well known [14] that |||y|||§_var7 I
is a control, i.e. it satisfies

\Hylllﬁ_var,[s,s] =0, my”@_‘m,[s,u] + H!ylﬂﬁ_m,[u,t] < H\ylllﬁ_var,[s,t] , Vs<u<t. (2.1)
Then CP~¥"(I, W) with the equipped p—var norm [|y||p-var,r := |[Ymin 1{[+|¥l,,—yar 1 is @ nONSEparable

Banach space [14, Theorem 5.25, p. 92]. Also for each 0 < a < 1, we denote by C*(I, W) the space
of Holder continuous functions with exponent o on I equipped with the norm

Y.t

1Wlla,r = llymin 1l + lyllo, ;> where |lyll, ;= sup === < oo. (2.2)
s,tel, s<t (t S)

For o € (3, 3), a couple x = (z,X) € R™ & (R™ ® R™), where 2 € C*(I,R™) and

X
Xe LR @R™) = {X e C(I>,R"®R™): sup M < o0},
s,tel, s<t ’t - 3’ @

is called a rough path if it satisfies Chen’s relation

Xot — X — Xyt = Tsu ® Tu g, Vminl < s <wu <t <max]. (2.3)

Xis called a Lévy area for x and is viewed as postulating the value of the quantity fst Tsr@dr, = X4
where the right hand side is taken as a definition for the left hand side. Denote by €“(I,R™ &
(R™@R™)) C C*(I,R™) @ C?**(I?,R™ ® R™) the set of all rough paths x on I (or in short €*(I)),
then €*(I) is a closed set (but not a linear space), equipped with the rough path semi-norm

1
ot FIXN 2o where  [[Xlly, p2 :=  sup < . (2:4)

s,tel;s<t |t - 3|2a

Ixlle.r =l



Throughout this paper, we will fix parameters % <a<rv< % and p = é so that C*(I,W) C

CP=var(I,W). We also set ¢ = § and consider the p—var semi-norm
1
Il = (12 + XDz )7

n 1/q
Xl g—var,r2 == | sup D> 11Xt 100 I
q—var,l H([)iz:; +1 9

where the supremum is taken over the whole class of finite partitions II(1) of I. Sometimes, we
write €% (I) for abbreviation to neglect the value space for simplicity of presentation.

(2.5)

2.2 Rough integrals

Following [17], a rough integral can be defined for a continuous path y € C*(I, W) which is controlled
by x € C*(I,R™) in the sense that, there exists a couple (v, RY) with ¢ € C*(I, L(R™,W)), RY €
C?*(I%, W) such that

Yst = Ysst + Ry, Vmin/ < s <t <max]I. (2.6)

y' is called the Gubinelli derivative of y, which is uniquely defined as long as x is truly rough [13,
Definition 6.3 & Proposition 6.4], namely there exists a dense set of instants s of I such that x is
"rough at time s”, i.e.

B,
Vh* € (R™)\ {0} Timsup 0 Let)l
tls |t_5|a

For instance, almost all trajectories of a fractional Brownian motion B¥ with H > % is truly rough
[13, Section 6].

Denote by 22%(I) the space of all the couples (y,y’) controlled by z, then 22%(I) is a Banach
space equipped with the norm

1y 9 w201 = IYmin 1]l + [min ol + 11w 9|4 20z >
([C270] PPatel 174 ISl Fid PAES

Then for a fixed rough path x = (z,X) and any controlled rough path (y,y’) € 22%(I), the integral
fst Yudx, can be defined as the limit of the Darboux sum

t
/ yudzy o= lim >~ (yu@oxu,ﬁy;xu,v)
s [1I]—0

[u,v]ell

where the limit is taken on all finite partitions IT of I with |II| := [m?xn |v — u|. Moreover, there
u,|€
exists a constant Co = C,, |7 > 1, such that

t
H / YudTy — Ys @ Ts 1 — YKoy ’
s (2.7)
<Calt = 5 (Nolla o 1R Do gz + 119l gy ¥l g2 )-
In our paper, we often use the p-variation norm

1 M et 2= Nymin 1l + [Yonin 2+ 10 94 ps s
H‘(y’y,>mx,p,] = H‘y/mp—var,] + ”’Ry”‘(I*VaT:IQ ’



and a similar version to (2.7) under p—variation semi-norm as follows

t
H / YudTy — Ys @ Ts 1 — YKoy ’
s (2.8)

SCP( mxmpfvar,[s,t] |”Ry mqfvar,[s,t}2 + ‘Hy,mp—var,[s,t] mX‘”qfvar,[s,z‘/]2 )7

with constant Cj, > 1 independent of x and (y, /).

2.3 Rough differential equations

The existence and uniqueness theorem for system (1.2) is first proved in [35], where the solution is
understood in the sense of Friz-Victoir [14]. By using rough integrals, we would like to interpret
the rough differential equation (1.2) by writing it in the integral form

t t
Yt = YminT + flys)ds + / 9(ys)dxs, Vtel, (2.9)

min min I

for any interval I and an initial value ymins € R?, and we search for a solution in the Gubinelli
sense (y,y!) € 22°(I,R%). This is possible because for g : R? — L(R™,RY) satisfying (Hy), it is
easy to prove (see e.g. [17]) that
(9:9') € Z2*(LRY) = (9(y). l9(w)]') € Z2°(1, LER™,RY)),
with [g(y))s = Dg(ys)ys € LR™, LR™,R));

thus the second integral in (2.9) is well defined.

The existence and uniqueness theorem and the norm estimates for solution of (2.9) are recently
proved in [10] under the Lipschitz continuity assumption (1.11), by using the Doss-Sussmann tech-

nique [37] and the so-called greedy sequence of stopping times in [5]. Namely, for any fixed v € (0, 1)
the sequence of greedy times {7;(7,x, I) }ien is defined by

To =min/, 741 :=inf {t > 7 1%l —var, frig) = 'y} Amax . (2.10)

Define N(v,x,I) :=sup{i € N: 7, <maxI}, then it is easy to show a rough estimate

N(x,D) < 1+777 |l (2.11)

p—var,l *

Other studies on continuity and properties of stopping times can also be founded in [6, Section 2.2]
or [11, Section 4].
Note that from [10, Theorem 3.4], the solution ¢.(x, ¢,) of the pure rough differential equation

Aoy = 9(¢pu)day, u € [a,b], ¢, € R? (2.12)
is C! w.r.t. ¢, and %(-, X, ¢q) is the solution of the linearized system

¢, = Dg(du(x, b5))Eudru, u € [a,b], & = Id, (2.13)

where Id € R%? denotes the identity matrix.
We introduce the semi-norm ||k, R*||,_vor 5. = 5]l
result shows solution norm estimates for equation (2.12).

p—var,|[s,t] + |”RK |”q7var,[s,t]2‘ The following



Proposition 2.1 Assume that ¢y, ¢y are the solutions of (2.12). Then for any interval [a,b] such

that 16C,C, || x||

pvarfab] S 1, the following estimates hold
< 8C,Cy |||

o0, e <

lo—o.mo]| < 16CCy Il i 160 — 6l
13 = Dlleos < 20 — al.

p—var, [azb} 7

Proof: Because

(60 = 006 = [ Do(6s + n9ui)busin
=Dy(¢s) Py @ w5 + /0 1 Dg(¢s + 1¢s,) RE
+ /Ol[Dg(qﬁs +n¢st) — Dg(¢s)|0s s @ 2s4dn,
it follows that [g(d)]. = Dg(6)g(es), where we use (1.7) to estimate
IR < [ 1Dg(s-+ n6o0 Il
[ uDg(«zss + 19u) — Dg(@ g6zl

<Cy||RZ| + Collds,elllzsell-
This together with Holder inequality yields
< 207 10lp—arfar > N[9(O)] lloo,fap < Cs.
||

m “‘p var,|a,b]

1
H‘Rg m 5 + 503 mep—var,[a,b] |||¢”|p—var,[a,b} :

q—var,a,b]? g—var,[a,b]

Assumption 16C,Cy || x| | < 1 follows that

p—var,[a,b

403 Il < Cy [Ix]l <L

p—var,|a,b] p—var,[a,b]

By applying (2.5) and (2.8), we obtain for any a < s <t <b

< / (6

<Cy Nl oy + C2 WXy
+ Co{ Ul ar oy | B2

PR 1.4 PRRVEY [1COI0 M }
<2{Cy Il vy V AC X e } (1 Co |0 B2

<2, 0y Il oy (14 [0 2|

p—var,| st]>

p—var,| ab])

which, by the definition of p-variation seminorm and (2.1), derives

[0l -sne o2y <20,Co s [SﬂEHZ([a’bD Il o} (1 o .

(2.14)

(2.15)

(2.16)



<2C,Cy %M, var o (H’

L )

The same estimate for R? is actually included in the above estimate, hence

-] o1

<ACCy (1%, —var,fapy (1 + H

———

p—var,|a,b]

<4C,Cy [l

o,
p—var,[a,b] + 2 H ¢7 p—var,[a,b]

which proves (2.14). B
Next, for any two solutions ¢¢(x, ¢,) and ¢¢(x, ¢,) of (2.12), consider their difference ¢; — ¢y,
which satisfies the rough differential equation d(¢; — ¢¢) = [g(¢¢) — g(é¢)]dz. Because

9(01) — g(e) — 9(ds) + g(¢s)
= DQ(‘ZES)Q(Q;S) - Dg(‘ﬁS)g(fbs)} & Ts,t

+/01{
+/01[

Dg(bs +ndss) RO + [Dg(és +10st) — Dg(¢s + n(bs,t)} Rf,t}dn
Dg(6s +néss) = D(ds)| [9(8:) = 9(6,)| @ s
1 1

[ D265+ (Bt — 6s)didn ) (65) @ s

+ ( /0 1 /0 1 [D29(<55 + undsi) — D?g(ds + ﬂn@,t)n(p&J dudn) 9(s) ® T
) —

it follows that [g(

g ?) — 9(8)]s = Dg(ds)g(¢s) — Dg(bs)g(¢s) which has the form Q(¢s) — Q(¢s).
Notice that [|Q(¢s) — Q(¢s

)l < 2CF1|és — 65| and

1Q(2) = QA o s SCQ( 16 = Al —var, 5,9 + 16 = lloo fs.1 NS —v, 5. )
<202 (16 = 1l e oy + 19 = Dl 1y var s )
On the other hand
[

], o+ o= i ]

g—var,[s,t]? g—var,|[s,t]? g—var,|[s,t]?

+ 503 wxmp—var,[s,t] |: ngg - gzsHlpfvar,[s,t]
+ ||$ - ¢HO°< mqgmpfvar,[s,t] + ”|¢Wp—var,[s,t} >} ’

This leads to the estimate

||¢st -

— g(bu)ldzy
SCE]HQZ)S ¢s|| ’”xm;)—var [s,t] + 202||Q§5 - ¢5|| |||qu—var,[s,t}2
+ Cp{ Ml | 7O ¢>1H

%N var o 2 [119) = 9O e o | (2.17)

g—var,[s,t]?

which yields
HM_) - qsmp—var,[a,b] §2Cp{cg mxmp—var,[a,b} v 4092 |||X|H;2o—var,[a,b] }

9



(o + el
( ¢ p—var,[a,b] ¢ p—var,|a,b] >
% (160 = ¢all + |6 — 0. RO ). (2.18)
p—var,|a,b]
The similar estimate for R&—QSH‘ ] is already included in the estimate (2.17), hence
q—var,la,
b—¢ 2
lo—o.mee]| <A Coll ey v O 1K e |
i S R G
( ¢ p—var,|a,b] ¢ p— Var,[a,b]>
< (1160 = all + || 6 — 0. 7| ).
p—var,|a,b]
which, together with (2.14), leads to (2.15) and (2.16). O

Since ¢.(x, ¢q) is C' w.r.t. ¢4 [10, Theorem 3.4], by dividing both sides of (2.15) by ||¢, — ¢a| and
then letting ¢, — ¢, to zero, we obtain

(t, %, da) IdH m X, ba), Rba (:00)
H 8¢a agba p—var,[a,b] (219)
SlGCng mxwlafvar,[a,b] :
Note that (2.14), (2.15) still hold for the backward equation
b
hy = hy —i—/ g(hy)dzy, Yt € [a,b], (2.20)
t

-1
thus (2.19) still holds if (%f’s(t,x, ¢s) is replaced by [%ﬁ(t, X, gbs)} , which is also the linearization
of the solution of (2.20) (see e.g. [10, Corollary 3.5, Theorem 3.7]).
As shown in [35, Theorem 4.3], the local Lipschitz continuity, the one-sided Lipschitz continuity
and (1.6) for f are enough to prove the existence and uniqueness of solution of rough equation (1.2).
Here we need to go one more step to prove the solution estimate of (1.2), under condition (Hy).

Theorem 2.2 Under the assumptions (Hy), (Hy), (Hx ), there exists a solution of (1.2) on any
interval [0,T]. Moreover, for any X\ > 0 small enough, there exist constants dx,Cy > 0 such that
the following estimates hold

loell < llgolle™®" + AN x,0,4]), Ve 0,7] (2.21)

A
16C,Cy’
Proof: The idea is to prove the existence and uniqueness of the solution on each small interval
between two consecutive stopping times, and then concatenate to obtain the conclusion on any
interval. The Doss-Sussmann technique used in [35] and [10, Theorem 3.7] ensures that, by a
transformation y; = ¢¢(x, ;) there is an one-one correspondence between a solution y; of (1.2) on
a certain interval [0, 7] and a solution z; of the associated ordinary differential equation

2 = [gf(t,x, zt)] _1f(¢>t(x, zt)), t€0,7], 20 = yo. (2.22)

Since f is locally Lipschitz continuous, there exists a unique solution for (2.22) on some local interval

Tiocal- 1O estimate the solution norm growth, assign v; := y; — 2; and i := [%(t, X, zt)] — Id for
t € [0, 7 A Tiocal], where 7 > 0 is chosen such that 16C,Cy ||x|| | < A for some A € (0,1) small

p—var,[0,T
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enough (which will be specified later). With such 7, it then follows from Proposition 2.1 and (2.19)
that

A
el = liée(x, 2) = zell < 5 and leell <A V€ [0,7 A Tioca]. (2.23)

To estimate ||z, we rewrite (2.22) as

2y = (Id+ ) f (2 + 1) (2.24)

First, we are going to prove that there exists constants Cy, 6y > 0 such that

d _
ﬁ“thQ < Oy — 0|z, (2.25)

Indeed, consider two cases.

Case 1: z + v # 0. From assumption (Hy) and condition (1.10), we can check that

d 2 (2t + v, f2t + 7)) 1
ﬁ“%” —<Zt,(1d+¢t)[ [P (2t + ) +7th+'yt(f(zt+'7t))]>
(2t + ) 2t +n
=(z, ([d+ s flze +
Go T 00 e T )
=:M, =:M>
o (21, (Td+ ), (F(+ ) - (2.26)
=:M3
Observe that from (1.5) and (2.23),
My <(1+ [[elDlzell < (1 + Mlzell; (2.27)
Zt+ "t
>y, LN > - — > (1 — pY .
M, _<Zt, T +%||> [tllllzell = flze + el = lvell = llellllzell = (1= A)llzell = A; (2.28)
My <Dy _D2Hzt+7tH <D —|—D2)\—D2H2tH. (229)
As a result, (2.27) deduces
MMy < (1 + )\)HthMg if Mo >0, (230)
while (2.28) follows
M Ms < [(1 — Nzl - A} My if  My<O. (2.31)
If My > 0 then (2.30) and (2.29) lead to
MiMs < (1+ )2 [ Dy + Do) = D] (2.32)

If My <0 and (1 — Nz — A >0, then (2.31) and (2.29) yield
My My < [(1= Nllztll = A| [D1 + DoX = Dyl . (2.33)

If My <0and (1—MN)|z] — A <0, then ||z < ﬁ and ||z¢ + vl < llzell + |l < ﬁ + A. In this
case (2.31) and (2.29) deduce

MiMsy <(1 — N)||z¢|| M2 + A\| My|

11



<(1 = Nlizell[ D1 + Do = Dalzell] + Alf (21 + )l

su—xwaMDHJbA—Dﬂm@+Amw{wgmzmnsT§;+A} (2.34)

Combining all these three cases (2.32), (2.33), (2.34) and applying Cauchy inequality, we can show

that there exists a generic constant Cy > 0 such that
Dy
M1M2 S C)\ — 7(1 — )\)HZtHQ
On the other hand,

Ms =<Zt + 7, 7T2Lt+ht(f(zt + ’7t))> — <%, Wi+ht(f(2t + %))>
+ <Zt, e, (f (2 + ’Yt))>

=- <%, W,j;.;_ht(f(zt + ’7t))> + <Zt, thﬂ'i;_g_ht(f(zt + %))>
<lvell + el 2D Cp (1 + Nz + vell)
<Cx +2CpA|| 2%,
for some generic Cy. As a result, there exists a generic constant C such that
d 2 ~ D, 2
— < - =21- . .
Szl < O+ 2000 = 220 = W]l (2.35)

Case 2: z; + v = 0. Then the same arguments show that

intHz = (2t + v f(z ) — O [zt + 7)) + (28,0 f (20 + 7))

2dt
= (et F (4 0)) = (0 F(0) + (22,02 (0))
< Duflze+ll = Dallze + 3l + (lell + el =) 17 @)
< vt [20 = 220 = W)l

where one can apply Cauchy inequality to obtain the last inequality for some generic constant
Cy. Hence (2.35) holds for all z; € R? where t € [0, T A Tjoeq], With a generic constant Cy and a
sufficiently small A < 1. This proves (2.25) by choosing

DQ D2
Oy 1= 1—XA)—-2CsA >0 f O< A< ——— <1
A 5 ( ) A > or 0<A< D5+ 4C; <
Next, (2.25) implies that ||z|| is bounded by \/%—FHZ()H = %—}—Hyoﬂ aslong ast € [0, TATiocal,

thereby proving the existence and uniqueness of the solution z; of equation (2.22) on [0, 7 A Tjocal,
and so is the solution y; of (1.2) on [0,7 A Tjpeqr]. In addition, whenever 7 > 7,0 then (2.23)
is satisfied and the above arguments can be applied to prove the existence and uniqueness of the
solution by concatenation, until the interval [0, 7] is fully covered.

Finally, with such A > 0, construct a greedy sequence of stopping times
{Ti(m, x,[0,t])}. On each interval [7;, 7;+1] it is similar to prove the existence and uniqueness
of the solution of the two differential equations (1.2) and (2.22) with the shifted time

dyt+7’i :f(yt-i-ﬂ)dt + g(yt-}—n)d‘rt-ﬁ-’rm Vt S [07 Ti+1 — 7—7,]7
0¢

-1
Zpr; = &(taX-er Zepr) | f(Oe(Xqy, 2t47,)),  VEE [0, T340 — 7).
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As a result, the existence and uniqueness of the solution of the two systems (1.2) and (2.22) on
[0,77] is proved by concatenation. To estimate the solution norm, observe from (2.35) that

C .
ol <5+ lemllexp{ = aa(t —m)}, Vi€ lmmnlieN.
: A Gy .
In particular, ||y, || §§ st |y |l exp{ — O (Tig1 — Ti)}, Vi e N.
A

Assign C) := % + %. By induction, one can easily show that
lyrll < llyollexp { = dari} +iCs, VieN.

By the definition of stopping times (2.10), TN ( y = t, which deduces (2.21). O

A
16CpCy »Xy [Ovt}

3 Random attractors

3.1 Generation of random dynamical systems

In this subsection we would like to present the generation of a random dynamical system from rough
differential equation (1.2), which is based mainly on the work in [2] with only a small modification
for Holder spaces. Let (€2, F,P) be a probability space equipped with a so-called measurable metric
dynamical system 0 : R x © — Q such that 6; : Q — Q is P— preserving, i.c P(B) = P(6; *(B))
for all B € F,t € R, and 6,45 = 0; 00, for all t,s € R. A continuous random dynamical system
0:RxQxR— R (t,w,y0) — @(t,w)yo is then defined as a measurable mapping which is also
continuous in ¢ and yg such that the cocycle property

ot + s,w)yo = p(t,0;w) o p(s,w)yo, Vi, s € Rwe Dy € RY (3.1)

is satisfied [1].
In our setting, denote by TZ(R™) = 1 @& R™ @ (R™ ® R™) the set with the tensor product

(1791792) ® (l,hl,h2> — (1791 + hl,gl ® hl +92 + h2),

for all g = (1,9,¢%),h = (1,h!,h?) € T2(R™). Then it can be shown that (T?(R™),®) is a
topological group with unit element 1 = (1,0,0) and g~! = (1, —¢', ¢' ® g' — ¢?).

Given a € (3,v), denote by C%*(I, TZ(R™)) the closure of C*(I, TZ(R™)) in the Hélder space
CY(I,T3(R™)), and by C’g’a(]R,Tf(Rm)) the space of all paths g : R — TZ(R™)) such that g|; €
CO (I, T2(R™)) for each compact interval I C R containing 0. Then Cg*®(R, T2(R™)) is equipped
with the compact open topology given by the a— Hdélder norm (2.2), i.e the topology generated by
the metric

dolg 1) = (s~ b

k>1

a [~k A1)

As a result, it is separable and thus a Polish space.

Let us consider a stochastic process X defined on a probability space (2, F,P) with realiza-
tions in (C’g’a(R,T 2(R™)),F). Assume further that X has stationary increments. Assign Q) :=
C’g’a(R, T2(R™)) and equip it with the Borel o - algebra F and let P be the law of X. Denote by @
the Wiener-type shift

(Qw). = wit @wir, Yt € R,w € Co* (R, THR™)), (3.2)
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and define the so-called diagonal process X : R x Q — TZ(R™), X;(w) = w; for all t € R,w € Q. Due
to the stationarity of X, it can be proved that € is invariant under P, then forming a continuous
(and thus measurable) dynamical system on (2, F,P) [2, Theorem 5]. Moreover, X forms an « -
rough path cocycle, namely, X.(w) € C’g’o‘(R,Tf(Rm)) for every w € €, which satisfies the cocyle
relation:

Xits(w) = Xs(w) @ Xy (Osw),Vw € Q,t, s € R,

in the sense that X1t = X¢(fsw) with the increment notation X st := X;! ® Xgyp. It is
important to note that the two-parameter flow property

X37u & Xuﬂg = XSJ,VS,t eR

is equivalent to the fact that X;(w) = (1,x¢(w)) = (1, 2¢(w), Xo¢(w)), where z.(w) : R = R™ and
X..(w) : I? - R™ @ R™ are random funtions satisfying Chen’s relation relation (2.3).

To fulfill the Holder continuity of almost all realizations, assume condition (1.8) that the estimate
]E(Hx&th—i—HXs’t \q> < Cr,|t—sP” holds for all s, ¢ € [0,7] and any interval [0, T], with pv > 1,¢ = £
and some constant C7,,. Then due to the Kolmogorov criterion for rough paths [14, Appendix A.3],
for any a € (%, v) and p = %, there exists a version of w—wise (z,X) and random variables Kg €
LP Kg € L4, such that, w—wise speaking and an abuse of notation, ||z,| < Kqlt —s|®, [ Xl <
K|t — 5%, for all s, € [0,T], so that x = (z,X) € €*(I). Moreover, we could modify « such that

z e CO(I) :={xeCI): lim sup 5.l =0},
(0= @D A0 0ct—s<A |t — 5| J

X
X € 0%2%(1?) :={X € C**(I*): lim  sup Rsell S’t!
A=00<t—s<n |t — s[>

— o},

thus €%(I) c C%(I) @ C%2%(I?) is separable due to the separability of C%(I) and C*?*(1?). In
particular, the Wiener shift (3.2) implies that

I(OR) ) —var 5.0 = Il —var [5+ 1, 048) » Nisit) (X(On0)) = Nison o) (x())- (3.3)

Remark 3.1 Due to [2, Corollary 9], the above construction is possible for X; to be a continuous,
centered Gaussian process with stationary increments and independent components, satisfying:
there exists for any T' > 0 a constant C such that for all p > %, E||X: — X;||P < Cr|t — s|P for
all s,t € [0,7]. Then X can be chosen to be the natural lift of X in the sense of Friz-Victoir [14,
Chapter 15] with sample paths in the space Cfg’a(R, T2(R™)), for a certain « € (0,v).

For example, consider X to be an m - dimensional fractional Brownian motion B¥ with inde-
pendent components [32] and Hurst exponent H € (%, 1), i.e. a family of B = {Bf};cr with con-

tinuous sample paths and E[Bf! BY] = J (t2H+82H— |t—8|2H) Im*m for all t,s € R;. Given a fixed

interval [0, 7], the covariance of increments of fractional Brownian motions R : [0,T]* — R™*™,

s t

defined by R( o ¢ ) = E(Bng’t,) is of finite p— variation norm for ¢ = ﬁ, ie.

IRlpre={ s 3 |r( )(Q}i < 0, (3.4)

(DY) (5 geri(n), 5

CRACY

1
and there exists a constant M, r such that ||R||(s 42 , < Mpr|t —s|e, Vt, s €[0,T].
Then one can prove that the integral

X4 = lim | X!.dX!= lim X!, XJ, in L% sense, Vs,te€ 0,7,
[II|—0 J11 |1'I|H0[uv]eH
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is well-defined regardless of the chosen partition II of [s,t]; in addition X;’t = %(Xg’t)Q and Xi,]t +
Xii = X;}tXit. Furthermore, for ]l) <v< QLQ = H, there exist constants C(p, o, m,T), C(p, 0,m,T,v)

such that
B[ Xoall” + %5417 <C, 0om Dt = s, st € [0,T] and
E[IXI 0y + 1K1, 0,20 | SO0, 00m, Tov) MY .
Therefore for § < o < v < H, almost sure all realizations x = (X, X) belong to the set €%*([0,77)
and satisfy Chen’s relation (2.3) and satisfy condition (1.8).

We reformulate the conclusion in [2, Theorem 21] in our scenarios as follows.

Proposition 3.2 Given the measurable metric dynamical system (Q,.%,P,0) and the p- rough co-
cycle X : R x Q — TZR™) as above, the system (1.1) generates a continuous random dynamical
system ¢ over (Q,.%,P,0), such that for any [0,T] and all w € Q, p(t,w)yo is the unique solution
(in the Gubinelli sense) of (1.2), which is understood in the pathwise integral form (2.9) on [0,T],
where x = (x,X) is the projection of X.(w) on R™ @ (R™ @ R™).

Proof: For the benefit of the reader, we present here a sketch of the proof. Fix a realization

w € 2 of the diagonal process X, then w; = X;(w) = (1, 2¢(w), Xo¢(w)). Since X is a rough cocycle,
the shift property (3.2) yields

(1, xuvv(w),Xuvv(w)) = w;l QR wy = (Ouw)y—n, V0 <u<o. (3.5)

We therefore can rewrite the definition of the rough integral as

b
/ Yydw,, := lim Z <yu ® Typw(w) + y;qu(w)) = lim Z(yu,y;)®(9uw)v,u, (3.6)

I II
||—>01_I |\—>0H

-~

:;(yu,y;)@@(1,a:u,u(w),Xu,v(w)>

where the operator ® is well defined. Because 0,1 ,w = 6, o 6,w, it is easy to check that the rough
integral in (3.6) satisfies the additivity and the shift properties, i.e.

c b c
/ Yudwy = / Yudwy + / Yudwy, Va <b<c (37)
a a b
b+r b
/ Yudwy, = / Yurrd(Orw)y, Ya <breR. (3.8)
a+r a

These two properties (3.7), (3.8) and Theorem 2.2 then suffice to prove the cocycle property (3.1)
of the generated random dynamical system from stochastic rough differential equation (1.1). O

3.2 Existence of random attractors

Given a random dynamical system ¢ on the phase space RY, we follow [8] (see also [9], [1, Chapter
9] and the references therein) to present the notion of random pullback attractors. Recall that a set
M := {M(w)}oeq is a random set, if w — d(y|M(w)) := inf{d(y, z)|z € M(w)} is .F-measurable
for each y € R%. An universe & is a family of random sets which is closed w.r.t. inclusions (i.e.
if Dy € 9 and Dy C Dy then Dy € Z). In our setting, we define the universe Z to be a family
of tempered random sets D(w), which means the following: A random variable p(w) > 0 is called
tempered if it satisfies tl}gloo +log* p(fw) = 0 a.s. (see e.g. [1, pp. 164, 386]) which is equivalent
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to the sub-exponential growth tli? e p(Bw) = 0 a.s. for all ¢ > 0 [28, p. 220]). A random
—> 00

set D(w) is called tempered if it is contained in a ball B(0, p(w)) a.s., where the radius p(w) is a
tempered random variable.

A random subset A is called invariant, if ¢(t,w)A(w) = A(fw) for all t € R, w € Q. An invariant
random compact set A € Z is called a pullback attractor in 9, if A attracts any closed random set
D € 2 in the pullback sense, i.e.

lim di (p(t, 0-w) D(0—_w) | Aw)) = 0, (3.9)

where dg(-|-) is the Hausdorfl semi-distance, i.e. dg(D|A) := supyepinfaea|ld —al|. A is called a
forward attractor in 9, if A is invariant and attracts any closed random set D € Z in the forward
sense, i.e. tliglo dy(o(t,w)D(z)| A(fiw)) = 0.
The existence of a pullback attractor follows from the existence of a pullback absorbing set (see
[9, Theorem 3]), namely a random set B € Z is called pullback absorbing in the universe 2 if B
absorbs all closed random sets in &, i.e. for any closed random set D e 9, there exists a time
to = to(w, D) such that
o(t,0_w)D(0_w) C B(w), for all t > t. (3.10)

Then given the universe ¥ and a compact pullback absorbing set B € &, there exists a unique
pullback attractor A(w) in 2, given by

Alw) = [ #(s,0-sw)B(0_w). (3.11)

>0 s>t

Our first main result is formulated as follows.

Theorem 3.3 Under the assumptions (Hy), (Hy), (Hx), there exists a pullback attractor A(w)
for the generated random dynamical system of the stochastic system (1.1) such that |A(-)| € LP for
any p > 1.

Proof: First (2.21) and Jensen’s inequality deduce that, for any p > 1 there exists an n € (0, 1)
and an integrable random variable & (w) = &1(Cy [|x(w)]l,,—yar,j0,1)) such that

lyall” < nllyoll” + &1 (w). (3.12)

From (3.12) it is easy to prove by induction that

n—1

lyn G, wo)lIP < 0" llyoll” + > n'é1(Bn-iw), Y >1;
1=0

thus replacing w by 0_,w yields
) .
5 (0—new, yo(O—nw))|” < 0" [lyo(0—nw)lI” + D 1'&i (6-iw).
i=0
In other words, starting from a tempered random set D(w) € & which is contained in a ball
B(0,r(w)) with a tempered random radius r(w), then any point yo = yo(6—w) € D(0_4w) satisfies
P

<pr(0-nw)’ + > n'&i(0-w)
=0

Yn(0—nw, yo(0-nw)) ’ ’

=:R(w)

<n"r(0-nw)” + R(w). (3.13)

= Htp(n,e_nw)D(H_nw))Hp
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Due to the integrability of &, R is also integrable (and thus tempered) with ER(-) = 1-E& (-).

1—
On the other hand, the cocycle property (3.1) yields !
et +mn,0_t_pw)D(O_t—pw) = o(n,0_p,w) o p(t,0_1_pw)D(O__pw),Vt € [0,1]. (3.14)
It follows from (2.21) and the shift property (3.3) that
(2, 0-1-n)y 0| <y (O-rse)| + CaN (g x(0-1-00), 0,1
<Oy ) +CAN(L x(0-),[-1,0]) (3.15)
- 16C,Cy’ o

for all ¢ € [0,1] and n € N. Since the right hand side of (3.15) is a tempered random variable, we
conclude from (3.13), (3.14) and (3.15) that there exists a pullback absorbing set B(w) = B(0, b(w)),

1

with a tempered random variable b(w) = [1 + R(w)} " containing our pullback attractor A(w). In
particular, |A(-)] € LP. O

Our second main result shows the existence and the upper-semi continuity of the pullback
attractor in comparison to the deterministic attractor, under the additional Lipschitz continuity
assumption (1.11) for the drift f and the uniform attraction assumption (H 4) for .A. Note that the
Doss-Sussmann technique and the method in Theorem 2.2 do not work in this case because C still
contains D; and can not be arbitrarily small for sufficiently small C,, thus we will provide a direct
proof.

Theorem 3.4 Assume that f is globally Lipschitz continuous with (1.11) and dissipative in the
relative sense, i.e. there exists Dy, Do > 0 such that

(y1 —yo, f(y1) — f(y2)) < D1 — Dallyr — |, Vy1,92 € R (3.16)

Then under the assumptions (Hg), (Hx), (Hp), the random attractor is upper semi-continuous,
1.€.
p P
lim dyy (A@)IA) =0 as. and  lim Edy(A0)4) =0, Vo> 1, (3.17)
Cy—0 Cy—0
Proof:  Fix any solution y:(x, yo) and associate it with the solution u:(p0) of the deterministic

system £t = f(u) which starts at pg. Consider the difference y; := y; — p; for t > 0, then y* satisfies
the equation

dy; = [f(y;i + ) — f(po)ldt + g(y; + pe)dae = fy;)dt + g(y; )day.

First, we prove that there exists a constant 7 € (0,1) and an integrable random variable &;(w)
such that

gz 1” < nllwo )l + &1 (w). (3.18)
holds for a certain instant » > 0. Consider the difference u; = ui(yo) — pe(p0) of the two solutions
of the deterministic system (1.4) starting at different points yo and po, then uf is the solution of
the nonautonomous deterministic system %uf = f(py + pe) — f(pe) which starts at pf = yg5. The
relative dissipativity assumption (3.16) yields ||uf]| < g—; + |5l and

¢
gl < [ Lpllpglldu < L1+ )1+ [lypl)(E —s), YO<s<t<r, (3.19)
Do
S

thus p* € C1=¥¥. Moreover, because (H ) is fulfilled with certain numbers r, D3, we can choose
o depending on yg such that (1.13) is satisfied, i.e.

izl < g e P2 (3.20)
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Assign h; := y; — uy, then h satisfies

t t
hoa = [ (1000 s+ 1) = e+ )]+ [ gl g+ pi)dnn 321

thus h is also controlled by x with hl, =y, = g(hs + ps + p) and Rst = Ri’yt — st — M5y We need
an auxiliary result below.

Proposition 3.5 There exists a generic constant D such that the following estimate holds
el <€) (1 + llygll?),  where (3.22)
1
Lyer
£o(x) i=e*s (1 4 A0, fllsoa + AC D)sc Co Il v, 0.1 N(m,x, [o,r]).

Assume that (3.22) in Proposition 3.5 holds, we then apply Jensen’s inequality and Young
inequality, for € > 0 small enough, and use (3.20) to conclude that

1117

<(hell + 1 1)? < (14 P HlpzllP + (

<(1+ 9P e + () (1 + 07 o) P + (S

EE g ey
g g [5(eﬂﬁuy3upﬁ) -9 (e0r)

<(1+ 20D (PP 4 e8) 57 + €1 (),

e
1o ()]

<L+ HlyglPe P2 + (

‘H
®

|

where

fx) = (5P 1+ (1= ) (p00) T+ (e (3.23)

Note that & (x(w)) = &1(w) is integrable in w due to the assumption. By choosing € € (0,1) small
enough such that

1+e
€

n:=(1+ 6)2(”_1) [e‘pDQ + eﬁ] <1,

we obtain (3.18).
Next, the same arguments as in the proof of Theorem 3.3 for discrete times nr lead to

(O, 30(0-)) = p(120)| | <" (o (O-ni)| + 10l )” +Z77§1 _w)

=:R(w)

= dy (gpn(e,nw, D(e,nw))\A)p gnn(\p(e,nw)\ ¥ yAy)p + R(w). (3.24)

The final argument in the proof of Theorem 3.3 is then applied to prove that there exists a pullback

1

absorbing set B(w) = B(0,b(w)), with a tempered random variable b(w) = |A| + [1 + R(w)} .
containing our pullback attractor A(w). In particular, choose D(w) = A(w) (which is naturally

tempered) and let n tends to infinity in the inequality (3.24), then the first term in the right hand
side of (3.24) tends to zero due to the temperedness of A(w) and we obtain

dy (A(w)\A)p < R(w). (3.25)
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Now because

1
8CoC Il arion N (5% 07)
p
<8CCoy Il —aror) [+ (8CoCo Il arou) ) | =0

as Cy — 0, both in the almost sure and in the L£” senses, the definitions of {y(w) in (3.22) and of
&1(w) in (3.23) show that R(w) — 0 as Cy — 0, both in the almost sure and in the £ senses. This
proves (3.17).
[
Proof: [Proof of Proposition 3.5] First, it follows from (3.21) that

t
Il < /
S

Observe that for § =

|1 Xs ] (3.26)

{ 00yt NI oy + g | b

iSAL
—~

Wi
—
S~—

g(pw + P + i) — g0 + ho + )| V (1D g (i + how + pi) — Dg(ptn + hop + g3, |
<Cyllhupll + Cyllpuwl + 2Cy |15 ,11°
<Cyllhupll + Cgllpuwl + CoDA + lygl1°)(t — 5)°, YO<u<wv<r,

for a generic constant D. This follows that

”|g(,u +h+ ,u*)mp—var,[s,t] v “|Dg(:u +h+ :U“*)mp—var,[s,t] (327)
<C mhmp var,[s,t] + Cg m:u'mlfvar,[s,t] + CQD(l + HySHB)(t - 8)/87 V0 <s<t<r.

Inequality (3.27) together with [g(y)], = Dg(ys)g(ys) leads to

for all 0 < s <t <r. Furthermore,

H < 202( th‘pfvar,[s,t] + ”|M|”17var,[s,t] + D(l + HySHIB))a (328)

p—var,[s,t] —

IRZD| = Nlglys + Basy + Ry + s + 1154) — 9(ys) — Dglys)g(ys)ass|
19(ys + 9(ys)Tsy + R, + psy + 1ky) — 9(ys + 9(ys)zss) |
+lg(ys + 9(ys)zs) — 9(ys) — Dg(ys)g(ys)xs,tll

C ||R

4 /0 1D, (ys + xg(ysm,t) ~ D)9 (ws)llzslldx

IN

IN

) 1
< CollRGll + Collmstll + CoD(1 + [l 1) (t = 5)° + 5CF

i

for all 0 < s <t <, which, due to fq = 35 =1, yields

e 4 Co Ml o

|
H)q—var,[s,t]2 -9 ‘H g—var,[s,t]2

* 1 2
+CyD(1 + [lyp ") + 503 10l ,—var, s,

(3.29)
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for all 0 < s <t <r. Replacing (3.28) and (3.29) into (3.26) we obtain
al

p_Varv[Svt]

t
/ Lth Hdu + C ”’me var,[s,t] + 02 mxmp var,[s,t] + C CS mx”’p var,[s,t]

+ 265 (C2 X —var o) V Co Bl sy ) (12l —ar g + PO+ [19511%))

+ 26 (C2IRI} -var oy V Co Il sy ) || B L W0<s<t<r

p_Varv[Svt]

The estimate for R" is already included in the right hand side of the above inequality (excluded the

term Cg [|1x[|,_yar [s,9)- Since ||| < Rhmp war s W€ finally obtain
H ’Hp var,[s,t]
e i
1Ay + B
([, o
/ f p—var,| su])

(C |||X|||p var,[s,t] + 202 |||X|||p var,[s,t] + C 03 |HX|||p var,[s, t])
% (14 40 Il e o +4Co DL+ 551%))

4G (C2 I v V o Il o) [ B

p—var,[s,t]
2L | dut g Jr. 2]
/ f( ‘p var,[s,u] ) Uty 2 p—var,[s,t]
+ 4C C |||X|||p var,[s,t] (1 + 40]? |||:U’|”1—var,[s,t] + 4CP‘D(1 + Hy6”6)>7 (330)
— 1

whenever 4C,C, ||x|| Estimate (3.30) yields

p— Var[st] — 2

t
Il + |, B SHth—i-2L1+/ AL (Il + || )
p—var,[s,u

p—var,|[s,t]

whenever 4C,C, ||x|| s S 3. thus by the continuous Gronwall lemma,

p—var

< (IIhs]| +2Ly)et =)

-

whenever 4C,Cy |x||
the form {Ti(gcicg, ,[s,t]) }ien as in (2.10), we can prove by induction that

pvar[s,t] = 2 Now by constructing the greedy sequence of stopping times of

1

AL ¢ (T, —s

1Blloo fr ey < €577 (IRl + 2L1k), Wk = 1""’N<8Cpcg’x’ 5,1]).
This enables us to show that

(3.31)

p—var,[s,t]

lloe s <21 hgll + N (%, [5,8)8C,Cy i

1
8C,Cy’
< (1440 Dl —yar o + 4G D0+ 55117)) .
for all 0 < s <t <r. Since ho = y5 — p5 = 0 and ||ull;_yur 0,1 < 7llflloc,a due to (1.12), (3.22) is
proved. O

20



If f is strictly dissipative, i.e. D; = 0 in condition (3.16), then (1.5) is automatically satisfied
and the attractor A is a singleton. However, it is not a trivial task to prove that A(w) is a singleton
random attractor. In fact, we can only prove below that statement for sufficiently small C,.

From now on, we follow the terminologies in the proof of Theorem 2.2 with

V=Yt — 2 M= —E Pr= [8f(txzt)}_1—fd; Py = [8f(txzt)}_l—1d.

Also from the proof of Theorem 2.2, given a time 7 > 0 such that
16C,Cy H|X”|p_var,[0,7'] < X where A < D;Jzijof, it follows that N(ﬁ, x, [0, t]) = 1forallt e [0,7].
We first need an auxiliary result.

Proposition 3.6 Assume (Hy), (Hx ) and \, T as introduced above. Then there exist an increasing
continuous function K :[0,1] — Ry with K(0) = 0, such that the following estimates hold

173 = el < Allze = zell; (1o — el S KN)12 = 2ll, Ve € [0, 7). (3.32)

Proof: i, The proof for the first estimate is simple, since one can write 4 — v in the form

t
== [ 1006 (x,70) = g(0uo, )
Then the estimates (2.17) and (2.18) together with (2.14), (2.15) enable us to obtain

17 = el
SHQ(Zt) - g(zt)” ”’xmpfvar,[o,t} + ||Dg(2t)g(§t) - Dg(Zt) (zt)H H‘qu var,[0,t]?

+ Cp{ (=] —— H‘Rg@_g((b) H‘

q—Var,[O,?f]Q

1Kl o 19 — 9@ |
gzop{cg 1€l —var 0. + Co I3 —var 0.1 }
JERY T8 Y O

x (7 =zl + |6 — 0. O

p—var,| 0t}>

p—var,| Ot})

2 2
<20, { O Il —ano.g + C2 KU —sanog } (1 +16CoCo Il v o) ) N5 =
A

Z(l + )\) ”Zt — Zt” < )\”Zt - Zt” Vit € [O,T]. (333)

ii, The proof for the second estimate in (3.32) is more technical and lengthy. First observe from
(2.19) that

[ — | —H[ (t,x Zt)}il - [gf(t x Zt)}ilH

<[ ema] [ e xa] 55 e xm - Gexa]

<(14 )2 (t,x,zt)—aﬁ(t,x,zt)u, Vit € [0,7];

H@ 0z

hence it is enough to estimate the last term in the right hand side of the above inequality. We will
write in short || — & || for some ¢ € [0, 7] fixed, so that z; and z; are also fixed as well. By definition
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& and & are respectively the values at time ¢ of the solutions &,(x, %) and &,(x, 2;) of the linear
matrix - valued rough differential equations

év = Id+/() Dg(¢u(xv Zt))gudxm &) = Id+/0 Dg(gzﬁu(x, Zt))fudxu-

As a result,
—_ v —_
§o — & = Dg(d)u X, _t)) (éu - gu) dxy,
—— 0 e e N e’
=:Cv =:Ay =:Cu
v (3.34)
+ [ [Patoute. ) = Dato(x.2)] €ud,
—bu
It follows from (3.34) that o = 0 and
AGdan | + | / butday |
—_——
:ZAu,v
<[ AulllCull N2l —var,uv) + [ Au @ AullCall XN g var,fu,v] + Auw
AC
+ O el | R
+ ”|X|quvar,[u,v] Hl(A/ +A® A)CH}p—var,[u,v] }
Since
AuCo — AuCu = (AlCu + AuCl)Tuw + Rt yCu + AuRS, + AupCus
¢ and A( are controlled by x with ¢/, = AyCy, (AQ)), = Al Cu + Ay ® Ay, and
H}(A/ +A® A)C“‘p—var,[u,v] < H|A/ +A® A‘Hp var,[u,v] HCHOO [u,v]
+ 1A+ A ® All o fu) 1< —var, w0
<2<”A/Hp var,[u,v] + QHAHp var,[u v]) ”CHp var,[u,v]
IRASN <R MGl + I AulllIRE ol + [ Auo 1ol
AC RA
‘HR H‘qfvar,[u,v] = H| H‘q var, [u,v] ||<||oo [wv] + HAHOO o[w] R ‘Hq var,[u,v]
AN —var w0 1Sy —var, fu,0)
A ¢
<l + 114 R ey ) (16 o] )
Because A, = Dg(pu(x, Zt)), a  direct computation  shows  that
AL = D2g(¢u(x, Zt))g(¢u(x7 Et)) with
||A||p—var,[u,v] SCg(l + |||¢ (X7 Zt)’“p—var,[u,v})
HA/”pfvar [u,v] SCZ(l + 2 |||¢ (X Zt)mp—var,[u,v])
H‘RA‘HQ var,[u,] = C HM) (X Zt)mp var,[u,v] + Cg H’Rtﬁ(x,gt) ‘qfvar [u,v] '

As a result, by combining all the above estimates and using (2.14), we can show that there exists a
generic function D(A) > 1 such that

Il —var,fuv) < IANp—var fu) + Co (Cg v, ) ¥ C I, )
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DO (llcul + |

R pr)

The estimate for “‘RCH‘

3

is already included in the above estimate, hence
qfvar,[u,v]

<2 A -] + 2 DO (Co bl vy ¥ CEIRIZ ) )

x (Gl + |

L R

{,RCH) , VW0<u<wv<t.

S

This implies

lcoll < lcull + ||, B¢| <2 Al yar o ) + 20l

p—var,[u,v]

whenever

[40 C D(A)} -

’”XH‘p var,[u,v] =

=\

By constructing the stopping times {Ti()\’ ,X, [0, t])} and using induction, we can show that

Il < exp{N (N, %[0, 1) log 2} (Icoll + 2 1Al var 0 )
<2l ur oy 5PNV, 3, [0, ]) og 2}, (3.35)

p—var,|0,

It remains to estimate ||A|| Observe that

p—var,[0,t]

[Awoll <I0uull N2y —var, el + 1 OE)ll BNy —var,fu.0)

be /
+ Cp (Bl |||y 1M 110 e o)
which yields
(LY ——
SHb”oo,[o,ﬂ||£||c>o7 oS p—var,[0,t]
/ / 2
+ <||b 50,0, 10,4 T 1blloo,o, 1€ ||oo,[o,t]> (B3 —

+ Ci Il v o (| [

o Cp I 0.1 10—y 1€ 0,100+ 18 fo. BE a0

(171 var. 0.5 1Bl 01 + 118 oo, 0,

—

p—var,[0,1] }

It is easy to check from (2.19) that the estimates for || £, Rfmp_var?[&ﬂ E Ny —var 0,6 20 [1€lloo, 0,45 1€l 0,0,

are functions of 16C,Cl ||x||,,_ya [0, and can thus be bounded from above by functions of A. On
the other hand, similar to the computations in Proposition 2.1, we can show that

6o 0.1 SColld(x,22) = 6%, 20) o fo1
1¥lloe. 0. <[ D206 5, 20))9(6.(x, 2)) = D2(6.(x, 20))g(9.(x, 20) |
00—, 01 <Co (1605, 22) = &5, 20l v o
116:05 2) = 606 20) oo 0 1605 20l var0) )

00,[0,1]”
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‘Hb/wp—var,[o,t] SCQ ( W‘b(xﬂ 275) — 9. (Xa Zt) |||p7var,[0,t]

11906 20) = 6% 20) o fo. 16-(%, 20 lp—var o )

L IRVES] Lt Ay
+Cyllo-x,2) = 6.0 20 lowson || B 0|
4 SO0y [ 166570 = .06 20y
11606, 20) = 6.0 ) 0.0 (19l], sar o + 10lpanons )] (3:36)

Finally, the existence of function K satisfying (3.32) is a consequence of (3.35), (3.36) and the
estimates (2.14), (2.16), (2.15) on [0, 7], which can be written as functions of .
[

Theorem 3.7 (Singleton attractor) Assume (Hy),(H,),(Hx ) and further that f € C1 is strictly
dissipative (i.e. Dy =0 in condition (3.16)). Then for Cy small enough the random attractor A is
a singleton, i.e. A(w) = {a(w)} a.s., thus it satisfies the upper semi-continuity (3.17).

Proof: We first prove that for any A < there exists a random variable 0 < A(\,w) €

D
2(D2ij) ’
L' such that for any two solutions 7; and y; of system (1.2) starting respectively from 7o, yo € A(w),
the following estimate holds

191 — 1l < exp{—=Da + A(X,x(w)) HIgo = woll- (3.37)

Indeed, given 7 > 0 as above, assign 7 := Z; — z; and consider the equation

e =(Id + ) f(Ze+ ) — (Id + ) f(z + )
=[f @) = fF)] + el f @) — Fye)] + (e — o) f ).

It follows from Lagrange’s mean value theorem, the strict dissipativity, estimates (2.21) and (3.32)
that for all t € [0, 7],

d 2
il

<25 — v — (5 =), F@) = £ + 2lmlllde = ell £ o)

+ 2llnell 1l Fe) — £ (o)l
< = 20515 — yell* + 2|l — el max{]| f(p1)l| : pr € A(Gpw)}

= flloo,.A(05w)

+2(115 = el + el ) max {IDS @I+ lp ) < |AG0)|} 5 — well

=D flloo,B(0,]A(0w)])
< — 2D lmel*(1 = A) + 201 f oo, 400y KN me]1* + 41D f oo, 50, Aoy (1 + MM 7)1

<- 2{D2 - (1 + 1D fll oo, B(0,|A@:w)]) + Hf”oo,.A(@tw))
=:2(0¢w)
X [DZA +2(14 M)A+ K(A)} }||nt\|2.

~~

:G(N)
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As a result [[n-|| < ||no] exp{ - Jy [Dg — G(A)E(Gtw)] dt}, which yields
15 = well (14 A)exp{ = / D2 = GOVZ(0)] dt 0 — ol
0
< A —/ Dy — G(NE(O dt ¢ go — yol-
exp (A= [ D2 = GOVE6w) |t 3o — ol

By constructing the sequence of stopping times {Ti(ﬁ,x, [0,1])} and using induction (taking
into account the shift property (3.2)), we derive

A 1
1 — < — - = Yo — Yol|- .
I3 =l < exp { = Do+ [ AN (i .0.1) + 60 [ =(0yir] Yo — ol (359
— AOx(w))
This proves (3.37). The integrability of A(], ) follows from the integrability of |||X(')”|p_var7[071] and

of Z(-) (which is a consequence of the integrability of |.A(-)|? for any p > 1).

Next, take any two different points (if any) a; # a2 € A(w), we can also write a;(w), a2(w) €
A(x(w)) for a little abuse of notation to address the dependence on the path x. For a given n € N,
assign x* := x(0_,w) and consider the equation

dye = f(ye)dt + g(y:)day,

where x* = (2*,X*). Due to the invariance of A(w) under the flow, there exist by, by € A(x*) such
that a; = y,(x*,b;). We write in short 3} = y;(x*,b1). Then by (3.37) and induction, one can use
the shift property (3.3) to show that

laz () = ar(w)]| Sexp{ — Dan + 3 A (610)) b2 = b
k=0
<2exp { “n [D2 . % znj AN, X(G,kw))] } (yAy + R(G_nw)> (3.39)
k=1

Applying Birkhorff ergodic theorem and using (3.38), one gets

n—oo N

lim 1 Z AN x(0_w)) =EA(N x(+))
k=1

A

=AEN (160pcg’

1
x(-),[O,l])JrG()\)E/O =(0,)dt as.

where the second term in the right hand side is small by choosing A small enough. Meanwhile, the
first term can be controlled as small as possible by choosing A := C for sufficiently small Cj so that

N is fixed to N(ﬁ,x, [0, 1]) On the other hand |A| + R(f_,w) is a tempered random variable.

Hence for sufficiently small Cy, the right hand side of (3.39) tends to zero exponentially as n tends
to infinity a.s., which proves that A(w) is a_singleton a.s.

Finally, because D1 = 0, the constants Cy and C) in the proof of Theorem 2.2 vanish at A = 0.
Hence & and R are functions of C'y and can be as small as possible by choosing A = C, for small
enough Cy so that N in (2.21) is fixed to N(ﬁ, x, [0, 1]) This proves the upper semi-continuity

(3.17). O
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3.3 Discussion on estimation of EN (A, x(-), [0, 1])

Estimate (3.39) in the proof of Theorem 3.7 leads to the question whether the conclusion still holds
for any C,. To get an answer, we need to check if the following limit is zero

lim sup AEN (), x(+), [0, 1]). (3.40)
A—=0

A direct computation shows that

EN(X, x(-),[0,1])

=Y nP{w: N(\,x(-),[0,1]) = n}

n=1

—Z (]P’{w NOLx(),[0,1]) > n — 1} — P{w: N(A, x(-),[0,1]) > n})

:ZIP’{w : N\, x(4),[0,1]) > n}.
n=0

Therefore at a first try, we would like to estimate the limit (3.40) for Gaussian noises. Unfortunately,
we will show below that simply applying the estimate of N (A, x, [0, 1]) in [5] would lead to a failure.
More specifically, following [13, Chapter 10 & Chapter 11], let W = C(I,R™) be the probability
space equipped with a Gaussian measure P and let (X;) be a continuous centered Gaussian process.
The associated Cameron-Martin space H C W consists of paths ¢t — h. = E(ZX.), where Z € W' is
an element in the so-called first Wiener chaos. If h. = E(ZX.) denotes another element in H then
the inner product (h,h)y := E(ZZ) makes H a Hilbert space and Z ~ h is an isometry between
W' and H. The triple (W, H,P) is then called the abstract Wiener space. It follows from [13,
Proposition 11.2] that given the covariance property (3.4), H is continuously embedded in the space
of continuous paths of finite g-variation, i.e. H < C?7V2([0,1],R%), and there exists a constant

Comb > 0 such that
gl

< |IhllzA/ IR > < Compl|h|ln, YheH,VO<s<t<I (3.41)

qfvarv[svt} qfvarv[svt}

It then makes sense (see e.g. [14] or [5]) to define the so-called translated rough path Tpx as
Tpx = <x+h,X+/h®dm+/x®dh+/h®dh>.
According to [5], T}, : CP7V¥ — CP~V?" gatisfies the estimate
T3¢0y oy < Co (Il oy 1y varo )» VO <8 <1< 1. (3.42)
In addition, assume that X has a natural lift to a geometric p - variation rough path X. It is

proved in [5, Proposition 6.2, Theorem 6.3] that there exists a set £ C W of P-full measure, with
the property

Vwe E,Vhe H,VA>0: if [ X(w—R)|,_var0,1] < A

then \Hhmg var0.1] = N(2Cp\, X (w), [0,1]).
Moreover,
_ )\Qn%
P{w : N(2C,\, X (w), [0,1]) > n} < exp{2a3} exp{ 507 }, (3.43)
emb
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where Copp, and C), are given in (3.41), (3.42) respectively, @ ! is the inverse of the standard normal
cumulative distribution function and ay := ®~!(P(B))) where By := {w € W : IX ()l —var,0.1] <
A}. In fact, a closer look shows that (3.43) follows from Borell’s theorem [29, Theorem 4.3] and

P{w : N(2C,\, X (w),[0,1]) > n} <1 q>< +A”’%) 1 /°° 2
w . ) w 9 Pl n >~ —_ a>\ —_ 2 e X
p Cemb \/% a)\+CAnPb
This yields
. = — . zép)\ o0 %) 7&
lim sup 2C, AEN (2C,\, X(w), [0,1]) < limsup 2 e T dy. (3.44)
A—0 A—0 \/ﬂ =1 ak"'c)*‘npb

Unfortunately, the right hand side of (3.44) is infinity for p > 2. Indeed, observe that P(B)) — 0 as
2 p

A — 0, which implies a) — —oc as A = 0. Thus a) + é‘y"i <0 aslong as n < by := (Cemb%“>§.

As a result,
oo by
A & x? A ® ¥ 1
— “Hdy > — “Tdy~=\b
\/QWT;/QH_CM%)G ’ X_\/QW,;/O ¢ 2ox 2)\>\
1 2
~ §Ce2mb(—a)\)g)\1*% — 00
as A — 0, provided that p > 2. Similarly, an attempt to apply the estimate
- An% )\Qn%
P{w : N(2C,\, X(w),[0,1]) > n} < exp {5(1@(53))7 - 72}
Cemb 2Cemb

21}2
where d(v) = [ min(1 — v, e_tT)dt as suggested in [29, Formula (4.6), p. 210] also leads to the
divergence of a series similar to the one in the right hand side of (3.44). It is therefore a challenging
problem on how to estimate the interesting limit (3.40).
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