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Abstract

Inspired by Kirillov’s theory of coadjoint orbits, we develop a structure theory for
finite dimensional Jordan algebras. Given a Jordan algebra J , we define a generalized
distribution HJ on its dual space J ? which is canonically determined by the Jordan
product in J , is invariant under the action of what we call the structure group of J ,
and carries a naturally-defined pseudo-Riemannian bilinear form Gξ at each point. We
then turn to the case of positive Jordan algebras and classify the orbits of J ? under the
structure group action. We show that the only orbits which are also leaves of HJ are
those in the closure of the cone of squares or its negative, and these are the only orbits
where this pseudo-Riemannian bilinear form determines a Riemannian metric tensor G.

We discuss applications of our construction to both classical and quantum information
geometry by showing that, for appropriate choices of J , the Riemannian metric tensor
G coincides with the Fisher-Rao metric on non-normalized probability distributions on
a finite sample space, or with the Bures-Helstrom metric for non-normalized, faithful
quantum states of a finite-level quantum system.
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1 Introduction
Our guiding question is to what extent we can develop a structure theory for Jordan algebras
that is analogous to that of Lie algebras, at least in finite dimensions. The arguably most
important finite-dimensional cases are matrix algebras, with the anti-commutator as a product
for Jordan algebras, and the commutator for Lie algebras. In the latter case, we have the
fundamental observation of Kirillov [23, 24] that a coadjoint orbit O ⊂ g? of the Lie group G
carries a natural homogeneous symplectic structure. Here, g and g? denote the Lie algebra
of G and its dual. Kirillov’s observation relates algebraic structures to differential geometry
and mathematical physics in a deep and very productive way, further explored by Kostant [28],
Souriau [35] and many others. This led to spectacular results in representation theory, classical
and quantum mechanics, and it is closely related to geometric quantization [25].

On the other hand, Jordan algebras play an important role in the formulation of quantum
theories [1, 13, 15, 22], in mathematical physics [4, 44], in color perception theory [6, 32, 33],
and in quantum information theory [9]. Of course, the purely mathematical investigation of
Jordan algebras and their algebraic and geometrical properties is a well-established subject
[7, 16, 27, 41]. However, as far as we know, no analogue of Kirillov’s theory for Lie algebras has
been investigated in the case of Jordan algebras, and the purpose of this work is precisely fill
this gap.

Obviously, Lie algebras are special, not only because they come from Lie groups, but also
because the structure algebra of a Lie algebra, i.e., the algebra generated by left multiplication,
is a Lie algebra itself. To understand this picture from a more abstract perspective, it is useful
to first consider a general, finite-dimensional algebra. Thus, we consider a finite-dimensional
algebra A, i.e., a finite-dimensional (real or complex) vector space with a bilinear product
• : A × A → A. At this moment, no further condition, like associativity or identities of
Jacobi, Jordan or any other type is assumed. We denote with A? the dual space of A, and
the corresponding pairing is denoted by 〈., .〉. Due to the finite-dimensionality, we have the
identification A?? ∼= A, and for the tangent and cotangent spaces of A?, we then have TξA? ∼= A?
and T ∗ξA? ∼= A?? ∼= A. We may then represent the product • via

〈ξ, a • b〉 for ξ ∈ A?, a, b ∈ A. (1)

Furthermore, this induces a multiplication on C∞(A?) via

{f, g}A(ξ) := 〈ξ, dξf • dξg〉, (2)

and for f ∈ C∞(A?), we may define its A-dual vector field of f as

(∇Af )ξ(g) := {f, g}A(ξ). (3)
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Note that, in general, this is not a gradient (because • need not be symmetric), but we use the
symbol ∇ here because it satisfies many of the formal identities of gradients.

The multiplication in equation (2) is of course compatible with the product • in the sense
that, identifying a ∈ A with the linear functional fa(ξ) := 〈ξ, a〉, the inclusion A ↪→ C∞(A) is
an algebra monomomorphism

{fa, fb}A = fa•b.

Now, the automorphisms of A, i.e., the linear isomorphisms g : A → A with g(a•b) = (ga)•(gb),
form a Lie group. The Lie algebra of that group consists of the derivations, i.e., the linear maps
d ∈ gl(A) with d(a • b) = (da) • b+ a • (db). Moreover, we have the structure Lie group G(A)
whose Lie algebra is generated by left multiplications, i.e., by the maps la : (b 7→ a • b) ∈ gl(A).

Therefore, even though we do not assume A to be a Lie algebra, there is a Lie algebra that
is naturally associated to A, and we may hope to use its theory to gain insight about A itself.
This works to some extent, but a problem arises from the fact that the A-dual distribution HA
on A? by

HAξ := {(∇Af )ξ | f ∈ C∞(A?)} ⊂ TξA?. (4)
in general is not integrable. We recall that, in the Lie algebra case, HA is integrable, and its
leaves are precisely the coadjoint orbits which carry a symplectic structure induced by equation
(2). Because of this fact, for general algebras, we cannot expect a theory that is as powerful as
Kirillov’s theory for Lie algebras.

The theory becomes more powerful, however, and the results become stronger, if we also
assume some additional structure on A. Associativity already gives us some leverage, but the
more specific case that we are interested in here is when A is a Jordan algebra. Our strategy
then is to combine this Jordan structure, and the identities resulting from it, with the Lie
algebra structure that we just have identified.

Thus, we consider a finite-dimensional real Jordan algebra A = J . In this case, following
Koecher’s work [27, chapter IV], we can also define an extended structure Lie algebra ĝ(J ) that
maps surjectively onto g(J ). This algebra is the direct sum Der0(J )⊕J of the inner derivations
(those generated by left multiplications lx with algebra elements x) and J itself. The Lie bracket
on Der0(J ) is the commutator, while, for x, y ∈ J , it is [x, y] := [lx, ly] ∈ Der0(J ), and, for
d ∈ Der0(J ) and x ∈ J , it is [d, x] = −[x, d] := d(x) ∈ J . Thus, putting k = Der0(J ),mJ = J ,
we have [k, k] ⊂ k, [k,mJ ] ⊂ mJ , [mJ ,mJ ] = k, i.e., we have a transvective symmetric pair (see
Def. 3) which provides us with further structure to work with.

The generalized distribution HJ on J ? is still not integrable in general. However, in the
case of Jordan algebras, the bilinear form Gξ induced by equation (1) on HJξ is symmetric, and
therefore it defines a pseudo-Riemannian metric on the mJ -regular part of each G(J )-orbit
OregmJ

⊂ J ? (see Def. 2).
According to [27, p. 59], on J there is the symmetric, bilinear form τ(x, y) := tr l{x,y},

which is also associative with respect to the Jordan product, and we can use it to decompose
J . Specifically, in the case of positive Jordan algebras, we can derive further properties from
the decomposition, and, being τ positive definite, there is a canonical identification J ∼= J ?.
Each ξ ∈ J ? has a spectral decomposition associating with ξ its spectral coefficients (λi)ri=1 ∈ Rr,
where r denotes the rank of J . The pair (n+, n−) counting the number of positive and negative
spectral coefficients is called the spectral signature of ξ. We then show the following:

Theorem A (cf. Theorem 1) If J is a positive simple real Jordan algebra, then the orbits of
the structure group G(J ) consist of all elements with the same spectral signature.
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We also characterize the regular points (i.e., those where the generalized distribution HJ is
integrable) in such a G(J )-orbit in Theorem 2 and describe the pseudo-Riemannian metric Gξ
at each regular point ξ ∈ J ? in Proposition 5. Specifically, let ΩJ denote the cone of squares
of J , i.e., the interior of the set {x2 | x ∈ J }. Then ΩJ is the G(J )-orbit of the identity 1J .
The characterizations in Theorem 2, Proposition 1, and Proposition 5 lead to the following
remarkable description:

Theorem B Let J be a positive simple real Jordan algebra. Then all points of a G(J )-orbit
O ⊂ J ? are mJ -regular iff O ⊂ ΩJ or O ⊂ −ΩJ . The form G on O is positive definite in the
first and negative definite in the second case, thus defining a Riemannian metric on O which is
invariant with respect to the action of the automorphism group of J .

For all regular ξ /∈ ±ΩJ the form Gξ is indefinite, so the definiteness of Gξ gives a new
characterization of ΩJ .

We provide descriptions of the orbits O and the metric G for the standard examples of
positive simple real algebras. Moreover, the above results easily generalize to the case of
non-simple positive Jordan algebras, as these algebras are direct sums of positive simple Jordan
algebras.

One example which is particularly interesting in this context is the associative real Jordan
algebra J := Rn whose algebraic operations are defined in a component-wise way. Then,
ΩJ = Rn

+ is the first orthant, which may be regarded as the space of positive finite measures
on a sample space Xn with n elements. What we show is that, on ΩJ , the metric G is such
that its pullback to the submanifold of strictly positive probability distributions on Xn (i.e.,
the open interior of the unit simplex inside Rn

+) coincides with the Fisher-Rao-metric tensor
which naturally occurs in Classical Information Geometry [2, 3]. This instance shows that we
may look at the non-normalized Fisher-Rao metric tensor on ΩJ = Rn

+ as the analogue of the
homogeneous symplectic form on co-adjoint orbits in the case of Lie algebras.

A similar suggestive instance also manifests itself with respect to Quantum Information
Geometry. Indeed, the space of observables of a finite-level quantum system may be identified
with the Jordan algebra J = M sa

n (C), so that the automorphism group of J is the unitary
group. Then, ΩJ can be identified with the space of (non-normalized) faithful quantum states
[9, 17], and the metric G is such that its pullback to the submanifold of faithful quantum states,
determined by the condition Tr(A) = 1, coincides with the so-called Bures-Helstrom metric
tensor [5, 10, 11, 18, 19, 20, 21, 34, 40, 42, 43] whose relevance in quantum metrology is difficult
to overestimate [30, 31, 37, 38]. Also, if we consider the mJ -regular orbit O ⊂ ΩJ of positive
matrices of rank one, it turns out that, essentially because of its unitary invariance, G is such
that its pullback to the submanifold of pure quantum states, determined by the condition
Tr(A) = 1, coincides with the Fubini-Study metric tensor [5, 12], which may be thought of as
a quantum generalization of the Fisher-Rao metric tensor to the case of pure quantum states
[14, 45].

It is worth noting that the above mentioned links between Jordan algebras and Classical
and Quantum Information Geometry was already put forward in [8, 9], where, however, only
those Jordan algebras associated with von Neumann algebras were considered, and where the
complete geometrical picture described in full detail here was only hinted at.

This article is structured as follows. In section 2 we set up our notation and recall some
standard results on generalized distributions an group actions. The discussion of the structure
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group and the generalized distributions on arbitrary algebras A follows in Section 3, while in
Section 4 we apply these results to Jordan algebras, in particular showing Theorems A and B.

2 Preliminaries

2.1 Notational conventions
For a finite-dimensional (real or complex) vector space V , we write

Gl(V ) := {linear isomorphisms g : V → V },
gl(V ) := {linear endomorphisms x : V → V }.

The choice of a basis (ei)ni=1 of V identifies Gl(V ) and gl(V ) with Gl(n,K) and gl(n,K) (K = R
or C), respectively, motivating this notation. This means that Gl(V ) is a Lie group with Lie
algebra gl(V ).

We denote by V ? the dual space of V . For finite-dimensional real vector spaces V , W and
U , we define the contraction map

〈·, ·〉V : V ? ⊗ V ⊗ U −→ U, 〈α, v ⊗ u〉V := α(v)u. (5)

We shall often simply write 〈·, ·〉 without the subscript if this causes no ambiguity. Equation (5)
includes the case where U = R, i.e., the evaluation map

〈·, ·〉V : V ? ⊗ V −→ R, 〈α, v〉V := α(v). (6)

Denoting with S2(V ) and Λ2V , respectively, the symmetric and antisymmetric part of V ⊗ V ,
and setting U := V in equation (5), the restriction of 〈·, ·〉V to either of the spaces V ? ⊗ V ⊗ V
or V ? ⊗ S2(V ) or V ? ⊗ Λ2V is denoted by y. Specifically, we have

θy(v ⊗ w) := 〈θ, v〉Vw
θy(v ◦ w) := 1

2

(
〈θ, v〉Vw + 〈θ, w〉V v

)
θy(v ∧ w) := 1

2

(
〈θ, v〉Vw − 〈θ, w〉V v

) . (7)

All these definitions extend to tensor products as well, i.e., we have

〈·, ·〉V⊗W : (V ⊗W )? ⊗ (V ⊗W ⊗ U) −→ U,

〈α⊗ θ, v ⊗ w ⊗ u〉V⊗W := 〈α, v〉V 〈θ, w〉W u,
(8)

again including U = R as a special case. In particular, the pairing for symmetric tensors is
given by

〈α ◦ β, v ◦ w〉S2(V ) = 1
2
(
〈α, v〉V 〈β, w〉V + 〈β, v〉V 〈α,w〉V

)
, (9)

as is easily verified from equation (8) and the definition of the symmetric product α ◦ β =
1
2(α⊗ β + β ⊗ α) and v ◦ w = 1

2(v ⊗ w + w ⊗ v).
If φ : V → W is a linear map, its dual map is denoted by

φ? : W ? −→ V ?, 〈θ, φ(v)〉W = 〈φ?θ, v〉V . (10)
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The map induced by φ on the tensor algebras of V and W , respectively, also will be denoted
by φ, i.e.,

φ :
k⊗
V −→

k⊗
W, φ(v1 ⊗ · · · ⊗ vk) := φ(v1)⊗ · · · ⊗ φ(vk). (11)

In particular, this applies to the subspaces Sk(V ) ⊂ ⊗kV and Sk(W ) ⊂ ⊗kW :

φ : SkV −→ SkW, φ(v1 ◦ · · · ◦ vk) := φ(v1) ◦ · · · ◦ φ(vk). (12)

Finally, if we define for ρ ∈ S2(V ) the subspace D(ρ) := {θyρ | θ ∈ V ∗} ⊂ V , then

ρ ∈ S2(D(ρ)) ⊂ S2(V ), and D(φ(ρ)) ⊂ φ(D(ρ)). (13)

Indeed, picking a basis (ei)ni=1 of V with dual basis (ei)ni=1 such that D(ρ) is spanned by (eν)mν=1,
then eiyρ = 0 for i > m, whence

ρ = cνµeν ◦ eµ ∈ S2(D(ρ)), φ(ρ) = cνµφ(eν) ◦ φ(eµ) ∈ S2(φ(D(ρ))),

so that equation (13) follows.

2.2 Generalized distributions
Let M be a finite-dimensional, real smooth manifold. A generalized distribution on M is a
family D = (Dp)p∈M of subspaces Dp ⊂ TpM . We let Γ(D) be the set of vector fields X on M
with Xp ∈ Dp for all p, and we call D smooth if for each v ∈ Dp there is a vector field X ∈ Γ(D)
with Xp = v.

Given a smooth generalized distribution D, we define the Frobenius tensor Fp at p ∈M as

Fp : Λ2Dp −→ TpM/Dp, (Xp, Yp) 7−→ [X, Y ]p mod Dp

for X, Y ∈ Γ(D). Since [X, fY ]p = f(p)[X, Y ]p + (Xf)pYp = f(p)[X, Y ]p mod Dp, it follows
that Fp(X, Y ) depends on Xp and Yp only, i.e., F = (Fp)p∈M is a well defined tensor field. We
also define the generalized distribution

[D,D]p := Dp + {[X, Y ]p | X, Y ∈ Γ(D)}, (14)

so that the image of Fp is [D,D]p/Dp.

Definition 1. We call a smooth generalized distribution D involutive at p ∈M , if Fp = 0 or,
equivalently, if [D,D]p = Dp, and we call it involutive, if this holds for every p.

Furthermore, an (immersed) submanifold N ⊂ M with TpN = Dp for all p ∈ N is called
an integral leaf of D. If there is an integral leaf of D containing p, then we call D integrable
at p ∈M and call p an integral point of D; if this is the case for each p ∈M , then we call D
integrable.

Clearly, if D is integrable (at p), then it is also involutive (at p); according to Frobenius’
theorem, the converse of this statement holds if D has constant rank. However, if the rank of D
is non-constant, then the converse may fail to hold [36].
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2.3 G-manifolds
Let G be a finite-dimensional, real Lie group with identity element e, Lie algebra g ∼= TeG, and
let M be a G-manifold, i.e., a finite-dimensional, real smooth manifold with a smooth left action
π : G×M →M , (g, p) 7→ g · p. For p ∈M we define the stabilizer of p to be the subgroup

Hp := {g ∈ G | g · p = p} ⊂ G with Lie algebra hp ⊂ g.

Evidently, Hg·p = gHg−1, and hg·p = Adg(hp), so that the stabilizer on each G-orbit is unique
up to conjugation.

For X ∈ g, the action field of X is the vector field X∗ on M , given by

(X∗)p := d

dt

∣∣∣∣∣
t=0

exp(tX) · p. (15)

We define the orbit distribution on M by

Dg
p := {(X∗)p | X ∈ g}. (16)

Evidently, Dg is integrable, as Dg
p is the tangent space of the G-orbit G · p ⊂ M , so that the

G-orbits are the integral leaves of Dg. As the action field X∗ and the right invariant vector field
(dergX, 0p)(g,p)∈G×M on G×M are π-related, we have

[X, Y ]∗ = −[X∗, Y∗] (17)

(confirming the involutivity of Dg), and

X ∈ hp ⇔ (X∗)p = 0. (18)

For any linear subspace m ⊂ g , we define the smooth generalized distribution Dm by

Dm
p := {(X∗)p | X ∈ m} ⊂ Dg

p = Tp(G · p), (19)

and we assert that
(X∗)p ∈ Dm

p ⇔ X ∈ m + hp. (20)
Namely, for equation (20), observe that (X∗)p ∈ Dm

p iff there is a Y ∈ m with (X∗)p = (Y∗)p,
i.e., ((X − Y )∗)p = 0 which by equation (18) is equivalent to X − Y ∈ hp.

Lemma 1. Let m ⊂ g be a linear subspace. Then the following are equivalent:

1. Dm is involutive at p ∈ O,

2. [m,m] ⊂ m + hp,

3. D[m,m]
p ⊂ Dm

p .

Proof. For X, Y ∈ m, Fp(Xp, Yp) = 0 iff [X∗, Y∗]p ∈ Dm
p , which, by equation (17), is the case

iff ([X, Y ]∗)p ∈ Dm
p , and, by equation (20), this is the case iff [X, Y ] ∈ m + hp, showing the

equivalence of the first two conditions.
The second condition is equivalent to saying that for each X ∈ [m,m] there is a Y ∈ m

such that X − Y ∈ hp or, equivalently, that for each X ∈ [m,m] there is a Y ∈ m such that
(X∗)p = (Y∗)p, and this is evidently equivalent to the third condition.
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Definition 2. Let M be a G-manifold and m ⊂ g a linear subspace. We call p ∈M an m-regular
point if Dm

p = TpO, where O ⊂M is the G-orbit of p. The subset of m-regular points in O is
denoted by

Oregm ⊂ O.

As the rank of Dm
p is a lower semicontinuous function in p, Oreg ⊂ O is open (but possibly

empty). As we shall see in later sections, Oregm may be a proper subset of O and is not necessarily
connected.

Corollary 1. Suppose that m ⊂ g is a linear subspace such that

g = m + [m,m]. (21)

Then for each p ∈M the following are equivalent:

1. p is involutive,

2. p is integrable,

3. p is an m-regular point.

In this case, the maximal integral leaf through p is the connected component of p in Oregm ⊂ O =
G · p.

Proof. By Lemma 1, p is integrable iff D[m,m]
p ⊂ Dm

p , and as g = m + [m,m], this is the case iff
Dm
p = Dg

p, i.e., iff p is m-regular. It follows that any integral leaf through p must be (an open
subset of) Oregm ⊂ O, whence the maximal (connected) leaf through p is its path component in
Oregm .

Definition 3. A symmetric pair is a pair (g, k) of Lie algebras with a decomposition g = k⊕m
satisfying

[k, k] ⊂ k, [k,m] ⊂ m, [m,m] ⊂ k. (22)
We call this pair transvective, if g is generated by m as a Lie algebra, i.e., if [m,m] = k.

Clearly, equation (22) is equivalent to saying that the involution σ : g→ g with k and m as
the (+1)- and (−1)-eigenspace, respectively, is a Lie algebra automorphism.

3 Structure groups and canonical distributions on duals
of algebras

In this section, we shall consider a finite-dimensional algebra A, by which we simply mean a
finite-dimensional (real or complex) vector space with a bilinear product • : A×A → A. We
do not assume any further conditions on this multiplication such as associativity, Jacobi- or
Jordan identities, but we shall later discuss the general definitions in each of these cases.

We look at A as a finite-dimensional, real smooth manifold, an we may regard the
multiplication • as a tensor RA ∈ A?⊗A?⊗A, and since TξA? ∼= A? as A is finite-dimensional,
we may regard RA as a linear bivector field on A?, denoted by the same symbol

RA ∈ Γ(A?, TA? ⊗ TA?), (RA)ξ(a, b) := 〈ξ, a • b〉 (23)
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for all a, b ∈ A ∼= A?? ∼= T ?(T ?ξA?). Therefore, there is an induced multiplication {·, ·}A on the
space C∞(A?) of real-valued, smooth functions on A? given by

{f, g}A(ξ) := (RA)ξ(dξf, dξg) = 〈ξ, dξf • dξg〉 (24)

with the canonical identification dξf, dξg ∈ T ∗ξA? ∼= A?? ∼= A. Regarding RA as a section of
TA? ⊗ TA? as in equation (23), contraction in the first entry yields a linear map

]ξ : T ?ξA? −→ TξA?, θ 7−→ θyRAξ . (25)

Then, for a smooth function f ∈ C∞(A?) we define the A-dual vector field of f as

∇Af := ]df ∈ X(A?). (26)

Unwinding the definitions, we have

(∇Af (g))(ξ) = 〈]dξf, dξg〉 = 〈dξfyRAξ , dξg〉 = (RAξ )(dξf, dξg)
(24)= {f, g}A(ξ)

for f, g ∈ C∞(A?), so that
∇Af (g) = {f, g}A. (27)

We define the structure constants of (A, •) with respect to a basis (ei) of A with dual basis
(ei) of A? by

ei • ej = ckijek, (28)
so that from equation (23) we obtain

RA = ckije
i ⊗ ej ⊗ ek, (29)

using the Einstein summation convention. Then, the bivector field on A? is given as

RAξ = ckijξke
i ⊗ ej, where ξ = ξke

k ∈ A?, (30)

so that the components of this tensor are linear functions on A?. Thus, if we regard A ⊂ C∞(A?)
as the set of linear functions with the identification

a 7−→ fa ∈ C∞(A?), fa(ξ) := 〈ξ, a〉, (31)

then equation (24) implies
{fa, fb}A = fa•b,

so that the inclusion A ↪→ C∞(A) is an algebra monomomorphism. Furthermore, in this case,
equation (27) reads

(∇Afa
)ξ(fb) = 〈ayRAξ , b〉 = 〈ξ, a • b〉 = fa•b(ξ). (32)

Remark 1. If the multiplication • is symmetric (e.g. if A is a Jordan algebra), the dual
vector field ∇Af is usually referred to as the gradient vector field of f , while in the case of an
anti-symmetric multiplication • (e.g. if A is a Lie algebra), it is called the Hamiltonian vector
field of f . That is, the term A-dual vector field subsumes both cases.

We wish to caution the reader that in case of a skew-symmetric multiplication • the notation
∇Af for the Hamiltonian vector does not match the standard convention. We use it nevertheless
to unify our notation.
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For a finite-dimensional algebra (A, •) we define the A-dual distribution HA on A? by

HAξ := {(∇Af )ξ | f ∈ C∞(A?)} = ]ξ(T ?ξA?) ⊂ TξA?. (33)

Definition 4. For a finite-dimensional algebra (A, •) we define the following:

1. For a ∈ A we let la ∈ gl(A) be the map (b 7→ a • b) ∈ gl(A).

2. The structure Lie algebra of A is the Lie subalgebra g(A) ⊂ gl(A) generated by mA :=
{la | a ∈ A}.

3. The structure Lie group of A is the connected Lie subgroup G(A) ⊂ Gl(A) with Lie algebra
g(A).

4. A derivation of A is a linear map d ∈ gl(A) with d(a • b) = (da) • b+ a • (db).

5. An automorphism of A is a linear isomorphism g : A → A with g(a • b) = (ga) • (gb).

It is straightforward to verify that the automorphisms and derivations form a regular Lie
subgroup and a Lie subalgebra Aut(A) ⊂ Gl(A) and Der(A) ⊂ gl(A), respectively, called the
automorphism group and derivation algebra of A, respectively. In fact, Der(A) is the Lie algebra
of Aut(A). Moreover, g ∈ Aut(A) and d ∈ Der(A) iff for all a ∈ A we have

glag
−1 = lga, [d, la] = lda. (34)

That is, the adjoint action of Aut(A) and Der(A) on gl(A) preserves the subspace mA and
hence the structure Lie algebra g(A) and structure Lie group G(A).

Actually, it would be more accurate to call g(A) and G(A) the left-structure Lie algebra
and group, respectively, and to define the right-structure Lie algebra and group analogously.
However, for simplicity we shall restrict ourselves to the left-structure case, as the right-structure
case can be treated in complete analogy.

For f ∈ gl(A) we define its dual f ∗ ∈ gl(A?) by

〈f ∗(ξ), a〉 = 〈ξ, f(a)〉 (35)

for ξ ∈ A? and a ∈ A. Since then evidently (fg)∗ = g∗f ∗, there are a canonical Lie group and
Lie algebra isomorphisms

ı : Gl(A) −→ Gl(A?), g 7−→ (g−1)∗

ı∗ : gl(A) −→ gl(A?), f 7−→ −f ∗.
(36)

Indeed, ı∗ is the differential of ı at the identity e ∈ Gl(A). By definition, we have for ξ ∈ A?
and a, b ∈ A:

〈l∗a(ξ), b〉 = 〈ξ, la(b)〉 = 〈ξ, a • b〉 (32)= (∇Afa
)ξ(fb)

(31)= 〈(∇Afa
)ξ, b〉.

It follows that l∗a(ξ) = (∇Afa
)ξ, so that

HAξ = DmA
ξ (37)

with HAξ from equation (33) and mA from Definition 4, regarding A? as a G(A)-manifold via
the representation ı : G(A)→ Gl(A?).
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If g ∈ Aut(A) is an automorphism, then by equation (34) the action of g∗ on A? preserves the
distribution HA and hence permutes integral leaves of equal dimensions, preserving mA-regular
points.

As it turns out, if the product • is symmetric or skew-symmetric, then there is a canonical
bilinear pairing on HA.

Proposition 1. Let (A, •) be a finite-dimensional real algebra such that • is symmetric (skew-
symmetric, respectively). Then on HAξ = DmA

ξ ⊂ TξA? there is a canonical non-degenerate
symmetric (skew-symmetric, respectively) bilinear form, given by

Gξ(l∗a(ξ), l∗b (ξ)) := 〈ξ, a • b〉. (38)

Furthermore, G is preserved by the action of the automorphism group Aut(A).

Proof. By equation (35), 〈ξ, a • b〉 = 〈l∗a(ξ), b〉 = ±〈l∗b(ξ), a〉, where the sign ± depends on the
symmetry or skew-symmetry of •. This shows that G is indeed well defined and non-degenerate.

Finally, if g ∈ Aut(A) is an automorphism, then equation (34) together with equation (36)
implies that

g∗l∗a(g−1)∗ = l∗g−1a

so that

Gg∗ξ(g∗(l∗a(ξ)), g∗(l∗b (ξ))) = Gg∗ξ(l∗g−1a(g∗ξ), l∗g−1b(g∗ξ))
= 〈g∗ξ, (g−1a) • (g−1b)〉 = 〈ξ, g((g−1a) • (g−1b))〉
= 〈ξ, a • b〉 = Gξ(l∗a(ξ), l∗b (ξ)),

showing the invariance under the action of the automorphism group.

Definition 5. Let A be an algebra. A G(A)-orbit O ⊂ A? is called mA-regular if OregmA
= O.

We shall now give classes of examples of these notions.

1. Lie algebras.
Let (A, •) = (g, [·, ·]) be a Lie algebra. Then the induced section Λ := Rg ∈ Γ(g?,Λ2Tg?)
from equation (23) is a skew-symmetric bi-vector field, and the Jacobi identity implies that
the Schouten bracket [Λ,Λ] ∈ Γ(g?,Λ3Tg?) vanishes [29, 39], so that Λ defines a linear
Poisson structure {·, ·} on g?, also known as the Kostant-Kirillov-Souriau structure [26].
Comparing our notions with those established for Poisson manifolds, we observe that for a
function f ∈ C∞(g?), the g-gradient vector field ∇Af corresponds to the Hamiltonian vector
field Xf for Poisson manifolds, so that the dual distribution HAξ from equation (33) is the
Hamiltonian distribution of the Poisson manifold. It is integrable, as the Hamiltonian
vector fields satisfy the identity

[Xf , Xg] = −X{f,g}.

The Jacobi identity implies that la = ada satisfies [la, lb] = l[a,b], so that mA is closed under
the commutator bracket and therefore, g(A) = mA ∼= g/z(g). That is, the action of the
structure group is induced by the coadjoint action of G on g?, and the skew-symmetric non-
degenerate bilinear form G on HA from equation (38) coincides with the symplectic form
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on each coadjoint orbit in g?. By the Jacobi identity, this action consists of automorphisms
of the Lie algebra structure, whence this symplectic form is preserved under the coadjoint
action.
Therefore, the integral leaves of mA are the coadjoint orbits of g?, equipped with their
canonical symplectic form, and hence, each orbit is regular in the sense of our definition.

2. Associative algebras. The associativity of the product • is equivalent to saying that
lalb = la•b, so that {la | a ∈ A} ⊂ gl(A) is a subalgebra. That is, the structure algebra
g(A) equals mA with the Lie bracket being the commutator.
Thus, if we regard A as a Lie algebra with the Lie bracket [a, b] := a • b− b • a, then the
G(A)-orbits are the coadjoint orbits on A?, regarded as the dual of a Lie algebra and thus
described in the preceding paragraph.
Note that by Proposition 1 the bilinear form G on these orbits only exists if • is symmetric
or anti-symmetric.
If A is a commutative and associative algebra, then G(A) and g(A) are abelian Lie groups,
respectively. In this case, the G(A)-orbits of A? are diffeomorphic to the direct product of
a torus and Euclidean space.

In the two preceding cases, mA is closed under Lie brackets, so that it coincides with the
structure algebra g(A). This implies that, by the very definition, mA is integrable having the
G(A)-orbits in A? as leaves. In particular, all orbits are mA-regular.

In contrast, for a Jordan algebra J , it is no longer true that mJ is a Lie algebra, so that
not all G(J )-orbits on the dual J ? are mJ -regular in our sense. Since the Jordan product is
symmetric, the non-degenerate form G from (38) defines a pseudo-Riemannian metric on the
regular part OregmJ

of each orbit.
We shall describe these structures on the G(J )-orbits on J ? and the pseudo-Riemannian

metric G in more details, and we will see how, for some specific type of positive Jordan algebras,
and suitable orbits, G is intimately connected with either the Fisher-Rao metric tensor or
with the Bures-Helstrom metric tensor used in Classical and Quantum Information Geometry,
respectively. This result strengthen the connection between Jordan algebras and Information
Geometry initially hinted at in [8, 9].

4 Jordan algebras and Jordan distributions
Let J be a real, finite-dimensional Jordan algebra, that is, a real vector space endowed with a
bilinear symmetric product {·, ·}, satisfying for x, y ∈ J the Jordan identity

{{x, y}, {x, x}} = {x, {y, {x, x}}} (39)

By the notions established in the preceding section, we may associate with a Jordan
algebra the symmetric bivector field RJ ∈ Γ(J ?, S2(TJ ?)) from (23), the musical operator
#J : T ∗J ? → TJ ? from equation (25), the J -dual vector field ∇Jf = #df ∈ X(J ?) from
equation (26), and the induced J -dual distribution HJ ⊂ TJ ? from equation (33).

In particular, we have HJ = DmJ by equation (37), where

mJ = span{l∗x | x ∈ J } ⊂ gl(J ?)
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is the space of (left-)multiplications with elements x ∈ J , acting on the dual space J ?. For
every mJ -regular point ξ, the vector space HJξ = DmJ

ξ carries the non-degenerate symmetric
bilinear form Gξ defined in equation (38).

As we pointed out before, the space mJ of (left-)multiplication in J is not closed under Lie
brackets in general. However, the following is known.

Lemma 2. (cf. [27, Lemma IV.7]) For x, y ∈ J , the commutator [lx, ly] is a derivation of J ,
and for each d ∈ Der(J )

[d, [lx, ly]] = [ldx, ly] + [lx, ldy]. (40)

We denote by Der0(J ) the span of all elements of the form [lx, ly] for x, y ∈ J . By equation
(40), Der0(J ) ⊂ Der(J ) is an ideal whose elements are called inner derivations of J . This fact
can be used to describe the structure Lie algebra of J .

Definition 6. We define the extended structure Lie algebra ĝ(J ) of J as follows. As a vector
space, ĝ(J ) is defined by

ĝ(J ) = Der0(J )⊕ J . (41)
The Lie bracket on ĝ(J ) is defined as follows:

• on Der0(J ) ⊂ Der(J ) ⊂ gl(J ), the Lie bracket is just the commutator between linear
maps;

• for d ∈ Der0(J ) and x ∈ J , [d, x] = −[x, d] := d(x) ∈ J ;

• for x, y ∈ J we set [x, y] := [lx, ly] ∈ Der0(J ).

In fact, the Jacobi identity for this bracket is easily verified using the definitions and equation
(40). By the definition of this Lie bracket, it follows that (ĝ(J ),Der0(J )) is a transvective
symmetric pair in the sense of Definition 3.

There is a canonical Lie algebra representation of ĝ(J ) on J , called the standard representation,
defined by

φ : ĝ(J ) −→ gl(J ),
φ(d) := d for d ∈ Der0(J ) ⊂ gl(J )
φ(x) := lx for x ∈ J .

. (42)

Indeed, this defines a Lie algebra homomorphism by the definition of the Lie bracket on ĝ(J )
and by equation (34).

Observe that the image φ(ĝ(J )) ⊂ gl(J ) is generated by all lx, x ∈ J , whence equals the
structure Lie algebra g(J ) from Defintion 4. Thus, there is a surjective Lie group homomorphism
Ĝ(J )→ G(J ) with differential φ, where G(J ) ⊂ Gl(J ) is the structure group from Defintion
4.1

In general, φ may fail to be injective (the kernel of φ contains the center of z(J ) ⊂ J ⊂ g(J )),
so that the structure algebra g(J ) and the extended structure algebra ĝ(J ) may not be
isomorphic.

Then we obtain the following integrablilty criterion.

Proposition 2. Let J be a Jordan algebra. Then, for the distribution HJ from equation (33),
the following assertions are equivalent.

1Defintion 4 for a Jordan algebra J coincides with the definition of the structure Lie group and the structure
Lie algebra of a Jordan algebra e.g. in [27, chapter IV].
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1. HJξ is involutive at ξ ∈ J ?,

2. HJξ is integrable at ξ ∈ J ?,

3. Der0(J )·ξ ⊂ J ·ξ, where the multiplication refers to the dual action of Der0(J ),J ⊂ ĝ(J )
on J ?.

If this is the case, then the maximal integral leaf through ξ is the connected component of ξ in
OregmJ

⊂ O = G(J ) · ξ.

Proof. The map φ from equation (42) defines an action of Ĝ(J ) on J ? such that, by equation
(37), it is HJξ = DJξ . Evidently, Ĝ(J ) · ξ = G(J ) · ξ. Since (ĝ(J ),Der0(J )) is a transvective
symmetric pair, equation (21) is satisfied for m := J ⊂ ĝ(J ), and the assertion now follows
from Corollary 1, as by equation (19) it is

D[J ,J ]
ξ = DDer0(J )

ξ = Der0(J ) · ξ, DJξ = J · ξ.

4.1 Jordan frames and the Peirce decomposition
Let J be a real finite-dimensional Jordan algebra. We define the symmetric bilinear form τ on
J by

τ(x, y) := tr l{x,y}. (43)
Observe that for x, y ∈ J

τ(gx, gy) = τ(x, y), g ∈ Aut(J ), τ(dx, y) + τ(x, dy) = 0, d ∈ Der(J ).

Namely, if g ∈ Aut(J ), then τ(gx, gy) = tr lg{x,y} = tr g l{x,y}g−1 = τ(x, y), and the second
identity follows as Der(J ) is the Lie algebra of Aut(J ).

A symmetric bilinear form β on J is called associative, if for all x, y, z ∈ J

β({x, y}, z) = β(x, {y, z}), (44)

i.e., if all lx are self-adjoint w.r.t. β. Then the following is known.

Proposition 3. [27, p. 59] The bilinear form τ from equation (43) is associative.

An element c ∈ J is called an idempotent if c2 := {c, c} = c. Such an idempotent is called
primitive, if there is no decomposition c = c1 +c2 with idempotents c1, c2 6= 0. For an idempotent
c ∈ J , lc is diagonalizable with eigenvalues in {0, 1

2 , 1} [16, Proposition III.1.2]. Therefore, it
follows that

τ(c, c) = tr l{c,c} = tr lc ≥ 1, (45)
as the trace is the sum of the eigenvalues, and c is in the 1-eigenspace of lc.

If J has an identity element 1J , then a Jordan frame of J is a set (ci)ri=1 ⊂ J of primitive
idempotents such that

{ci, cj} = δijci and c1 + · · ·+ cr = 1J . (46)

Note that
τ(ci, cj) = τ({ci, ci}, cj)

(44)= τ(ci, {ci, cj}) = 0, for i 6= j,
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so that (ci)ri=1 is an τ -orthogonal system. From this, one can show that the maps lci
commute

pairwise [16, Lemma IV.1.3].
Let c := span{ci}. Then, as all lci

are diagonalizable, there is a τ -orthogonal decomposition
of J into the common eigenspace of lci

, i.e., into spaces of the form

Jρ := {x ∈ J | lc(x) = ρ(c)x, c ∈ c}

for some ρ ∈ c?. Since ci has only eigenvalues {0, 1
2 , 1} and ρ(1J ) = 1, it follows that ρ = 1

2(θi+θj),
i ≤ j, where (θi)ri=1 ∈ c? is the dual basis to (ci)ri=1. That is, we have the τ -orthogonal eigenspace
decomposition

J =
⊕
i≤j
Jij, (47)

where Jij := J 1
2 (θi+θj). This is called the Peirce decomposition of J with respect to the Jordan

frame (ci)ri=1. For convenience, we let Jji := Jij for i < j.

4.2 Semi-simple and positive Jordan algebras
For a Jordan algebra J , we define the radical of J as the null space of τ , i.e.,

r(J ) := {a ∈ J | τ(a, x) = 0 for all x ∈ J }. (48)

Evidently, r(J ) ⊂ J is an ideal by Proposition 3.
We call J semi-simple if r(J ) = 0, i.e., if τ is non-degenerate. Moreover, we call J positive

or formally real, if τ is positive definite.
We shall now collect some known results on semi-simple and positive Jordan algebras.

Proposition 4. Let J be a semi-simple real Jordan algebra. Then the following hold.

1. J has a decomposition J = J1 ⊕ . . .⊕ Jk into simple Jordan algebras Ji, i.e., such that
Ji does not contain a non-trivial ideal [27, Theorem III.11].

2. J has an identity element 1J [27, Theorem III.9].

3. J is positive iff it admits a positive definite associative bilinear form β [16, p.61].

4. If J is positive, then for every x ∈ J there is a Jordan frame {ci}ri=1 with x ∈ span({ci}ri=1)
[16, Theorem III. 1.2]. In particular, J has Jordan frames.

5. If J is simple and positive and (ci)ri=1 and (c′i)ri=1 are Jordan frames, then there is
an automorphism h ∈ Aut0(J ) with h(ci) = c′i for all i [16, Theorem IV.2.5]2, where
Aut0(J ) ⊂ Aut(J ) is the identity component. In particular, all Jordan frames have the
same number r of elements, and r is called the rank of J .

6. If J is positive, then for the Peirce spaces in (47) we have [16, Theorem IV.2.1]

{Jij,Jkl} ⊂


0 if {i, j} ∩ {j, k} = ∅
Jjl if i = k, j 6= l,

Jii + Jjj if {i, j} = {k, l}.
2In [16] it is only stated that there exists an element h ∈ Aut(J ) with the asserted property; however,

h ∈ Aut0(J ) follows from the proof.
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7. If J is positive, then Jii = span(ci) is one-dimensional for all i.

8. If J is positive, simple and of rank r, then Jjk 6= 0 for all 1 ≤ j ≤ k ≤ r [16, Theorem
IV.2.3].

Proof. We only need to show point 7, as it appears not to be explicitly stated in the literature.
Note that Jii is a subalgebra, as {Jii,Jii} ⊂ Jii by the product relations in point 6, and by
definition ci = 1Jii

. Since τ |Jii
is a positive definite associative bilinear form, it follows from

point 3 that Jii is a positive Jordan algebra as well. However, since ci = 1Jii
is primitive, it

follows that each Jordan frame of Jii consists of ci only, so that by 4 each x ∈ Jii must be a
multiple of ci = 1Jii

.

The fourth of these results is called the spectral theorem of positive Jordan algebras. It shows
that each x ∈ J admits a decomposition

x =
r∑
i=1

λici (49)

for a Jordan frame (ci)ri=1, and the decomposition in equation (49) is referred to as the spectral
decomposition of x. The λi’s are called the spectral coefficients of x. Evidently, the tuple (λi)ri=1
is defined only up to permutation of the entries. Furthermore, we call the pair (n+, n−), where
n+ and n− are the number of positive and negative spectral coefficients of x the spectral signature
of x.

Lemma 3. Let J be a semi-simple, positive Jordan algebra, (ci)ri=1 a Jordan frame of J and
x = ∑

i λici. Then, it holds

lx(J ) =
(⊕

λa+λb 6=0 Jab
)
⊕
(⊕

a,µ Jaµ
)

Der0(J ) · x =
(⊕

λa−λb 6=0 Jab
)
⊕
(⊕

a,µ Jaµ
)
,

g(J ) · x = ⊕
a,i Jai,

(50)

where we use the index convention that i, j run over 1, . . . , r, while a, b run over those indices
with λa 6= 0, and ν, µ over those indices with λν = 0.

Proof. By point 7 in Proposition 4, the Peirce decomposition in equation (47) reads

J = c⊕
⊕
a<b

Jab ⊕
⊕
a,µ

Jaµ ⊕
⊕
µ<ν

Jµν , c := span{ci}. (51)

As lx(xij) = 1
2(λi + λj)xij for xij ∈ Jij, the first equality in equation (50) is immediate.

For the second equality, recall that Der0(J ) is spanned by [lxij
, lykl

] for xij, yij ∈ Jij, and
we compute

[lxij
, lykl

](x) =
{
xij,

1
2(λk + λl)ykl

}
−
{
ykl,

1
2(λi + λj)xij

}
= 1

2(λk + λl − λi − λj){xij, ykl}.
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Therefore, the the relation “⊂” in the second equality in equation (50) follows easily from the
bracket relation of the Peirce spaces in point 6 of Proposition 4. For the converse inclusion, we
compute

[lx, lxij
](x) = {x, {xij, x}} − {xij, x2}

= 1
4(λi + λj)2xij −

1
2(λ2

i + λ2
j)xij

= −1
4(λi − λj)2xij.

The third equation then follows as g(J ) ·x = lx(J ) +Der0(J ) ·x, and λa +λb = λa−λb = 0
cannot both hold for λa, λb 6= 0.

Theorem 1. For a positive simple Jordan algebra J , the following hold:

1. The orbits of Aut0(J ) are the sets of elements with equal spectral coefficients.

2. The orbits of the structure group G(J ) consist of all elements with equal spectral signature.

Proof. Any automorphism maps (primitive) idempotents to (primitive) idempotents and fixes
1J , whence it maps Jordan frames to Jordan frames. Thus, if x = ∑r

i=1 λici for a Jordan frame
(ci)ri=1, it follows that for h ∈ Aut0(J )

h(x) =
r∑
i=1

λih(ci),

and (h(ci))ri=1 is again a Jordan frame, so that x, h(x) have the same spectral coefficients (λi)ri=1.
Conversely, if x, y have the same spectral coefficients (λi)ri=1, then

x =
r∑
i=1

λici, y =
r∑
i=1

λic
′
i

for Jordan frames (ci)ri=1 and (c′i)ri=1. Thus, by point 5 of Proposition 4, there is a h ∈ Aut0(J )
with h(ci) = c′i and hence, h(x) = y. This shows the first statement.

Concerning the second statement, we define the following subsets of J :

Σm := {x ∈ J | m spectral coefficients of x are 6= 0},
Σ≤m := {x ∈ J | at most m spectral coefficients of x are 6= 0},

Σn+,n− := {x ∈ J | x has spectral signature (n+, n−)}.

Evidently,
Σm =

⋃̇
n++n−=mΣn+,n− . (52)

Moreover, by the first assertion, all these sets are Aut0(J )-invariant.
There are continuous (in fact, polynomial) functions ak : J → R such that

f(x, λ) = λr + λr−1ar−1(x) + · · ·+ a0(x) (53)

is the minimal polynomial of all generic x ∈ J , i.e., elements with pairwise distinct spectral
coefficients λi(x) [16, Proposition II.2.1]. If x = ∑

i λi(x)ci is the spectral decomposition of x,
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then ∏i(x− λi(x)x) = 0 by equation (46), and as the roots λi(x) are pairwise distinct, it follows
that

f(x, λ) =
r∏
i=1

(λ− λi(x)), (54)

and as generic x’s are dense in J [16, Proposition II.2.1], it follows that equation (54) holds
for any x ∈ J . Then Σ≤m are those elements where λ = 0 is a root of f(x, ·) of multiplicity
≥ r −m; that is,

Σ≤m = {x ∈ J | a0(x) = · · · = ar−m−1(x) = 0} ⊂ J . (55)

As the spectral coefficients of x are unchanged under the automorphism group, equation (53)
and equation (54) imply

ak(h · x) = ak(x), x ∈ J , h ∈ Aut0(J ). (56)

We assert that Σ≤m is invariant under G(J ). For this, fix a Jordan frame (ci)ri=1 and let
x = λaca ∈ c ∩ Σm, using the index summation convention from Lemma 3. Define the map

Φx : Aut0(J )× Rm −→ G(J ) · x, (h, (ti)) 7→ h · exp(ltici
) · x.

Since lktici
x = tkaλaca by equation (46), it follows that

Φx(h, (ti)) = h · exp(ltici
) · x = h ·

(
etaλaca

)
, (57)

and as etaλaca ∈ Σm, the Aut0(J )-invariance of Σm implies that Im(Φx) ⊂ Σm. Moreover, it
follows that the image of the differential d(e,0)Φx is

Im d(e,0)Φx = span{ca} ⊕ Der0(J ) · x
(50)
⊂ g(J ) · x = Tx(G(J ) · x). (58)

In fact, equation (50) implies that Im d(e,0)Φx = Tx(G(J ) · x) if x = λaca ∈ c is generic in Σm,
that is, if λa 6= λb for all a 6= b.

This implies that for x ∈ c ∩ Σm generic, there is an open neighborhood U ⊂ G(J ) of the
identity such that

U · x ⊂ Im(Φx) ⊂ Σm. (59)
Thus, for X ∈ g(J ) and x ∈ c ∩ Σm generic, equation (55) implies

ak(exp(tX) · x) = 0, k = 0, · · · , r −m− 1 (60)

for |t| small enough such that exp(tX) ∈ U . As all ak are polynomials, the expressions in
equation (60) are real analytic in t, whence their vanishing for |t| small implies that they vanish
for all t ∈ R, in particular for t = 1. That is, we conclude that

ak(exp(X) · x) = 0, k = 0, · · · , r −m− 1, X ∈ g(J ) (61)

for x ∈ c ∩ Σm generic, and taking the closure, it follows that equation (61) holds for all
x ∈ c ∩ Σ≤m. Moreover, by the first part, each x ∈ Σ≤m can be written as x = h · x̃ for
x̃ ∈ c ∩ Σ≤m and h ∈ Aut0(J ). Thus, it holds

ak(exp(X) · x) = ak(h · Adh−1(X)x̃) (56)= ak(Adh−1(X) · x̃) (61)= 0,
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so that equation (61) holds for all x ∈ Σ≤m and X ∈ g(J ). Thus, by equation (55) it follows
that

exp(g(J )) · Σ≤m ⊂ Σ≤m,
and as the connected group G(J ) is generated by exp(g(J )), the asserted G(J )-invariance of
Σ≤m follows.

Since Σm = Σ≤m\Σ≤m−1 is the difference of two G(J )-invariant sets, it follows that Σm is
G(J )-invariant as well.

Next, we assert that Σn+,n− ⊂ Σm is relatively closed. For if (xk)k∈N ∈ Σn+,n− converges to
x0 ∈ Σm, then, fixing a Jordan frame (ci)ri=1, we find hk ∈ Aut0(J ) such that

yk := hk · xk =
∑
a

λa,kca, λ1,k ≥ · · · ≥ λm,k.

Since yk ∈ Σn+,n− as well, it follows that the signs of 0 6= λa,k are equal for all k. As Aut0(J ) is
compact, we may pass to a subsequence to assume that hk → h0, whence yk → h0x0, i.e.

h0x0 =
∑
a

λa,0ca, λa,0 = lim
k→∞

λa,k.

Since x0 and hence h0x0 ∈ Σm, it follows that λa,0 6= 0 for all a, whence λa,0 has the same sign
as all λa,k, so that h0x0 ∈ Σn+,n− , i.e., x0 ∈ Σn+,n− .

Thus, equation (52) is the disjoint decomposition of Σm into finitely many relatively closed
subsets, and since G(J ) and hence all orbits are connected, it follows that each G(J )-orbit
must be contained in some Σn+,n− .

On the other hand, as elements with equal spectral coefficients lie in the same Aut0(J )-orbit,
equation (57) immediately implies that G(J ) acts transitively on Σn+,n− , which completes the
proof.

For a positive Jordan algebra J we identify J and J ? by the isomorphism

[ : J −→ J ?, x 7−→ x[ := τ(x, ·),
# : J ? −→ J , # := [−1

By the spectral theorem (cf. point 4 of Proposition 4), for each ξ ∈ J ? there is a Jordan
frame (ci)ri=1 on J such that

ξ# = λici, and ξ = λic
[
i, (62)

and we define the spectral coefficients (λi)i and the spectral signature (n+, n−) of ξ to be the
spectral coefficients and signature of ξ#. We let

On+,n− ⊂ J ?

be the set of elements of spectral signature (n+, n−). Furthermore, we define the dual of τ to
be the scalar product on J ? given by

τ [(η1, η2) := τ(η#
1 , η

#
2 ) or τ [(x[1, x[2) := τ(x1, x2). (63)

For x, y ∈ J and ξ ∈ J ?, we have (l∗xξ)(y) = ξ(lxy) = τ(ξ#, lxy) = τ(lxξ#, y) = (lxξ#)[(y),
so that

l∗xξ = (lxξ#)[. (64)
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Therefore, with the help of the definition of the dual action in equation (36), it follows that

Aut0(J ) · ξ = (Aut0(J ) · ξ#)[, G(J ) · ξ = (G(J ) · ξ#)[, (65)

so that, by Theorem 1, we obtain that the orbits of the action of G(J ) on J ? are the sets
On+,n− .

The open cone of squares in J is

ΩJ := Int{x2 | x ∈ J }

Looking at the spectral decomposition in equation (49), it follows that x ∈ ΩJ iff all its spectral
coefficients are positive iff lx is positive definite, and the latter description shows that ΩJ is
indeed a convex cone; in fact, it easily follows from this characterization that

ΩJ = Or,0 = g(J ) · 1J ,

ΩJ = ⋃̇
n+≥0On+,0.

(66)

Theorem 2. Let J be a positive, simple Jordan algebra with structure group G(J ) ⊂ Gl(J ).
Then ξ ∈ J ? is mJ -regular iff the spectral coefficients (λi) of ξ satisfy:

λa + λb 6= 0 whenever λa, λb 6= 0. (67)

In particular, the G(J )-orbit On+,n− is mJ -regular iff n+ = 0 or n− = 0, i.e., iff it is contained
in ΩJ or −ΩJ .
Proof. Let x := ξ# ∈ J . By equation (65), Aut0(J ) · ξ ⊂ J · ξ iff Aut0(J ) · x ⊂ J · x = lx(J ),
and, recalling point 8 in Proposition 4, by equation (50) this condition is satisfied iff equation
(67) holds. Recalling Proposition 2, the first statement follows.

If n+, n− > 0, then evidently, On+,n− contains elements two of whose spectral coefficients
satisfy λa = −λb 6= 0, so that On+,n− is not mJ -regular.

On the other hand, on On+,0 (O0,n− , respectively) λa, λb > 0 (< 0, respectively) so that
equation (67) holds; whence On+,0 and O0,n− are the only mJ -regular orbits, and by equation
(66) these are the orbits contained in Ω̄J or −Ω̄J , respectively.

Let us now describe the pseudo-Riemannian metric G on OregmJ
. Take ξ ∈ J ? with spectral

decomposition
ξ = λac

[
a ∈ J ? ⇒ x := ξ# = λaca ∈ J (68)

for some Jordan frame (ci)ri=1, and assume it satisfies equation (67). Then, it holds

TξO = g(J ) · ξ = (g(J ) · x)[ (50)=
⊕
a,i

J [
ai, (69)

and we have the following Proposition.
Proposition 5. Let ξ = λac

[
a ∈ J ? be as above. Then, it holds

Gξ =
∑
a,i

2
λa + λi

τ [|J [
ai
, (70)

which is equivalent to

Gξ(x[ai, y[bj) =


2

λa+λi
τ [(x[ai, y[ai) if (a, i) = (b, j)

0 else
.
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Proof. For xij ∈ Jij we have

l∗xij
(ξ) (64)= (lxij

ξ#)[ = 1
2(λi + λj)x[ij. (71)

Therefore, evaluating both sides of equation (38) gives us

Gξ(l∗xai
(ξ), l∗ybj

(ξ)) = 1
4(λa + λi)(λb + λj)Gξ(x[ai, y[bj)

Gξ(l∗xai
(ξ), l∗ybj

(ξ)) = ξ({xai, ybj}) = τ(ξ#, {xai, ybj})

= τ({ξ#, xai}, ybj)
(68)= 1

2(λa + λi)τ(xai, ybj).

Since both equations must be equal, equation (70) follows as the Peirce decomposition J =⊕
ij Jij is τ -orthogonal.

Remark 2. 1. Comparing the the description of the regular points in O in Theorem 2 and
equation (70), it follows that Gξ has a pole of order 1 on O\OregmJ

.

2. As Gξ is positive or negative definite on J [
aa, depending on the sign of λa 6= 0, it follows

that Gξ is indefinite at any regular point of spectral signature (n+, n−) with n+, n− > 0.
That is, G on O is definite (and hence defines a Riemannian metric) iff O = G(J ) · ξ is
a regular orbit, iff O ⊂ ΩJ is contained in the closure of the cone of squares (G > 0) or
O ⊂ −ΩJ (G < 0).

3. It is also evident from the description of regular points in Theorem 2 that for a non-regular
orbit On+,n− with n+, n− > 0 the regular part

(
On+,n−

)reg
mJ

is not path connected.

4. Note that the Riemannian metric G on On+,0 (and similarly, −G on O0,n−) is not complete.
Namely, for t > 0, the curve

α(t) := t2(c1 + · · ·+ cn+)[ ∈ On+,0

for a Jordan frame (ci)ri=1 has constant speed with respect to G because

Gα(t)(α̇, α̇) =
n+∑
a=1

1
t2
τ(2tca, 2tca) = 4

n+∑
a=1

τ(ca, ca).

However, α cannot be extended in On+,0 at t = 0.

4.3 Examples
We shall now describe the metric G for the standard examples of positive Jordan algebras.

1. The Fisher-Rao metric for finite sample spaces
We regard J := Rn as a positive Jordan algebra whose algebraic operations are defined in
a component-wise way. Then, it is not difficult to see that ΩJ can be identified with the
first orthant Rn

+ ⊂ Rn ∼= J ?. The metric Gξ at ξ = (ξ1, . . . , ξn) ∈ ΩJ is given by

Gξ(u, v) =
∑
i

1
ξi
uivi, u = (ui)ni=1, v = (vi)ni=1 ∈ Rn.
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When interpreting ΩJ as the set of positive finite measures on Xn = {1, . . . , n}, it is clear
that G is such its pullback to the submanifold of strictly positive probability distributions
on Xn (i.e., open interior of the unit simplex inside Rn

+) coincides with the Fisher-Rao-
metric tensor which naturally occurs in Classical Information Geometry [2, 3]. As partially
noted in [8, 9], this instance shows that we may look at the non-normalized Fisher-Rao
metric tensor on ΩJ = Rn

+ as the analogue of the homogeneous symplectic form on
co-adjoint orbits in the case of Lie algebras.

2. The Jordan algebras M sa
n (K), K = R,C,H.

Let K denote either the real, complex or quaternionic numbers, and we define the Jordan
algebra of self-adjoint matrices

M sa
n (K) := {A ∈ Kn×n | A = A∗}, {A,B} := 1

2(AB +BA).

For convenience, we replace τ from equation (43) by the associative inner product

τ̂(A,B) := Tr(AB),

so that τ and τ̂ only differ by the multiplicative constant 1
n

dimRM
sa
n (K).

Let Eij ∈ Kn×n denote the matrix with a 1 in the (i, j)-entry. Then {E11, . . . , Enn} is a
Jordan frame of M sa

n (K), and the remaining Pierce spaces with respect to this frame are
given as

(M sa
n (K))ij = {zEij + z̄Eji | z ∈ K}, i < j.

For K = R,C and H the automorphism group of M sa
n (K) is SO(n), U(n) and Sp(n),

respectively, acting on M sa
n (K) by conjugation. Thus, in particular, each A ∈M sa

n (K) is
diagonalizable by an element in the automorphism group, so that the spectral coefficients
are the eigenvalues of A. Thus, by Proposition 5, for ξ = λaE

[
aa ∈ (M sa

n (K))? the metric
Gξ reads

Gξ(zE[
ai, wE

[
bj) =


2

λa+λi
(zw̄ + wz̄) if (a, i) = (b, j)

0 else
.

Moreover, because of Proposition 1, it follows that G is preserved by the automorphism
group of M sa

n (K).
As already mentioned in the introduction, and in accordance with the results put forward
in [8, 9], an interesting link between Jordan algebras and Quantum Information Geometry
appears when K = C. In this case, we may identify M sa

n (C) with the Jordan algebra of
self-adjoint observables of a finite-level quantum system with Hilbert space H ∼= Cn. Then,
if we focus on the mJ -regular orbit ΩJ of faithful, non-normalized quantum states, which
can be identified with the dual of the orbit of invertible positive matrices in M sa

n (C), the
metric tensor G is such that its pullback to the submanifold of faithful quantum states,
determined by the condition Tr(A) = 1, coincides with the so-called Bures-Helstrom
metric tensor [5, 10, 11, 18, 19, 20, 21, 34, 40, 42, 43]. Analogously, if we focus on the
mJ -regular orbit through non-normalized pure states, which are identified with rank one
matrices in M sa

n (C), the metric tensor G is such that its pullback to the submanifold of
pure states, determined by the condition Tr(A) = 1, is a multiple of the Fubini-Study
metric tensor, essentially because of its unitary invariance. Accordingly, and in analogy
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with the Fisher-Rao metric tensor seen before, we may think of the non-normalized version
of the Bures-Helstrom metric tensor and of the Fubini-Study metric tensor as the analogue
of the Kostant-Kirillov-Souriau symplectic form in the case of the Jordan algebra M sa

n (C).

3. The spin-factor Jordan algebra J Spin(n).
Denoting the standard inner product of Rn by 〈·, ·〉, we let

J Spin(n) := Rn+1 = R1⊕ Rn, {x, y} := 〈x, y〉1, x, y ∈ Rn,

and where 1 is the identity element of J Spin(n). An associative inner product is given by

τ̂ |Rn = 〈·, ·〉, τ̂(1,1) := 1, τ̂(1,Rn) = 0.

The automorphism group is SO(n), acting on Rn and fixing 1. Every Jordan frame is
given by {1

2(1 + e0), 1
2(1− e0)

}
for a fixed unit vector e0 ∈ Rn, and the Peirce space complementary to the Jordan frame
is

J Spin(n)12 := e⊥0 .

The two spectral coefficients of an element X = t1 + x are

λ1 = 1
2(t+ ‖x‖), λ2 = 1

2(t− ‖x‖),

where ‖ · ‖ denotes the norm on Rn induced by 〈·, ·〉. Therefore, ξ ∈ J Spin(n)? is regular
iff 0 6= λ1 + λ2 = τ̂ [(ξ,1[). If

ξ = t01[ + s0e
[
0 ∈ J Spin(n)?, t0 6= 0

is regular, where e0 ∈ Rn is a unit vector, then the tangent vectors X1, X2 ∈ TξO are of
the form

Xi = ti1[ + sie
[
0 + x[i,

where xi ∈ e⊥0 , and where t0 = ±s0 ⇒ ti = ±si. The spectral coefficients of ξ are
λ1 = 1

2(t0 + s0) and λ2 = 1
2(t0 − s0), and

Xi = (ti + si)
1
2(1 + e0)[ + (ti − si)

1
2(1− e0)[ + x[i.

Therefore

Gξ(X1, X2) = 2
t0 + s0

(t1 + s1)(t2 + s2) + 2
t0 − s0

(t1 − s1)(t2 − s2)

+ 2
t0
〈x1, x2〉

This metric is positive definite if t0 ≥ |s0| and negative definite if t0 ≤ −|s0|, as predicted
by Proposition 5.
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Remark 3. According to the classification given in [16, Theorem V.3.7], the first two
classes of examples discussed above give a complete list of simple, positive Jordan algebras up
to the Albert algebra, a 27-dimensional simple Jordan algebra of rank 3. Its automorphism
group is F4 and the structure algebra is of type E6.
While it would be possible but elaborate to calculate the regular points and the inner product
G on the tangent to the orbit at a regular point, our results in Theorem 2 and Proposition
5, allow to understand the structure without these explicit calculations.

4. Non-simple, semi-simple positive Jordan algebras
By point 1 of Proposition 4, each positive, semi-simple Jordan algebra admits a decomposition
J = J1⊕· · ·⊕Jk into positive simple Jordan algebras, so that both the automorphism and
the structure group of J is the direct sum of the automorphism and structure group of the
simple factors Ji, respectively. Then, applying Theorem 1, Theorem 2, and Proposition 5,
it follows that the G(J )-orbits are of the form

O1
n1

+,n
1
−
× · · · × Oknk

+,n
k
−
⊂ J ? = J ?

1 ⊕ · · · ⊕ J ?
k ,

where Oini
+,n

i
−
⊂ J ?

i are G(Ji)-orbits. In particular, such an orbit is regular iff ni+ni− = 0
for all i, and the metric G on the regular part of this orbit is given by (70).
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