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Numerical attractors for rough differential equations

Luu Hoang Duc ∗, Peter Kloeden †

Abstract

We study the explicit Euler scheme to approximate the solutions of rough differential equa-
tions under a bounded or linear diffusion term, where the drift term satisfies a local Lipschitz
continuity and an one-sided linear growth condition. The Euler scheme is then proved to con-
verge for a given solution, where the convergence rate is independent of the initial condition.
For a dissipative drift term with linear growth condition and a bounded diffusion term, the
numerical solution under a regular grid generates a random dynamical system which admits a
random pullback attractor. We also prove that for bounded drift and diffusion terms and under
a centered Gaussian noise with stationary increments, the numerical pullback attractor then
converges upper semi-continuously to the continuous-time pullback attractor as the time step
goes to zero.

Keywords: rough differential equations (RDE), rough path theory, rough integrals, random
dynamical systems, random attractors, Euler numerical scheme.

1 Introduction

The theory of rough paths proposed by Lyons [23, 24] allows one to formulate and investigate
stochastic differential equations of the form

dyt = f(yt)dt+ g(yt)dXt, (1.1)

where f : Rd → Rd, g : Rd → L(Rm,Rd), d,m ∈ N have sufficient regularity and Xt ∈ Rm is a
stochastic process with stationary increments, such that almost surely all realizations are ν-Hölder
continuous for some ν ∈ (1

3 , 1), e.g., fractional Brownian motions [25] with Hurst indices H ∈ (1
3 , 1)).

Using this theory one attempts to solve the controlled differential equation

dyt = f(yt)dt+ g(yt)dxt (1.2)

with the driving path x as a realization of X in the space Cν(R,Rm) of continuous paths with finite
ν-Hölder norm on any finite time interval, such that x can be lifted to a rough path x = (x,X),
where X and x are related to each other by Chen’s relation.

The solution of (1.2) in the sense of either Lyons-Davie [23, 24] or Friz-Victoir [13, 26] does not
need rough path integrals to be specified. Alternatively, rough path integrals can be defined using
fractional calculus, and the solution of (1.2) can be understood in couple with its Lévy area, see
e.g. [15, 20].
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Another approach is to interpret equation (1.2) in the integral equation form

yt = y0 +

∫ t

0
f(ys)ds+

∫ t

0
g(ys)dxs, (1.3)

where the second integral is a rough integral for controlled rough paths in the sense of Gubinelli
[17]. This approach facilitates the derivation of estimates of solutions and is more convenient for
investigating their asymptotical behaviour and their approximation under numerical discretization.

The Euler scheme for rough differential equation is first studied under the frame work of rough
path theory for discrete time sets in the classical work of Davie [8] for pure rough equations and
later in Friz and Victoir [13], Lejay [19] for mixed equations of the form (1.2), where the drift term f
is at least globally Lipschitz continuous and the diffusion term g is often bounded and of C3. When
dealing with one-sided Lipschitz f , it is important that one can find a way to estimate the solution
norm. In this direction there is work by Riedel and Scheutzow [26] to estimate norm of the solution
in the sense of Friz-Victoir. It was recently proved in Duc [10] that the system (1.3) has a unique
pathwise solution for a given initial condition under a Lipschitz continuity of the drift, which will
be relaxed in this paper (Proposition 2.4 and Corollary 2.5) to a local Lipschitz continuity and an
one-sided linear growth condition of the drift. A direct consequence gives an estimate of solution
supremum norm, which is then used to prove the convergence of the explicit Euler numerical scheme
in Theorem 3.1 by revoking the cut-off technique which comes from Whitney’s theorem [28] and by
using the solution estimates in Proposition 2.6.

In this paper, we propose an analytic approach to study the numerical attractors of the explicit
Euler numerical scheme from the rough differential equations (1.1) and (1.2). To do that, we follow
a probabilistic setting in Bailleu et al [2] and Duc [9] for the rough noise to prove that system (1.1),
understood in the pathwise sense as (1.2) with pathwise solutions in the Gubinelli sense, generates
a continuous-time random dynamical system [1], while the discrete-time Euler scheme generates a
discrete-time random dynamical system.

Moreover, we go a step further by proving that under the dissipativity of the drift term and with
the bounded or linear diffusion term, there exists not only a pullback attractor for the continuous-
time RDS generated from (1.1) (see Duc [9, Theorem 3.1] and Theorem 5.1), but also a pullback
attractor for the discrete-time RDS generated from the explicit Euler numerical scheme with the
regular grid and a sufficiently small step size, although the latter requires additional conditions on
the linear growth of the drift term and the boundedness of the diffusion term (see Theorem 5.2).

Finally, we prove in Theorem 5.5 that, under restricted assumptions that the drift term f and
diffusion term g are bounded and globally Lipschitz continuous and the driving noise X is a centered
Gaussian process, the numerical pullback attractor converges upper semi-continuously and almost
surely to the continuous attractor as the step size tends to zero. The same questions on existence of
numerical attractor and its upper semi-continuous convergence in case of a linear or more general
diffusion term is still open for future work.

2 Rough path theory and rough differential equations

2.1 Rough paths

Let us briefly present the concept of rough paths in the simplest form, following Friz & Hairer [12]
and Lyons [23]. For any finite dimensional vector space W , denote by C([a, b],W ) the space of
all continuous paths y : [a, b] → W equipped with the sup norm ‖ · ‖∞,[a,b] given by ‖y‖∞,[a,b] =
supt∈[a,b] ‖yt‖, where ‖ · ‖ is the norm in W . We write ys,t := yt − ys. For p ≥ 1, denote by
Cp−var([a, b],W ) ⊂ C([a, b],W ) the space of all continuous paths y : [a, b]→W of finite p-variation
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|||y|||p−var,[a,b] :=
(

supΠ([a,b])

∑n
i=1 ‖yti,ti+1‖p

)1/p
< ∞, where the supremum is taken over the whole

class of finite partitions of [a, b].
Also for each 0 < α < 1, we denote by Cα([a, b],W ) the space of Hölder continuous functions

with exponent α on [a, b] equipped with the norm

‖y‖α,[a,b] := ‖ya‖+ |||y|||α,[a,b] , where |||y|||α,[a,b] := sup
s,t∈[a,b], s<t

‖ys,t‖
(t− s)α

<∞. (2.1)

For α ∈ (1
3 ,

1
2), a couple x = (x,X) ∈ Rm ⊕ (Rm ⊗ Rm), where x ∈ Cα([a, b],Rm) and

X ∈ C2α([a, b]2,Rm ⊗ Rm) :=

{
X ∈ C([a, b]2,Rm ⊗ Rm) : sup

s,t∈[a,b], s<t

‖Xs,t‖
|t− s|2α

<∞

}
,

is called a rough path if it satisfies Chen’s relation

Xs,t − Xs,u − Xu,t = xs,u ⊗ xu,t, ∀a ≤ s ≤ u ≤ t ≤ b. (2.2)

We introduce the rough path semi-norm

|||x|||α,[a,b] := |||x|||α,[a,b] + |||X|||
1
2

2α,[a,b]2
, where |||X|||2α,[a,b]2 := sup

s,t∈[a,b];s<t

‖Xs,t‖
|t− s|2α

<∞. (2.3)

Throughout this paper, we will fix parameters 1
3 < α < ν < 1

2 and p = 1
α so that Cα([a, b],W ) ⊂

Cp−var([a, b],W ). We also set q = p
2 and consider the p−var semi-norm

|||x|||p−var,[a,b] :=
(
|||x|||pp−var,[a,b] + |||X|||q

q−var,[a,b]2

) 1
p
,

|||X|||q−var,[a,b]2 :=

(
sup

Π([a,b])

n∑
i=1

‖Xti,ti+1‖q
)1/q

,

(2.4)

where the supremum is taken over the whole class of finite partitions Π([a, b]) of [a, b].

2.2 Gubinelli’s rough path integrals

Following Gubinelli [17], a rough path integral can be defined for a continuous path y ∈ Cα([a, b],W )
which is controlled by x ∈ Cα([a, b],Rm) in the sense that, there exists a couple (y′, Ry) with
y′ ∈ Cα([a, b],L(Rm,W )), Ry ∈ C2α([a, b]2,W ) such that

ys,t = y′sxs,t +Rys,t, ∀a ≤ s ≤ t ≤ b. (2.5)

y′ is called the Gubinelli derivative of y, which is uniquely defined as long as x is truly rough [12,
Definition 6.3 & Proposition 6.4], namely there exists a dense set of instants s of [a, b] such that x
is ”rough at time s”, i.e.

∀h∗ ∈ (Rm)∗ \ {0} : lim sup
t↓s

|〈h∗, xs,t〉|
|t− s|2α

=∞.

For instance, almost all trajectories of a fractional Brownian motion BH with H > 1
3 is truly rough

[12, Section 6].
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Denote by D2α
x ([a, b]) the space of all the couples (y, y′) controlled by x, then D2α

x ([a, b]) is a
vector space equipped with the norm

‖(y, y′)‖x,2α,[a,b] := ‖ya‖+ ‖y′a‖+
∣∣∣∣∣∣(y, y′)∣∣∣∣∣∣

x,2α,[a,b]
,
∣∣∣∣∣∣(y, y′)∣∣∣∣∣∣

x,2α,[a,b]
:=
∣∣∣∣∣∣y′∣∣∣∣∣∣

α,[a,b]
+ |||Ry|||2α,[a,b]2 ,

Then for a fixed rough path x = (x,X) and any controlled rough path (y, y′) ∈ D2α
x ([a, b]), the

integral
∫ t
s yudxu can be defined as the limit of the Darboux sum∫ t

s
yudxu := lim

|Π|→0

∑
[u,v]∈Π

(
yu ⊗ xu,v + y′uXu,v

)
where the limit is taken on all finite partitions Π of [a, b] with |Π| := max

[u,v]∈Π
|v−u|. Moreover, thanks

to the sewing lemma [17], [4], one obtains the estimate∥∥∥∫ t

s
yudxu − ys ⊗ xs,t − y′sXs,t

∥∥∥
≤ 2

1− 21−3α
|t− s|3α

(
|||x|||α,[s,t] |||R

y|||2α,[s,t]2 +
∣∣∣∣∣∣y′∣∣∣∣∣∣

α,[s,t]
|||X|||2α,[s,t]2

)
.

(2.6)

In our paper, we often use a similar version to (2.6) under p−variation semi-norm as follows∥∥∥∫ t

s
yudxu − ys ⊗ xs,t − y′sXs,t

∥∥∥
≤Cp

(
|||x|||p−var,[s,t] |||R

y|||q−var,[s,t]2 +
∣∣∣∣∣∣y′∣∣∣∣∣∣

p−var,[s,t]
|||X|||q−var,[s,t]2

) (2.7)

by choosing Cp = 2

1−2
1− 3

p
, given that p ∈ (1, 3).

2.3 Rough differential equations and solution estimates

The existence and uniqueness theorem for system (1.2) is first proved by Riedel & Scheutzow [26],
where the solution is understood in the sense of Friz &Victoir [13]. Using rough path integrals, we
interpret the rough differential equation (1.2) by writing it in the integral form

yt = ya +

∫ t

a
f(ys)ds+

∫ t

a
g(ys)dxs, ∀t ∈ [a, b], (2.8)

for any interval [a, b] and an initial value ya ∈ Rd. Then we search for a solution in the Gubinelli
sense, and solve for (y, y′) ∈ D2α

x ([a, b],Rd). This is possible because for g : Rd → L(Rm,Rd)
satisfying (Hb

g) or (Hl
g) below, it is easy to check (see e.g., [17]) that

(y, y′) ∈ D2α
x ([a, b],Rd) ⇒ (g(y), [g(y)]′) ∈ D2α

x ([a, b],L(Rm,Rd)),
with [g(y)]′s = Dg(ys)y

′
s ∈ L(Rm,L(Rm,Rd)),

thus the second integral in (2.8) is well defined.

Throughout the paper, we will assume that.

(Hf ) f is locally Lipschitz continuous and of one-sided linear growth

∃C > 0 : 〈y, f(y)〉 ≤ C(1 + ‖y‖2), ∀y ∈ Rd; (2.9)

4



in addition f is of linear growth in the perpendicular direction, i.e. there exists Cf > 0 such that∥∥∥f(y)− 〈f(y), y〉
‖y‖2

y
∥∥∥ ≤ Cf(1 + ‖y‖

)
, ∀y 6= 0; (2.10)

either
(Hb

g) g belongs to C3
b (Rd,L(Rm,Rd)) such that

Cg := max
{
‖g‖∞, ‖Dg‖∞, ‖D2

g‖∞, ‖D3
g‖∞

}
<∞; (2.11)

or
(Hl

g) g(y) = Cy for C ∈ L(L(Rm,Rd),Rd) such that

Cg := ‖C‖ <∞; (2.12)

(HX) for a given ν ∈ (1
3 ,

1
2), x belongs to the space Cν(R,Rm) of all continuous paths which are

of finite ν-Hölder norm on any interval [s, t]. In particular, x is a realization of a stochastic process
Xt(ω) with stationary increments, such that x can be lifted into a realized component x = (x,X)
of a stochastic process (x·(ω),X·,·(ω)) with stationary increments, and the estimate

E
(
‖xs,t‖p + ‖Xs,t‖q

)
≤ CT,ν |t− s|pν , ∀s, t ∈ [0, T ] (2.13)

holds for any [0, T ], with pν ≥ 1, q = p
2 and some constant CT,ν .

Assumptions (Hf ), (Hb
g) or (Hl

g), (HX) are sufficient to prove the existence and uniqueness
of the solution of (1.2), as well as the continuity of the solution semi-flow and the generation of
a continuous random dynamical system, see e.g., Bailleul et al [2] and Riedel & Scheutzow [26,
Theorem 4.3].

Here we prove another version of the solution estimate of (1.2), under the definition of solution
in the Gubinelli sense, which extends the diffusion coefficient g to both the bounded case (Hb

g) and

the linear case (Hl
g). We first modify assumption (2.9) by another equivalent one as below.

Lemma 2.1 Given locally Lipschitz continuous f , condition (2.9) is equivalent to the following
condition

∃C̄ > 0 : 〈y, f(y)〉 ≤ C̄‖y‖(1 + ‖y‖), ∀y ∈ Rd; (2.14)

Proof: Condition (2.9) follows from (2.14) automatically due to Cauchy inequality. For the
other direction, one can easily show that

〈y, f(y)〉 ≤ (C ∨ 1)‖y‖
(

sup
‖y‖≤1

‖f(y)‖+ 1 + ‖y‖
)
,∀y ∈ Rd.

Indeed, if ‖y‖ ≤ 1, then

〈y, f(y)〉 ≤ ‖y‖ sup
‖y‖≤1

‖f(y)‖ ≤ (C ∨ 1)‖y‖
(

sup
‖y‖≤1

‖f(y)‖+ 1 + ‖y‖
)
.

On the other hand, if ‖y‖ ≥ 1 then by (2.9)

〈y, f(y)〉 ≤ C(1 + ‖y‖2) ≤ C(‖y‖+ ‖y‖2) ≤ (C ∨ 1)‖y‖
(

sup
‖y‖≤1

‖f(y)‖+ 1 + ‖y‖
)
.

Hence (2.14) is followed by choosing C̄ := (C ∨ 1)
(

sup‖y‖≤1 ‖f(y)‖+ 1
)

.
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Due to Lemma 2.1, from now on we can work with the following assumption for f .

(H′f ) f is a locally Lipschitz continuous function which satisfies (2.14) and (2.10).

The techniques to be used are the Doss-Sussmann technique [27] and the so-called greedy sequence
of stopping times in Cass et al [3]. Namely, for any fixed γ ∈ (0, 1) the sequence of greedy times
{τi(γ,x, I)}i∈N is defined by

τ0 = min I, τi+1 := inf
{
t > τi : |||x|||p−var,[τi,t]

= γ
}
∧max I. (2.15)

Define N(γ,x, I) := sup{i ∈ N : τi ≤ max I}, then it is easy to show a rough estimate

N(γ,x, I) ≤ 1 + γ−p |||x|||pp−var,I . (2.16)

In fact, it is proved in Cass et al [3] that eN(γ,x,I) is integrable. Other studies on continuity and
properties of stopping times can also be found in Duc et al [11, Section 4].

Note that from Duc [10, Theorem 3.4], the solution φ·(x, φa) of the pure rough differential
equation

dφu = g(φu)dxu, u ∈ [a, b], φa ∈ Rd (2.17)

is C1 w.r.t. φa, and ∂φ
∂φa

(·,x, φa) is the solution of the linearized system

dξu = Dg(φu(x, φs))ξudxu, u ∈ [a, b], ξa = Id, (2.18)

where Id ∈ Rd×d denotes the identity matrix.
The idea is then to prove the existence and uniqueness of the solution on each small interval

[τk, τk+1] between two consecutive stopping times, and then concatenate to obtain the conclusion on
any interval. The Doss-Sussmann technique used in Duc [10, Theorem 3.7] and Riedel & Scheutzow
[26] ensures that, by a transformation yt = φt(x, zt) there is an one-to-one correspondence between
a solution yt of (1.2) on a certain interval [0, τ ] and a solution zt of the associate ordinary differential
equation

żt =
[∂φ
∂z

(t,x, zt)
]−1

f(φt(x, zt)), t ∈ [0, τ ], z0 = y0. (2.19)

To estimate the solution norm growth, assign

γt := yt − zt, and ψt :=
[∂φ
∂z

(t,x, zt)
]−1
− Id, ∀t ∈ [0, τ ],

where τ > 0 is chosen such that 16CpCg |||x|||p−var,[0,τ ] ≤ λ for some λ ∈ (0, 1) small enough.
The following result from Duc [9, Proposition 2.1] shows solution norm estimates for equation

(2.17).

Proposition 2.2 Assume that φt is the solutions of (2.17). Introduce the semi-norm

|||κ,Rκ|||p−var,[s,t] := |||κ|||p−var,[s,t] + |||Rκ|||q−var,[s,t]2 .

Then for any interval [a, b] such that 16CpCg |||x|||p−var,[a,b] ≤ 1, the following estimates hold

i)
∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣

p−var,[a,b]
≤ 8CpCg |||x|||p−var,[a,b] ; (2.20)

ii)
∥∥∥ ∂φ
∂φa

(t,x, φa)− Id
∥∥∥,∥∥∥[ ∂φ

∂φa
(t,x, φa)

]−1
− Id

∥∥∥ ≤ 16CpCg |||x|||p−var,[a,b] . (2.21)
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A similar result for the linear case g(y) = Cy is formulated as follows.

Proposition 2.3 Assume that φ(·,x, φa) is the solution of the rough differential equation

dφt = Cφtdxt, t ∈ [a, b], φa ∈ Rd. (2.22)

Then for any interval [a, b] such that 16CpCg |||x|||p−var,[a,b] ≤ 1, the following estimates hold

i)
∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣

p−var,[a,b]
≤ 8Cg |||x|||p−var,[a,b] ‖φa‖; (2.23)

ii)
∥∥∥ ∂φ
∂φa

(t,x, φa)− Id
∥∥∥,∥∥∥[ ∂φ

∂φa
(t,x, φa)

]−1
− Id

∥∥∥ ≤ 8Cg |||x|||p−var,[a,b] . (2.24)

Proof: The existence and uniqueness theorem for equation (2.22) is proved in [10]. To estimate
the solution norms, one uses (2.7) to obtain that

‖φs,t‖ ≤Cg‖φs‖‖xs,t‖+ C2
g‖φs‖‖Xs,t‖

+ Cp

{
|||x|||p−var,[s,t]

∣∣∣∣∣∣∣∣∣RCφ∣∣∣∣∣∣∣∣∣
q−var,[s,t]

+ |||X|||q−var,[s,t] |||C ⊗ Cφ|||p−var,[s,t]

}
≤
(
Cg |||x|||p−var,[s,t] + C2

g |||x|||
2
p−var,[s,t]

)[
‖φs‖+ Cp

∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

]
≤2Cg |||x|||p−var,[s,t] ‖φs‖+ 2CpCg |||x|||p−var,[s,t]

∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

whenever 16CpCg |||x|||p−var,[s,t] ≤ 1. As a result

|||φ|||p−var,[s,t] ≤ 2Cg |||x|||p−var,[s,t] ‖φ‖∞,[s,t] + 2CpCg |||x|||p−var,[s,t]

∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

≤ 2Cg |||x|||p−var,[s,t]

(
‖φs‖+

∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

)
+2CpCg |||x|||p−var,[s,t]

∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

whenever 16CpCg |||x|||p−var,[s,t] ≤ 1. The similar estimate for
∣∣∣∣∣∣Rφ∣∣∣∣∣∣

p−var,[s,t]
is already included in

the above estimate, hence∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

≤ 4Cg |||x|||p−var,[s,t]

(
‖φs‖+

∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

)
+4CpCg |||x|||p−var,[s,t]

∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

≤ 4Cg |||x|||p−var,[s,t] ‖φs‖+ 8CpCg |||x|||p−var,[s,t]

∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

≤ 4Cg |||x|||p−var,[s,t] ‖φs‖+
1

2

∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

whenever 16CpCg |||x|||p−var,[s,t] ≤ 1. Taking the term
∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣

p−var,[s,t]
from the right hand side to

the left hand side, we obtain ∣∣∣∣∣∣∣∣∣φ,Rφ∣∣∣∣∣∣∣∣∣
p−var,[s,t]

≤ 8Cg |||x|||p−var,[s,t] ‖φs‖

whenever 16CpCg |||x|||p−var,[s,t] ≤ 1, which proves (2.23).
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To prove (2.24), observe that the solution φ(t,x, φa) is linear w.r.t. φa, i.e.

φ(t,x, φa + h)− φ(t,x, φa) = φ(t,x, h) =
∂φ

∂φa
(t,x, φa)h.

Hence one deduces from (2.23) that

‖φ(t,x, h)− h‖ ≤ |||φ(·,x, h)|||p−var,[a,b] ≤ 8Cg |||x|||p−var,[a,b] ‖h‖,

which implies that∥∥∥ ∂φ
∂φa

(t,x, φa)− Id
∥∥∥ = sup

h∈Rd

‖ ∂φ∂φa (t,x, φa)h− h‖
‖h‖

≤ 8Cg |||x|||p−var,[a,b] , ∀t ∈ [a, b].

The estimate for
∥∥∥[ ∂φ∂φa (t,x, φa)

]−1
− Id

∥∥∥ is similar.

We now state below the existence and uniqueness result as well as the solution norm estimate
for rough differential equation (1.2) under bounded diffusion coefficient g.

Proposition 2.4 Under the assumptions (H′f ), (Hb
g), (HX), there exists a unique solution of

(1.2) on any interval [0, T ]. In addition, for each λ ∈ (0, 1) small enough, there exist some generic
constants C(λ), δ(λ) such that the solution satisfies the following estimates

‖y‖∞,[0,T ] ≤ eδ(λ)T
(
‖y0‖+ C(λ)T +

λ

2
N
( λ

16CpCg
,x, [0, T ]

))
=: R. (2.25)

Proof: The existence and uniqueness of the solution of the equations (1.2) and (2.19) hold
on some small interval [0, τlocal], thus we only need to prove that the solution can be extended into
whole interval [0, τ ]. Indeed, with such τ , it then follows from (2.20) and (2.21) that

‖γt‖ = ‖φt(x, zt)− zt‖ ≤
λ

2
and ‖ψt‖ ≤ λ, ∀t ∈ [0, τ ]. (2.26)

To estimate ‖zt‖, we rewrite (2.19) as

żt = (Id+ ψt)f(zt + γt). (2.27)

The additional technical condition (2.10) is equivalent to the following: for y ∈ Rd and y 6= 0, f(y)
is decomposed in the unique form

f(y) =
〈f(y), y〉
‖y‖2

y + π⊥y (f(y)), where π⊥y = 1− πy and ‖π⊥y (f(y))‖ ≤ Cf (1 + ‖y‖). (2.28)

Consider two cases.

Case 1: zt + γt 6= 0. From (2.14) and condition (2.28), we can check that

d

2dt
‖zt‖2 =

〈
zt, (Id+ ψt)

[〈zt + γt, f(zt + γt)〉
‖zt + γt‖2

(zt + γt) + π⊥zt+γt(f(zt + γt))
]〉

=
〈
zt, (Id+ ψt)

(zt + γt)

‖zt + γt‖

〉〈 zt + γt
‖zt + γt‖

, f(zt + γt)
〉

+
〈
zt + γt, π

⊥
zt+γt(f(zt + γt))

〉
−
〈
γt, π

⊥
zt+γt(f(zt + γt))

〉
+
〈
zt, ψtπ

⊥
zt+γt(f(zt + γt))

〉
≤ (1 + λ)‖zt‖C̄(1 + ‖zt‖) +

(
‖γt‖+ ‖ψt‖‖zt‖

)
‖π⊥zt+γt(f(zt + γt))‖

≤ (1 + λ)‖zt‖C̄(1 + ‖zt‖) + λ(
1

2
+ ‖zt‖)Cf

(
1 + ‖zt‖+

λ

2

)
. (2.29)
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Case 2: zt + γt = 0. Then the same arguments with the Cauchy inequality show that

d

2dt
‖zt‖2 = 〈zt, (Id+ ψt)f(0)〉 ≤ (1 + λ)‖f(0)‖‖zt‖. (2.30)

By applying the Cauchy inequality to the right hand side of (2.29) and (2.30), we can show that
there exist generic constants C(λ) and δ(λ) such that

d

dt
‖zt‖2 ≤ C(λ) + δ(λ)‖zt‖2, ∀t ∈ [0, τ ], (2.31)

which, together with Gronwall lemma, yields

‖zt‖ ≤ eδ(λ)t
(
‖z0‖+

C(λ)

δ(λ)

)
− C(λ)

δ(λ)
≤ eδ(λ)τ‖y0‖+

C(λ)

δ(λ)

(
eδ(λ)τ − 1

)
, ∀t ∈ [0, τ ].

In particular

‖y‖∞,[0,τ ] ≤ ‖z‖∞,[0,τ ] + ‖γ‖∞,[0,τ ] ≤ eδ(λ)τ‖y0‖+
C(λ)

δ(λ)

(
eδ(λ)τ − 1

)
+
λ

2
. (2.32)

(2.32) implies that ‖zt‖ is bounded as long as t ∈ [0, τ ], thereby proving the existence and uniqueness
of the solution zt of equation (2.19) on [0, τ ], and so is the solution yt of (1.2) on [0, τ ].

Next, with such a λ > 0, construct a greedy sequence of stopping times {τi( λ
16CpCg

,x, [0, T ])}.
On each interval [τi, τi+1] it is similar to prove the existence and uniqueness of the solution of the
two differential equations (1.2) and (2.19) with the shifted time

dyt+τi = f(yt+τi)dt+ g(yt+τi)dxt+τi , ∀t ∈ [0, τi+1 − τi];

żt+τi =
[∂φ
∂z

(t,x·+τi , zt+τi)
]−1

f(φt(x·+τi , zt+τi)), ∀t ∈ [0, τi+1 − τi], zτi = yτi .

As a result, the existence and uniqueness of the solution of the two systems (1.2) and (2.19) on
[0, T ] is proved by concatenation. To estimate the solution norm, observe from (2.32) that

‖yτk+1
‖ ≤ eδ(λ)(τk+1−τk)‖yτk‖+

C(λ)

δ(λ)

(
eδ(λ)(τk+1−τk) − 1

)
+
λ

2
, 0 ≤ k ≤ N − 1,

which implies that

e−δ(λ)τk+1‖yτk+1
‖ ≤ e−δ(λ)τk‖yτk‖+

C(λ)

δ(λ)

(
e−δ(λ)τk − e−δ(λ)τk+1

)
+
λ

2
e−δ(λ)τk+1 .

Hence by induction, one can easily show that

e−δ(λ)τk+1‖yτk+1
‖ ≤ ‖y0‖+

C(λ)

δ(λ)

(
1− e−δ(λ)τk+1

)
+
λ

2

k+1∑
j=1

e−δ(λ)τj ,

hence ‖yτk+1
‖ ≤ eδ(λ)τk+1‖y0‖+

C(λ)

δ(λ)

(
eδ(λ)τk+1 − 1

)
+
λ

2
(k + 1)eδ(λ)τk+1

≤ eδ(λ)τk+1

(
‖z0‖+ C(λ)τk+1 +

λ

2
(k + 1)

)
, 0 ≤ k ≤ N − 1.

That together with (2.32) yields

‖y‖∞,[τk,τk+1] ≤ eδ(λ)(τk+1−τk)‖yτk‖+
C(λ)

δ(λ)

(
eδ(λ)(τk+1−τk) − 1

)
+
λ

2

≤ eδ(λ)τk+1

(
‖z0‖+ C(λ)τk+1 +

λ

2
(k + 1)

)
, 0 ≤ k ≤ N − 1.
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By the definition of stopping times (2.15), τN = T , which yields (2.25).

A similar result for the linear case is formulated as follows.

Corollary 2.5 Under the assumptions (H′f ), (Hl
g), (HX), there exists a unique solution of (1.2)

on any interval [0, T ]. In addition, for each λ ∈ (0, 1) small enough, there exist some generic
constants C(λ), δ(λ) such that the solution satisfies

‖y‖∞,[0,T ] ≤ exp{δ(λ)T + λN(
λ

16CpCg
,x, [0, T ])}

(
‖y0‖+

C(λ)

δ(λ)

)
− C(λ)

δ(λ)
=: R. (2.33)

Proof: The proof follows the proof of Proposition 2.4 line by line, except for a minor change.
Specifically, due to Proposition 2.3, (2.26) has the form

‖γt‖ = ‖φt(x, zt)− zt‖ ≤
λ

2
‖zt‖ and ‖ψt‖ ≤ λ, ∀t ∈ [0, τ ]. (2.34)

This does not change (2.30) while it modifies the estimate (2.29) to

d

2dt
‖zt‖2 ≤ (1 + λ)‖zt‖C̄(1 + ‖zt‖) + 2λ‖zt‖Cf

(
1 + (1 + λ)‖zt‖

)
. (2.35)

Therefore one can still prove (2.31), which makes (2.32) have the form

‖y‖∞,[0,τ ] ≤ (1 + λ)‖z‖∞,[0,τ ]

≤ (1 + λ)
[
eδ(λ)τ‖z0‖+

C(λ)

δ(λ)

(
eδ(λ)τ − 1

)]
≤ eδ(λ)τ+λ‖y0‖+

C(λ)

δ(λ)

(
eδ(λ)τ+λ − 1

)
.

(2.36)

Therefore the existence and uniqueness of the solution on each small interval [τi, τi+1] is proved and
also on the whole interval [0, T ] by concatenation. The solution estimate (2.33) is then followed by
induction.

The following result is just a reformulation of the classical result in [23] or [17], but for the mixed
equation (1.2). There is a trick to consider the mixed equation as a new pure rough equation for the
extended driving path (t, x), but then one has to impose unnecessary conditions on the regularity
of f to prove the existence and uniqueness theorem [13, Chapter 12]. In order to make the paper
self-contained for the benefit of the reader with explicit estimates that will be used later in Section
5 (Theorem 5.5), we would like to present the sketch of a new proof below.

Proposition 2.6 Assume that ‖f‖∞ := supy∈Rd ‖f(y)‖ < ∞. Then under the assumptions (Hb
g)

and (HX) there exists a generic constant C1 = C1(‖f‖∞, Cg, |||x|||ν,[0,T ] , T ) independent of the initial
condition, such that any solution y of (1.2) satisfies

|||y|||p−var,[a,b] ≤ C1(b− a)ν and |||Ry|||p−var,[a,b] ≤ C1(b− a)2ν , ∀0 ≤ a ≤ b ≤ T. (2.37)

If, in addition, f is globally Lipschitz continuous w.r.t. a constant Cf , then there exists a generic
constant C2 = C2(‖f‖∞, Cf , Cg, |||x|||ν,[0,T ] , T ) independent of the initial conditions such that any

two solutions yi· (x, y
i
0), i = 1, 2, of equation (1.2) satisfy

‖y2 − y1‖∞,[a,b] ≤ C2‖y2
a − y1

a‖, ∀0 ≤ a ≤ b ≤ T. (2.38)
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Proof: The proof follows similar arguments and estimates in Duc [9, Proposition 2.1] and Duc
[10, Proposition 3.1]. First, observe that y′s = g(ys) and [g(y)]′s = Dg(ys)g(ys) with∣∣∣∣∣∣∣∣∣Rg(y)

∣∣∣∣∣∣∣∣∣
q−var,[a,b]2

≤ Cg |||Ry|||q−var,[a,b]2 +
1

2
C2
g |||y|||p−var,[a,b] |||x|||p−var,[a,b] .

It then follows from the fact ‖f‖∞, ‖g‖∞ <∞ and the estimate (2.7) that

‖ys,t‖ ≤
∫ t

s
‖f(yu)‖du+

∥∥∥∫ t

s
g(yu)dxu

∥∥∥
≤ ‖f‖∞(t− s) + ‖g‖∞‖xs,t‖+ ‖Dg(y)g(y)‖∞‖Xs,t‖

+Cp

{
|||Dg(y)g(y)|||p−var,[a,b] |||X|||q−var,[a,b]2 +

∣∣∣∣∣∣∣∣∣Rg(y)
∣∣∣∣∣∣∣∣∣
q−var,[a,b]2

|||x|||p−var,[a,b]

}
≤ ‖f‖∞(t− s) + Cg |||x|||p−var,[s,t] + C2

g |||x|||
2
p−var,[s,t]

+3Cp

{
C2
g |||x|||

2
p−var,[s,t] |||y|||p−var,[s,t] + Cg |||x|||p−var,[s,t] |||R

y|||q−var,[s,t]2

}
.

As a result,

|||y|||p−var,[s,t] ≤‖f‖∞(t− s) + Cg |||x|||p−var,[s,t] + C2
g |||x|||

2
p−var,[s,t]

+ 3Cp

{
C2
g |||x|||

2
p−var,[s,t] |||y|||p−var,[s,t] + Cg |||x|||p−var,[s,t] |||R

y|||q−var,[s,t]2

}
. (2.39)

A similar estimate for Ry then shows that

|||Ry|||q−var,[s,t] ≤‖f‖∞(t− s) + C2
g |||x|||

2
p−var,[s,t]

+ 3Cp

{
C2
g |||x|||

2
p−var,[s,t] |||y|||p−var,[s,t] + Cg |||x|||p−var,[s,t] |||R

y|||q−var,[s,t]2

}
. (2.40)

Hence, provided that 16CpCg |||x|||p−var,[s,t] ≤ 1, one takes 3CpC
2
g |||x|||

2
p−var,[s,t] |||y|||p−var,[s,t], which is

smaller than 1
2 |||y|||p−var,[s,t], from the right hand side to the left hand side of (2.39) to obtain

|||y|||p−var,[s,t] ≤ 2‖f‖∞(t− s) + 2Cg |||x|||p−var,[s,t] + |||Ry|||q−var,[s,t]2 . (2.41)

Replacing (2.41) to the right hand side of (2.40) and then taking all terms of |||Ry|||q−var,[s,t]2 from
the right hand side to the left hand side of (2.40) yields

|||Ry|||q−var,[s,t]2 ≤ 3‖f‖∞(t− s) + 3C2
g |||x|||

2
p−var,[s,t] . (2.42)

Now replacing (2.42) to (2.41), one deduces

|||y|||p−var,[s,t] ≤ 5‖f‖∞(t− s) + 5Cg |||x|||p−var,[s,t] . (2.43)

Note that (2.43) and (2.42) hold whenever 16CpCg |||x|||p−var,[s,t] ≤ 1. Next, by constructing a greedy

sequence of time {τi( 1
16CpCg

,x, [a, b])}i∈N as in (2.15) and using (2.16), one can easily show that

|||y|||p−var,[a,b] ≤N
( 1

16CpCg
,x, [a, b]

) p−1
p

N

(
1

16CpCg
,x,[a,b]

)
−1∑

i=0

|||y|||p−var,[τi,τi+1]

≤5N
( 1

16CpCg
,x, [a, b]

) p−1
p

N

(
1

16CpCg
,x,[a,b]

)
−1∑

i=0

(
‖f‖∞(τi+1 − τi) + Cg |||x|||p−var,[τi,τi+1]

)
11



≤5N
( 1

16CpCg
,x, [0, T ]

) 2p−1
p
(
‖f‖∞(b− a) + Cg |||x|||p−var,[a,b]

)
≤5N

( 1

16CpCg
,x, [0, T ]

) 2p−1
p
(
‖f‖∞(b− a)1−ν + Cg |||x|||ν,[a,b]

)
(b− a)ν . (2.44)

A similar estimate for |||Ry|||q−var,[a,b]2 shows that

|||Ry|||q−var,[a,b]2 ≤3N
( 1

16CpCg
,x, [0, T ]

) 2p−1
p
(
‖f‖∞(b− a) + C2

g |||x|||
2
p−var,[a,b]

)
≤3N

( 1

16CpCg
,x, [0, T ]

) 2p−1
p
(
‖f‖∞(b− a)1−2ν + C2

g |||x|||
2
ν,[a,b]

)
(b− a)2ν . (2.45)

Therefore, (2.37) is proved by choosing

C1 := 5N
( 1

16CpCg
,x, [0, T ]

) 2p−1
p
[
‖f‖∞

(
T 1−2ν ∨ 1

)
+ Cg |||x|||ν,[0,T ] ∨

(
Cg |||x|||ν,[0,T ]

)2]
. (2.46)

Finally, take any two solution yi· (x, y
i
0), write zt := y2

t − y1
t on [0, T ] and use the semi-norm

as in Proposition 2.2. If f is globally Lipschitz continuous w.r.t. constant Cf , one can apply the
following estimate in Duc [10, Theorem 3.9]

|||z,Rz|||p−var,[s,t] ≤2

∫ t

s
Cf‖zu‖du+ 4Cp

{
Cg |||x|||p−var,[s,t] ∨ C

2
g |||x|||

2
p−var,[s,t]

}
(2.47)

×
(

1 +
∣∣∣∣∣∣∣∣∣y1, Ry

1
∣∣∣∣∣∣∣∣∣
p−var,[s,t]

+
∣∣∣∣∣∣∣∣∣y2, Ry

2
∣∣∣∣∣∣∣∣∣
p−var,[s,t]

)(
‖zs‖+ |||z,Rz|||p−var,[s,t]

)
.

By (2.42) and (2.43), the term
(

1 +
∣∣∣∣∣∣∣∣∣y1, Ry

1
∣∣∣∣∣∣∣∣∣
p−var,[s,t]

+
∣∣∣∣∣∣∣∣∣y2, Ry

2
∣∣∣∣∣∣∣∣∣
p−var,[s,t]

)
are bounded by

1 + 16‖f‖∞(t− s) + 16Cg |||x|||p−var,[s,t] ≤ 2 + 16T‖f‖∞
whenever 16CpCg |||x|||p−var,[s,t] ≤ 1. This and (2.47) leads to

‖zs‖+ |||z,Rz|||p−var,[s,t] ≤ ‖zs‖+ 2

∫ t

s
Cf‖zu‖du

+8CpCg |||x|||p−var,[s,t] (1 + 8T‖f‖∞)
(
‖zs‖+ |||z,Rz|||p−var,[s,t]

)
whenever 16CpCg |||x|||p−var,[s,t] ≤ 1. Hence, as long as 8CpCg |||x|||p−var,[s,t] (1 + 8T‖f‖∞) ≤ 1

2 , by
taking the term ‖zs‖+ |||z,Rz|||p−var,[s,t] from the right hand side to the left hand side, one obtains

‖zt‖ ≤ ‖zs‖+ |||z,Rz|||p−var,[s,t] ≤ 2‖zs‖+ 4

∫ t

s
Cf‖zu‖du. (2.48)

One can now apply Gronwall lemma for (2.48) to conclude that

‖zt‖ ≤ 2‖zs‖e4Cf (t−s) whenever 16CpCg |||x|||p−var,[s,t] (1 + 8T‖f‖∞) ≤ 1.

By the same arguments as in [10, Theorem 3.9] together with a construction of the greedy sequence
of time {τi( 1

16CpCg(1+8T‖f‖∞) ,x, [a, b])}i∈N, one can show that

‖z‖∞,[a,b] ≤ ‖za‖ exp
{

4CfT +N
( 1

16CpCg(1 + 8T‖f‖∞)
,x, [0, T ]

)
log 2

}
.

This proves (2.38) by choosing

C2 = exp
{

4CfT +N
( 1

16CpCg(1 + 8T‖f‖∞)
,x, [0, T ]

)}
. (2.49)
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3 Explicit Euler scheme for rough differential equations

In this section, we introduce a cut-off technique to deal with the one-sided Lipschitz drift term f by
directly investigating the solution estimate for the Euler scheme via a comparison to the solution
of the continuous system (1.2). Intuitively speaking, it is a consequence of Whitney’s theorem [28]
which helps extend the cut-off drift term f , now only defined on a compact set given from the
solution estimates (2.25) and (2.33), to a whole space such that both its derivatives and itself are
bounded. One can then apply Proposition 2.6 to the extended function and use similar arguments
of [13, Theorem 10.30] to obtain the convergence rate of the numerical scheme.

For any finite partition Π := {0 = t0 < t1 < t2 < . . . < tm−1 < tm = T} such that |Π| =
supk |tk+1 − tk|, we consider the explicit Euler scheme of equation (1.2) to approximate the fixed
solution y(·, 0, y0), i.e.,

yΠ
0 = y0;

yΠ
k+1 = yΠ

k + f(yΠ
k )(tk+1 − tk) + g(yΠ

k )xtk,tk+1
+Dg(yΠ

k )g(yΠ
k )Xtk,tk+1

, 0 ≤ k ≤ m− 1.
(3.1)

Since the solution y(t, 0, y0) is fixed on [0, T ], its supremum norm is bounded by a fixed number R
following (2.25).

Our main result below in this section shows that the error between the continuous solution y
and the discrete solution of the explicit Euler numerical scheme (3.1) is small on the whole interval
[0, T ].

Theorem 3.1 Assume that y(t, 0, y0) is a solution of the rough differential equation (1.2) on [0, T ],
under assumption (H′f ) for f , assumption (Hb

g) or (Hl
g) for g, and assumption (HX) for x. Then

there exists a generic constant

C = C(f, g, |||x|||ν,[0,T ] , T, ‖y0‖) > 0

such that for |Π| < δ small enough

sup
0≤k≤m

‖y(tk, 0, y0)− yk‖ ≤ C|Π|3ν−1. (3.2)

Proof: We first prove the conclusion for bounded g under assumption (Hb
g). To begin, we

follow Garrido-Attienza & Schmalfuss [16] to introduce a cutoff functions fR, where R is given by
either (2.25) or (2.33) for a fixed λ = 1

2 , such that

• fR(y) = f(y) for all y ∈ B(0, R+ 1) and fR(y) = f(0) for all ‖y‖ ≥ R+ 2;

• fR is globally Lipschitz continuous w.r.t. constant CfR and is bounded by a constant ‖fR‖∞
on Rd.

Specifically, fR(y) := f(ζR(y)) for all y ∈ Rd, where ζR ∈ C2(Rd,Rd) is constructed with ζR(y) = y
if ‖y‖ ≤ R+1 and ζR(y) = 0 if ‖y‖ ≥ R+2, such that ζR is bounded and ‖ζR‖, ‖DζR‖∞, ‖D2ζR‖∞ <
∞.

Consider the truncated rough differential equation

dyt = fR(yt)dt+ g(yt)dx(t), t ∈ [0, T ]. (3.3)

It is easy to check that equation (3.3) also satisfies the existence and uniqueness theorem. To
differentiate the solutions of (1.2) and (3.3), one denotes by yR(t, s, ξ) the solution of (3.3) that starts
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at time s at point ξ ∈ Rd. Since ‖y‖∞,[0,T ] ≤ R, the solution yt lies entirely in the ball B(0, R+1) and
f(yt) = fR(yt) for all t ∈ [0, T ], which implies that y· = y·(x, y0) is also the unique solution of (3.3)
starting from y0, i.e. yR(·, 0, y0) ≡ y·(x, y0) on [0, T ]. Since fR and g are bounded, by Proposition 2.6
there exist generic constants C1(‖fR‖∞, Cg, |||x|||ν,[0,T ] , T ), C2(‖fR‖∞, CfR , Cg, |||x|||ν,[0,T ] , T ) which
are independent of the initial conditions, such that any two solutions of (3.3) satisfy (2.37) and
(2.38).

Next, define for the finite partition Π := {0 = t0 < t1 < t2 < . . . < tm−1 < tm = T} the explicit
Euler scheme for the truncated rough differential equation (3.3) as follows

y∗0 = y0;

y∗k+1 = y∗k + fR(y∗k)(tk+1 − tk) + g(y∗k)xtk,tk+1
+Dg(y∗k)g(y∗k)Xtk,tk+1

, 0 ≤ k ≤ m− 1.
(3.4)

The proof applies traditional arguments from Friz & Victoir [13, Theorem 10.30]. Namely, denote
by zk the solution to (3.3) at time T that starts from y∗k at time tk, i.e. zk := yR(T, tk, y

∗
k). Then

z0 = yR(T, 0, y∗0) = y(T, 0, y0) and zm = yR(T, tm, y
∗
m) = y∗m. Using (2.38), we obtain

‖yR(T, 0, y∗0)− y∗m‖ ≤
m−1∑
k=0

‖zk − zk+1‖ ≤
m−1∑
k=0

‖yR(T, tk, y
∗
k)− yR(T, tk+1, y

∗
k+1)‖

≤
m−1∑
k=0

‖yR(T, tk+1, yR(tk+1, tk, y
∗
k))− yR(T, tk+1, y

∗
k+1)‖

≤C2(‖fR‖∞, CfR , Cg, |||x|||ν,[0,T ] , T )
m−1∑
k=0

‖yR(tk+1, tk, y
∗
k)− y∗k+1‖. (3.5)

On the other hand, from the definition of yR(tk+1, tk, y
∗
k) and y∗k+1, we apply (2.7) and (2.37) to

obtain, up to a generic constant

‖yR(tk+1, tk, y
∗
k)− y∗k+1‖

≤
∣∣∣ ∫ tk+1

tk

[fR(yR(u))− fR(y∗k)]du+

∫ tk+1

tk

[g(yR(u))− g(y∗k)]dxu

∣∣∣
≤CfR(tk+1 − tk) |||yR(·, tk, y∗k)|||p−var,[tk,tk+1]

+ Cp

(
|||x|||p−var,[tk,tk+1] |||R

yR |||q−var,[tk,tk+1]2 + |||X|||q−var,[tk,tk+1]2 |||yR(·, tk, y∗k)|||p−var,[τk,τk+1]

)
≤C1(‖fR‖∞, Cg, |||x|||ν,[0,T ] , T )

[
CfRT

1−2ν + Cp

(
|||x|||ν,[0,T ] + |||x|||2ν,[0,T ]

)]
(tk+1 − tk)3ν .

Therefore, one can estimate (3.5) with a constant

C3 = C2C1

[
CfRT

1−2ν + Cp

(
|||x|||ν,[0,T ] + |||x|||2ν,[0,T ]

)]
(3.6)

as follows

‖yR(T, 0, y∗0)− y∗m‖ ≤ C3

m−1∑
k=0

(tk+1 − tk)3ν ≤ C3|Π|3ν−1
m−1∑
k=0

(tk+1 − tk) = C3T |Π|3ν−1. (3.7)

The right hand side of (3.7) converges to zero as |Π| → 0. Similar arguments also hold if we replace
tm = T above by any ti and define zk := yR(ti, tk, y

∗
k) for all 0 ≤ k ≤ i. Hence one obtains (3.2) for

the Euler numerical scheme of the truncated equation (3.3) by assigning

C(f, g, |||x|||ν,[0,T ] , T, ‖y0‖) := C3T = C2C1

[
CfRT

1−2ν + Cp

(
|||x|||ν,[0,T ] + |||x|||2ν,[0,T ]

)]
T, (3.8)
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which depends on f, g,x and R, thus also on ‖y0‖ due to (2.25). Note that yR(tk, 0, y0) = y(tk, 0, y0),
thus by choosing |Π| < δ for δ = δ(‖fR‖∞, CfR , Cg, |||x|||ν,[0,T ] , T ) small enough, we deduce that

sup
0≤k≤m

‖y∗k‖ ≤ ‖y‖∞,[0,T ] + Cδ3ν−1 ≤ R+ 1.

As a result, fR(y∗k) = f(y∗k) for 0 ≤ k ≤ m, hence the Euler scheme (3.4) for the truncated equation
(3.3) coincides with the actual Euler scheme (3.1) in the ball B(0, R+ 1), which proves (3.2).

The conclusion still holds for the linear diffusion function g under assumption (Hl
g), since one

can introduce a bounded function gR in a similar way to fR, where R is given by (2.33). Since
similar arguments are involved, we skip the proof for this case here.

4 Generation of random dynamical systems

4.1 Probabilistic settings

The generation of a random dynamical system from rough differential equations (1.1) and (1.2) is
proved in Bailleul et al [2], where the solution of rough equation is understood in the Lyons-Davie
as well as the Friz-Victoir sense. In this section we follow Duc [9] to present a similar version for
Hölder spaces, where the solution is understood in the Gubinelli sense.

Let (Ω,F ,P) be a probability space equipped with a so-called measurable metric dynamical
system θ : R × Ω → Ω such that θt : Ω → Ω is P− preserving, i.e., P(B) = P(θ−1

t (B)) for all
B ∈ F , t ∈ R, and θt+s = θt ◦ θs for all t, s ∈ R. Recall that a continuous random dynamical system
ϕ : R × Ω × Rd → Rd, (t, ω, y0) 7→ ϕ(t, ω)y0 is defined as a measurable mapping which is also
continuous in t and y0 such that the cocycle property

ϕ(t+ s, ω)y0 = ϕ(t, θsω) ◦ ϕ(s, ω)y0, ∀t, s ∈ R, ω ∈ Ω, y0 ∈ Rd (4.1)

is satisfied, see Arnold [1].
In our setting, denote by T 2

1 (Rm) = 1⊕ Rm ⊕ (Rm ⊗ Rm) the set with the tensor product

(1, g1, g2)⊗ (1, h1, h2) = (1, g1 + h1, g1 ⊗ h1 + g2 + h2),

for all g = (1, g1, g2),h = (1, h1, h2) ∈ T 2
1 (Rm). Then it can be shown that (T 2

1 (Rm),⊗) is a
topological group with unit element 1 = (1, 0, 0) and g−1 = (1,−g1, g1 ⊗ g1 − g2).

Given α ∈ (1
3 , ν), denote by C 0,α(I, T 2

1 (Rm)) the closure of C∞(I, T 2
1 (Rm)) in the Hölder space

C α(I, T 2
1 (Rm)), and by C 0,α

0 (R, T 2
1 (Rm)) the space of all paths g : R → T 2

1 (Rm)) such that g|I ∈
C 0,α(I, T 2

1 (Rm)) for each compact interval I ⊂ R containing 0. Then C 0,α
0 (R, T 2

1 (Rm)) is equipped
with the compact open topology given by the α-Hölder norm (2.1), i.e the topology generated by
the metric

dα(g,h) :=
∑
k≥1

1

2k
(‖g − h‖α,[−k,k] ∧ 1).

As a result, it is separable and thus a Polish space.
Let us consider a stochastic process X̄ defined on a probability space (Ω̄, F̄ , P̄) with real-

izations in (C 0,α
0 (R, T 2

1 (Rm)),F). Assume further that X̄ has stationary increments. Assign

Ω := C 0,α
0 (R, T 2

1 (Rm)) and equip it with the Borel σ-algebra F and let P be the law of X̄. Denote
by θ the Wiener-type shift

(θtω)· = ω−1
t ⊗ ωt+·, ∀t ∈ R, ω ∈ C 0,α

0 (R, T 2
1 (Rm)), (4.2)
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and define the so-called diagonal process X : R×Ω→ T 2
1 (Rm),Xt(ω) = ωt for all t ∈ R, ω ∈ Ω. Due

to the stationarity of X̄, it can be proved that θ is invariant under P, then forming a continuous (and
thus measurable) dynamical system on (Ω,F ,P) [2, Theorem 5]. Moreover, X forms an α-rough
path cocycle, namely, X·(ω) ∈ C 0,α

0 (R, T 2
1 (Rm)) for every ω ∈ Ω, which satisfies the cocyle relation:

Xt+s(ω) = Xs(ω)⊗Xt(θsω),∀ω ∈ Ω, t, s ∈ R,

in the sense that Xs,s+t = Xt(θsω) with the increment notation Xs,s+t := X−1
s ⊗ Xs+t. It is

important to note that the two-parameter flow property

Xs,u ⊗Xu,t = Xs,t,∀s, t ∈ R

is equivalent to the fact that Xt(ω) = (1,xt(ω)) = (1, xt(ω),X0,t(ω)), where x·(ω) : R → Rm and
X·,·(ω) : I2 → Rm ⊗ Rm are random funtions satisfying Chen’s relation relation (2.2).

To fulfill the Hölder continuity of almost all realizations, it follows from condition (2.13) and the
Kolmogorov criterion for rough paths [13, Appendix A.3] that for any α ∈ (1

3 , ν) and p = 1
α , there

exists a version of ω-wise (x,X) and random variables Kα ∈ Lp,Kα ∈ Lq, such that speaking ω-wise
and with an abuse of notation, ‖xs,t‖ ≤ Kα|t − s|α, ‖Xs,t‖ ≤ Kα|t − s|2α, for all s, t ∈ [0, T ], so
that x = (x,X) ∈ C α(I). Moreover, we could modify α such that

x ∈ C0,α(I) := {x ∈ Cα(I) : lim
∆→0

sup
0<t−s<∆

‖xs,t‖
|t− s|α

= 0},

X ∈ C0,2α(I2) := {X ∈ C2α(I2) : lim
∆→0

sup
0<t−s<∆

‖Xs,t‖
|t− s|2α

= 0},

thus C α(I) ⊂ C0,α(I)⊕ C0,2α(I2) is separable due to the separability of C0,α(I) and C0,2α(I2).
As pointed out in [9, Remark 1] and due to [2, Corollary 9], the above construction is possible

for Xt to be a continuous, centered Gaussian process with stationary increments and independent
components, satisfying: there exists for any T > 0 a constant CT such that for all p ≥ 1

ν̄ , E‖Xt −
Xs‖p ≤ CT |t − s|pν for all s, t ∈ [0, T ]. Then X can be chosen to be the natural lift of X in the
sense of Friz-Victoir [13, Chapter 15] with sample paths in the space C0,α

0 (R, T 2
1 (Rm)), for a certain

α ∈ (0, ν). In particular, the Wiener shift (4.2) implies that

|||x(θhω)|||p−var,[s,t] = |||x(ω)|||p−var,[s+h,t+h] , N[s,t](x(θhω)) = N[s+h,t+h](x(ω)). (4.3)

Throughout this paper, we will assume that θ is ergodic. In particular, if X is a m-dimensional
fractional Brownian motion with mutual independent components, one can then apply [14, Lemma
3] to prove the ergodicity of θ. In this paper we would like to skip this detail and focus on the long
term dynamics of the numerical systems.

4.2 Continuous flows

Given the setting in Subsection 4.1, we are going to generate a random dynamical system for stochas-
tic rough differential equation (1.1). The first step is to study the properties of rough path integrals.
Given each realization ω of the diagonal process Xt(ω) = ωt = (1,xt(ω)) = (1, xt(ω),X0,t(ω)), we
can define the stochastic integral in the pathwise sense as a rough path integral introduced in
Subsection 2.2, i.e. ∫ b

a
yudωu := lim

|Π|→0

∑
Π

(
yu ⊗ xu,v(ω) + y′uXu,v(ω)

)
.
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The expression of the Darboux sum in the right hand side can be rewritten as

yu ⊗ xu,v(ω) + y′uXu,v(ω) =: (yu, y
′
u)⊗̄

(
1, xu,v(ω),Xu,v(ω)

)
, (4.4)

where the operator ⊗̄ in the right hand side of (4.4) is defined as the left hand side. Since ω is the
realization of X, it follows from Chen’s relation (2.2) that(

1, xs,u(ω),Xs,u(ω)
)
⊗
(

1, xu,v(ω),Xu,v(ω)
)

=
(

1, xs,v(ω),Xs,v(ω)
)
.

Hence the shift property (4.2) yields(
1, xu,v(ω),Xu,v(ω)

)
= ω−1

u ⊗ ωv = (θuω)v−u, ∀0 ≤ s ≤ t. (4.5)

We therefore can rewrite the definition of the above rough integral as∫ b

a
yudωu := lim

|Π|→0

∑
Π

(yu, y
′
u)⊗̄(θuω)v−u. (4.6)

Since θu+rω = θu ◦ θrω, it is easy to check that the rough integral in (4.6) satisfies the additivity
and the shift properties, i.e.∫ c

a
yudωu =

∫ b

a
yudωu +

∫ c

b
yudωu, ∀a ≤ b ≤ c; (4.7)∫ b+r

a+r
yudωu =

∫ b

a
yu+rd(θrω)u, ∀a ≤ b, r ∈ R. (4.8)

These two properties (4.7), (4.8) and the existence and uniqueness result 2.4 then suffice to prove
the cocycle property (4.1) of the generated random dynamical system from the stochastic rough
differential equation (1.1). We quote a result from Duc [9, Proposition 2] as follows.

Proposition 4.1 Given the measurable metric dynamical system (Ω,F ,P, θ) and the p-rough co-
cycle X : R × Ω → T 2

1 (Rm) as above, the system (1.1) generates a continuous random dynamical
system ϕ over (Ω,F ,P, θ), such that for any [0, T ] and all ω ∈ Ω, ϕ(t, ω)y0 is the unique solution
(in the Gubinelli sense) of (1.2), which is understood in the pathwise integral form (2.8) on [0,T],
where x = (x,X) is the projection of X·(ω) on Rm ⊕ (Rm ⊗ Rm).

4.3 Discrete flows

Given the probabilistic setting in Subsection 4.2, for a realization ωt = (1, xt(ω),X0,t(ω)) of the
diagonal process Xt(ω), we consider the explicit Euler scheme for the regular grid with step size
h > 0, i.e. Π = {kh}k∈N and

yh0 ∈ Rd,
yhk+1 = yhk + f(yhk )h+ g(yhk )xkh,(k+1)h(ω) +Dg(yhk )g(yhk )Xkh,(k+1)h(ω), k ∈ N.

(4.9)

Such a scheme is well defined. Using (4.4) and (4.5), we rewrite (4.9) as

yhk+1 =
(
yhk + f(yhk )h

)
︸ ︷︷ ︸

=:F (h,yhk )

+
〈(

g(yhk ), Dg(yhk )g(yhk )
)

︸ ︷︷ ︸
=:G(yhk )

,
(
xkh,(k+1)h(ω),Xkh,(k+1)h(ω)

)〉

= F (h, yhk ) +G(yhk )⊗̄
(

1, xkh,(k+1)h(ω),Xkh,(k+1)h(ω)
)

= F (h, yhk ) +G(yhk )⊗̄
(
θkhω

)
h

= H(h, θkhω)yhk , (4.10)
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where we introduce the generator function

H(h, ω)y := F (h, y) +G(y)⊗̄ωh. (4.11)

Hence similar to Proposition 4.1, we can easily prove that the Euler numerical scheme (4.10) gen-
erates a discrete-time random dynamical system ϕh : Nh × Ω × Rd → Rd over Nh := {kh}k∈N and
(Ω,F ,P, θ) such that for any ω ∈ Ω and yh0 ∈ Rd, ϕh(k, ω)yh0 is defined from (4.10) by

ϕh(0, ω)yh0 ≡ yh0 ,
ϕh(kh, ω)yh0 := yhk = H(h, θ(k−1)hω) ◦ . . . ◦H(h, ω)yh0 , ∀k ≥ 1.

(4.12)

5 Random pullback attractors

Given the random dynamical systems ϕ and ϕh on the phase space Rd, we follow Crauel & Flandoli
[6] (see also Arnold [1, Chapter 9] and Crauel & Kloeden[7] and the references therein) to briefly
present the notion of random pullback attractors.

In the probabilistic setting, recall that a set M̂ := {M(ω)}ω∈Ω is called a random set, if ω 7→
d(y|M(ω)) := inf{d(y, z)|z ∈M(ω)} is F -measurable for each y ∈ Rd. A universe D is a family of
random sets which is closed w.r.t. inclusions (i.e. if D̂1 ∈ D and D̂2 ⊂ D̂1 then D̂2 ∈ D). In our
situation, we define the universe D to be a family of tempered random sets D(ω), that is, D(ω) is
contained in a ball B(0, ρ(ω)) a.s., where the radius ρ(ω) > 0 is a tempered random variable (i.e.
lim

t→±∞
1
t log+ ρ(θtω) = 0 a.s., see e.g., Arnold [1, pp. 164, 386] and Imkeller & Schmalfuss [21, p.

220]).
A random set A is said to be invariant if ϕ(t, ω)A(ω) = A(θtω) for all t ∈ R, ω ∈ Ω. An invariant

random compact set A ∈ D is called a pullback attractor in D , if A attracts any closed random set
D̂ ∈ D in the pullback sense, i.e.

lim
t→∞

dH(ϕ(t, θ−tω)D̂(θ−tω)|A(ω)) = 0, (5.1)

where dH(·|·) is the Hausdorff semi-distance, i.e. dH(D|A) := supd∈D infa∈A ‖d− a‖.
The existence of a pullback attractor follows from the existence of a pullback absorbing set (see

[7, Theorem 3]), namely a random set B ∈ D is called pullback absorbing in the universe D if B
absorbs all closed random sets in D , i.e. for any closed random set D̂ ∈ D , there exists a time
t0 = t0(ω, D̂) such that

ϕ(t, θ−tω)D̂(θ−tω) ⊂ B(ω), for all t ≥ t0. (5.2)

Then given the universe D and a compact pullback absorbing set B ∈ D , there exists a unique
pullback attractor A(ω) in D , given by

A(ω) =
⋂
t≥0

⋃
s≥t

ϕ(s, θ−sω)B(θ−sω). (5.3)

As proved in Duc [9, Theorem 3.1], under the assumptions (H′f ), (Hb
g), (HX) and the dissipa-

tivity condition

∃D1 ≥ 0, D2 > 0 : 〈y, f(y)〉 ≤ ‖y‖(D1 −D2‖y‖), ∀y ∈ Rd, (5.4)

there exists a pullback attractor A(ω) for the generated random dynamical system of the stochastic
system (1.1) such that |A(·)| ∈ Lρ for any ρ ≥ 1. It is important to note that assumption (5.4) is
equivalent to the dissipativity condition: there exist constants d1 ≥ 0, d2 > 0 such that

〈y, f(y)〉 ≤ d1 − d2‖y‖2, ∀y ∈ Rd; (5.5)
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see Duc [9, Lemma 1.1].
We show below the same conclusion for the linear g, but require further that the stochastic

process X is Gaussian and Cg = ‖C‖ is small enough.

Theorem 5.1 Let the assumptions (H′f ), (Hl
g), (HX) hold and further that X is a centered Gaus-

sian process such that the metric dynamical system θ is ergodic. Then for sufficiently small Cg,
there exists a pullback attractor A(ω) for the generated random dynamical system of the stochastic
system (1.1) such that |A(·)| ∈ Lρ for any ρ ≥ 1.

Proof: We will follow the arguments in Duc [9, Theorem 2.1] line by line to prove that for any
λ > 0 small enough, there exist constants δλ, Cλ > 0 such that the following estimates hold

‖yt‖ ≤ exp
{
λN
( λ

16CpCg
,x, [0, t]

)}[
‖y0‖e−δλt + CλN

( λ

16CpCg
,x, [0, t]

)]
, ∀t ∈ [0, T ]. (5.6)

To do this, the main task is prove that there exists constants C̄λ, δλ > 0 such that

1

2

d

dt
‖zt‖2 ≤ C̄λ − δλ‖zt‖2. (5.7)

To prove (5.7), one follows the notation in (2.34) and (2.28) to estimate

1

2

d

dt
‖zt‖2 =〈zt, (Id+ ψt)f(zt + γt)〉

=
〈
zt, (Id+ ψt)

[〈zt + γt, f(zt + γt)〉
‖zt + γt‖2

(zt + γt) + π⊥zt+γt(f(zt + γt))
]〉

=
〈
zt, (Id+ ψt)

(zt + γt)

‖zt + γt‖

〉
︸ ︷︷ ︸

=:M1

〈 zt + γt
‖zt + γt‖

, f(zt + γt)
〉

︸ ︷︷ ︸
=:M2

+
〈
zt, (Id+ ψt)π

⊥
zt+γt(f(zt + γt))

〉
︸ ︷︷ ︸

=:M3

. (5.8)

The estimates for M1 and M2 look the same as in the proof of [9, Theorem 2.1], thus there exists a
generic constant C̄λ such that

M1M2 ≤ C̄λ −
D2

2
(1− λ)‖zt‖2.

With g satisfying (Hl
g), there is a small change with M3, which according to (2.35) looks like

M3 ≤ 2λ‖zt‖Cf
(

1 + (1 + λ)‖zt‖
)

= 2Cfλ(1 + λ)‖zt‖2 + Cfλ(‖zt‖2 + 1).

The coefficient of ‖zt‖2 in M3 is then can be controlled by choosing sufficiently small λ ∈ (0, 1). As
a result, one can always find generic constants C̄λ, δλ such that δ0 > 0 and

1

2

d

dt
‖zt‖2 = M1M2 +M3 ≤ C̄λ − δλ‖zt‖2, ∀t ∈ [0, τ ].

Hence by using Cauchy inequality, one can prove that

‖zτ‖ ≤ ‖z0‖e−δλτ +
C̄λ
δλ
,
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which deduces that

‖yτ‖ ≤ (1 + λ)‖zτ‖ ≤ ‖y0‖eλ−δλτ + (1 + λ)
C̄λ
δλ
.

Assign Cλ := (1 + λ) C̄λδλ , then for each t ∈ [0, 1], by constructing the sequence of greedy times

{τ( λ
16CpCg

,x), [0, t]}, one can easily prove by induction that

‖yτi‖ ≤ ‖y0‖eiλ−δλτi + iCλe
iλ, i = 0, . . . , N(

λ

16CpCg
,x, [0, t]).

In particular, (5.6) holds. For t = 1, one obtains

‖y1‖ ≤‖y0‖ exp{λN(
λ

16CpCg
,x, [0, 1])− δλ}︸ ︷︷ ︸

=:η(x(ω),[0,1])

+ CλN(
λ

16CpCg
,x, [0, 1]) exp{λN(

λ

16CpCg
,x, [0, 1])}︸ ︷︷ ︸

=:ξ(x(ω),[0,1])

.

(5.9)

By replacing ω by θ−nω and using induction arguments, one can prove that

‖yn(θ−nω, y0)‖ ≤‖y0‖
n−1∏
i=0

η(x(θ−nω), [i, i+ 1])

+
n∑
i=0

ξ(x(θ−nω), [i, i+ 1])
n−1∏
j=i+1

η(x(θ−nω), [j, j + 1]).

Since X is Gaussian, it can be lifted to a Gaussian rough path, from which one can prove the
integrability of exp{λN( λ

16CpCg
,x, [0, 1])} (see Cass et al [3]). Hence ξ(x(ω), [0, 1]) is an integrable

random variable and tempered. On the other hand, by using (4.3) and applying Birkhorf’s ergodic
theorem, one can show that

lim sup
n→∞

1

n

n−1∑
i=0

log η(x(θ−nω), [i, i+ 1]) = lim sup
n→∞

1

n

n∑
i=1

log η(x(θ−iω), [0, 1])

= EλN(
λ

16CpCg
,x(·), [0, 1])− δλ. (5.10)

Similar to the arguments in Duc [9, Theorem 3.3], one can choose λ := Cg for sufficiently small Cg
so that the right hand side of (5.10) is negative. One then follows the arguments in Cong et al [5,
Theorem 4.5 & Lemma 5.2] to conclude that there exists a random pullback attractor.

5.1 Random pullback attractors for the explicit Euler scheme

We now consider a similar result on the existence of a pullback attractor for the discrete-time RDS
generated by the Euler numerical scheme (4.10) for sufficiently small step size h > 0. The difference
is that condition (2.10) is not enough, thus we need f to be of linear growth and g is bounded. We
formulate the result as follows.
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Theorem 5.2 Under the hypotheses (H′f ),(Hb
g) and (HX), assume further that f is dissipative

with (5.4) and of linear growth, i.e. there exists Cf such that

‖f(y)‖ ≤ Cf (1 + ‖y‖). (5.11)

Then there exists a h0 > 0 such that for all h < h0, the generated discrete-time random dynamical
system ϕh from (4.10) admits a global random pullback attractor Ah(ω).

Proof: It suffices to prove that there exists an absorbing set for the generated RDS ϕh.
Consider the Lyapunov function ‖yhk‖ then by applying Cauchy inequality and using assumptions
(Hf ), (Hg) and (5.11) one obtains

‖yhk+1‖2 =‖yhk + f(yhk )h+ g(yhk )xkh,(k+1)h +Dg(yhk )g(yhk )Xkh,(k+1)h‖2

≤‖yhk‖2 + 2〈yhk , f(yhk )〉h+ ‖f(yhk )‖2h2

+ 2
〈
yhk + f(yhk )h, g(yhk )xkh,(k+1)h +Dg(yhk )g(yhk )Xkh,(k+1)h

〉
+ 2‖g(yhk )xkh,(k+1)h‖2 + 2‖Dg(yhk )g(yhk )Xkh,(k+1)h‖2

≤‖yhk‖2 + 2h‖yhk‖(D1 −D2‖yhk‖) + 2C2
fh

2(1 + ‖yhk‖2)

+ χh
(
‖yhk‖+ Cfh(1 + ‖yhk‖)

)2
+

1

χh
(Cg‖xkh,(k+1)h‖+ C2

g‖Xkh,(k+1)h‖)2

+ 2C2
g‖xkh,(k+1)h‖2 + 2C4

g‖Xkh,(k+1)h‖2

≤‖yhk‖2
(

1−D2h+ 2C2
fh

2
)

+
D2

1

D2
h+ 2C2

fh
2 + 4χh(1 + C2

fh
2)‖yhk‖2 + 2χC2

fh
3

+ 2(1 +
1

χh
)
(
C2
g‖xkh,(k+1)h‖2 + C4

g‖Xkh,(k+1)h‖2
)

≤‖yhk‖2
(

1−D2h+ 2C2
fh

2 + 4χh(1 + C2
fh

2)
)

+ ξh0

(
|||x(ω)|||p−var,[kh,(k+1)h]

)
(5.12)

where

ξh0 (A) :=
D2

1

D2
h+ 2C2

fh
2 + 2χC2

fh
3 + 2

(
1 +

1

χh

)(
C2
gA

2 + C4
gA

4
)
, (5.13)

and one can choose χ := D2
8 so that

1−D2h+ 2C2
fh

2 + 4χh(1 + C2
fh

2) = 1− D2

2
h+ 2C2

fh
2 +

D2

2
C2
fh

3 < 1− D2

4
h (5.14)

whenever

h <
D2

4C2
f (2 +D2)

∧ 1 =: h0. (5.15)

Note that from (4.3), ξh0 (|||x(ω)|||p−var,[kh,(k+1)h]) = ξh0 (|||x(θkhω)|||p−var,[0,h]) which can be written as

ξh0 (θkhω), where ξh0 ∈ L1 is an integrable random variable. Replacing (5.14) into (5.12) one can
show that for h < h0 in (5.15)

‖yhk+1‖2 ≤
(

1− D2

4
h
)
‖yhk‖2 + ξh0 (θkhω) < e−

D2
4
h‖yhk‖2 + ξh0 (θkhω).
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Hence by induction one can prove that

‖yhk‖2 ≤ e−
D2
4
hk‖yh0‖2 +

k−1∑
i=0

e−
D2
4
ihξh0 (θk−iω), ∀k ≥ 1.

By applying similar arguments to the ones in [9, Theorem 3.3] one concludes that there exists a
random pullback absorbing set Bh(ω) = B(0, Rh(ω)) where

Rh(ω) :=
∞∑
k=0

e−
D2
4
khξh0 (θ−khω). (5.16)

Since ξh0 ∈ L1, so is log+ ξh0 , which implies that 1
t log+ ξh0 (θ−tω) → 0 as t → ∞. Hence ξh0 is

tempered, and it follows from Cong et al [5, Lemma 5.2] that Rh(ω) is finite and also tempered a.s.
This proves the existence of a random pullback attractor Ah(ω) defined by (5.3).

Remark 5.3 When g is linear, the question on existence of a numerical attractor for the discrete
RDS ϕh generated by the Euler scheme is still open.

Remark 5.4 Although ξh1 is integrable random variable, it follows from (5.13) and (5.16) that

ERh =
1

1− e−
D2
4
h
Eξh1 ≈

4

D2h
Eξh1

which diverges to infinity as h tends to zero, since ξh0 (ω) contains element 1
h |||x(ω)|||2p−var,[0,h] ≈

h2ν−1 |||x(ω)|||2ν,[0,1]. This implies that the absorbing set Bh might blow up as h tends to zero, which
makes it difficult to prove the upper semi-continuous convergence of the numerical attractor in the
next section.

5.2 Upper semi-continuous convergence of the numerical attractor

The upper semi-continuous convergence of the numerical attractor to the attractor of an autonomous
ordinary differential equation is now a classical result in numerical dynamics, see e.g., Han &
Kloeden [18]. Similar results have been established for many other types of differential equations
including random ordinary differential equations [22]. It is well known that the stronger continuous
convergence in the Hausdorff metric holds only in very special cases.

For the rough differential equation (1.3) in the sense of Gubinelli, where the stochastic process
X with stationary increments, we can only prove an analogous result for bounded f and g, i.e., that
Ah → A in the Hausdorff semi-distance as h → 0+, i.e., converges upper semi-continuously. We
formulate the result as follows.

Theorem 5.5 Assume (Hb
g) and (HX) with a centered Gaussian process X. Assume further that f

is globally Lipschitz continuous and bounded, such that the dissipativity condition (5.4) is satisfied.
Then ϕh admits a numerical pullback attractor Ah which converges to the attractor A a.s. in the
Hausdorf semi-distance, i.e.,

lim
h→0

dH(Ah|A) = 0 a.s. (5.17)

Proof: For any time step h < 1
2 , assign l := b 1

hc ∈ N. Then h ∈ ( 1
l+1 ,

1
l ] with 1− h < lh ≤ 1.

It implies from the proof of Theorem (3.1) that in case f is bounded, we obtain from (2.37) and
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(3.7) for T := 1 that there exist constants

C3(ω) = C(ω) =C2C1

[
Cf + Cp

(
|||x|||ν,[0,1] + |||x|||2ν,[0,1]

)]
=5N

( 1

16CpCg
,x, [0, 1]

) 2p−1
p
[
‖f‖∞ + Cg |||x|||ν,[0,1] ∨

(
Cg |||x|||ν,[0,1]

)2]
× exp

{
4Cf +N

( 1

16CpCg(1 + 8‖f‖∞)
,x, [0, 1]

)}
×
[
Cf + Cp

(
|||x|||ν,[0,1] + |||x|||2ν,[0,1]

)]
(5.18)

as in (2.46), (2.49) and (3.8) such that

‖ϕh(lh, ω)y0 − ϕ(1, ω)y0‖ ≤‖ϕh(lh, ω)y0 − ϕ(lh, ω)y0‖+ ‖ϕ(lh, ω)y0 − ϕ(1, ω)y0‖

≤ sup
0≤i≤l

‖ϕh(ih, ω)y0 − ϕ(ih, ω)y0‖+ |||ϕ(·, ω)y0|||p−var,[lh,1]

≤C(ω)h3ν−1 + C3(ω)(1− lh)ν

≤C(ω)(h3ν−1 + hν)

≤C(ω)h3ν−1.

As a result, there exists a constant C(ω) independent of the initial condition y0 such that

‖ϕh(lh, ω)y0‖ ≤ ‖ϕ(1, ω)y0‖+ C(ω)h3ν−1, ∀y0 ∈ Rd. (5.19)

Observe that in the last formula in (5.18), C(ω) is the product of 3 terms, where the first and third
terms are integrable due to the fact that |||x|||ν,[0,1] is integrable of any order, and so is the second
term due to Cass et al [3, Theorem 6.3]. Hence by Cauchy inequality, C(ω) is also integrable. Now
applying Duc [9, Theorem 3.3] for dissipative function f , there exists a constant η ∈ (0, 1) and an
integrable random variable ξ0(ω) = ξ0(|||x(ω)|||ν,[0,1]) such that

‖ϕ(1, ω)y0‖ ≤ η‖y0‖+ ξ0(ω), ∀y0 ∈ Rd. (5.20)

Hence
‖ϕh(lh, ω)y0‖ ≤ η‖y0‖+ ξ0(ω) + C(ω)h3ν−1, (5.21)

which, by similar arguments to Duc [9, Theorem 3.3] proves the existence of a pullback absorbing
set Bh(ω) = B(0, Rh(ω)), where

Rh(ω) =

∞∑
k=0

ηk
(
ξ0(θ−klhω) + C(θ−klhω)h3ν−1

)
. (5.22)

We are going to find an upper bound for Rh. To do that, we use (4.3) to rewrite Rh as

Rh(ω) =

∞∑
k=0

ηk
[
ξ0(|||x(θ−klhω)|||ν,[0,1]) + C(|||x(θ−klhω)|||ν,[0,1])h

3ν−1
]

=
∞∑
k=0

ηk
[
ξ0(|||x(ω)|||ν,[−klh,−klh+1]) + C(|||x(ω)|||ν,[−klh,−klh+1])h

3ν−1
]
.
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It is easy to check that −bklhc ≥ −klh > −(bklhc+ 1), and

[−klh,−klh+ 1] ⊂
[
− bklhc − 1,−bklhc+ 1

]
, ∀k ∈ N.

On the other hand, it follows from lh > 1
2 that

bklhc ≤ b(k + 1)lhc ≤ bklhc+ 1, and bklhc < b(k + 2)lhc. (5.23)

Hence (5.23) implies that the sequence {bklhc}k∈N covers the set N of natural numbers and every
number in the sequence only appears at most twice. By writing j := bklhc we can easily prove that

Rh(ω) ≤
∞∑
k=0

ηbklhc
[
ξ0

(
|||x(ω)|||ν,[−bklhc−1,−bklhc+1]

)
+ C

(
|||x(ω)|||ν,[−bklhc−1,−bklhc+1]

)
h3ν−1

]
≤ 2

∞∑
j=0

ηj
[
ξ0

(
|||x(ω)|||ν,[−j−1,−j+1]

)
+ C

(
|||x(ω)|||ν,[−j−1,−j+1]

)
h3ν−1

]
≤ 2

∞∑
j=0

ηj
[
ξ0

(
|||x(θ−jω)|||ν,[−1,1]

)
+ C

(
|||x(θ−jω)|||ν,[−1,1]

)]
=: 2R̄(ω). (5.24)

Similar to the argument in proof of Theorem 5.2, since ξ0(|||x(ω)|||ν,[−1,1]) and C(|||x(ω)|||ν,[−1,1])

are integrable, it follows that log+ ξ0(|||x(ω)|||ν,[−1,1]) and log+C(|||x(ω)|||ν,[−1,1]) are also integrable.
Thus ξ0(|||x(ω)|||ν,[−1,1]), C(|||x(ω)|||ν,[−1,1]) are tempered random variables which, together with Cong

et al. [5, Lemma 5.2], shows that R̄(ω) is well defined and also tempered. That means Ah(ω) ⊂
Bh(ω) = B(0, Rh(ω)) for h < 1

2 are entirely contained in a tempered set B(0, 2R̄(ω)), hence they
are uniformly attracted to A(ω) in the pullback sense under the flow ϕ. Hence for any ε > 0 small
enough, there exists a M(ε, ω) such that

dH

(
ϕ(k, θ−kω)Ah(θ−kω)|A(ω)

)
< ε, ∀k ≥M(ε, ω), ∀h < 1

2
. (5.25)

With such fixed M(ε, ω), there exists a constant C(ω,M) such that for all h < δ(ω,M) ∧ 1
2 and all

yh ∈ Ah in the ω-wise sense

‖ϕh(M, θ−Mω)yh(θ−Mω)− ϕ(M, θ−Mω)yh(θ−Mω)‖ ≤ C(ω,M)h3ν−1 < ε.

Since the above inequality holds for all yh ∈ Ah, it yields

dH

(
ϕh(M, θ−Mω)Ah(θ−Mω)|ϕ(M, θ−Mω)Ah(θ−Mω)

)
≤ ε. (5.26)

From (5.25) and (5.26), it follows from the invariance of Ah under ϕh and the triangular inequality
that

dH(Ah(ω)|A(ω)) < 2ε, ∀h < δ(ω,M) ∧ 1

2
.

This proves that (5.17) hold almost surely.
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