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Abstract

Consider an infinite horizon partially observable Markov decision process. We show that the optimal discounted reward
under memoryless stochastic policies is continuous under perturbations of the observation channel. This implies that
we can find approximately optimal memoryless policies by solving an approximate problem with a simpler observation
channel.
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1 Introduction

Policy optimization in partially observable Markov decision processes (POMDPs) is known to be a difficult problem. In
order to better understand this problem, we can study special cases where the system has some additional structure (e.g.,
the observations identify the world state to within a few possibilities), or we can also restrict the optimization problem to
policies with some additional structure (e.g., memoryless policies). The optimization problem over memoryless policies
has been discussed in various works (see, e.g., Ross) [1983; |Vlassis et al., 2012; | Azizzadenesheli et al., 2016).

In this context, the connections between information, memory and value are of particular interest (see Kaelbling et al.,
1998). We are interested in the relations that exist between the observation channel, on the one hand, and the structure of
the optimal memoryless policies, on the other hand. In particular, we are interested in whether certain types of POMDP
optimization problems allow for optimal or nearly optimal policies that have a particularly simple structure.

Previous work in this direction has characterized families of policies that contain optimal memoryless policies for any
POMDP of a particular type (see [Montafar and Rauhj, 2017; Montufar et al.,|2015; Montufar et al., [2015). In particular,
these works consider the number of actions that a memoryless policy needs to randomize at a given observation, depend-
ing on the number of world states that are compatible with that observation. In other words, depending on the properties
of the observation channel, they conclude that there exists a simple optimal memoryless policy. A natural question is: If
the observation channel nearly satisfies the conditions under which it is known that a simple optimal policy exists, can
we conclude that there exists a simple policy that is nearly optimal? In this short article, we show that this is indeed the
case. Thereby, we contribute to the understanding of approximate memoryless stochastic planning in POMDDPs.

2 POMDPs and localization of optimal policies

We briefly introduce the definitions and settings.
Definition 1. A Partially Observed Markov Decision Process (POMDP) is a tuple (W, S, A, o, 5, R) consisting of

1. finite sets W (world states), S (sensor states/observations) and .4 (actions),
2. Markov kernels/channels o : W x A — W (world state transition) and 5 : W — S (observation channel),
3. and a reward function R : W x A — R.

A Markov decision process (MDP) is the special case where 5 conveys full information about the world state.

We consider time independent memoryless stochastic policies.

Definition 2. A policy is a Markov kernel 7 : S — A. Denote Ag 4 the set of all such policies.
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Figure 1: The graphical structure of a POMDP.

A POMDYP, a policy 7, and a starting distribution x on W, together, define a stochastic process (W, S, A");, which is a
sequence of random variables (W*); (world states), (S*); (sensor states), and (A"); (actions). The graph1ca1 structure is
shown in Figure

We consider infinite horizon discounted rewards.

Definition 3. Given a POMDP and a policy 7, the discounted reward with discount factor + is

R ( Z’y ZRwa W =w, A" = a).

We denote R, = sup,ca, , R+(7) the optimal value over the set of memoryless stochastic policies.

We are interested in the following theorem by |[Montafar and Rauh| (2017), which provides a type of extension of the well
known fact that any MDP has an optimal policy over the set of memoryless stochastic policies which is deterministic.
Given7: S — A, let supp(w(:|s)) = {a € A: w(als) > 0}.

Theorem 4. Consider a POMDP (W, S, A, «, B, R). Then there is a policy 7* € Ag 4 with | supp(7*(-|s))| < |supp(B(s|-))| for
all s € S, and R+ (7*) > Ry (r) forall m € Ag 4.

This result implies that, in order to optimize a POMDP over the set of memoryless stochastic policies, it suffices to
consider a subset of policies. This can be translated into a choice of a policy model with few parameters or also into
heuristics for the policy optimization. The result is optimal in the sense that there are POMDPs (W, S, A, «, 8, R) where
each policy 7* € Ag 4 with R, (7*) > R (m) for all m € Ag 4 satisfies | supp(7*(-|s))| > | supp(B(s|-))|.

A problem with Theorem [ is that, in concrete situations, we might not be able to exclude world states with absolute
certainty, meaning that | supp(8(s|-))| = |W|. Moreover, the number of world states might be as large or larger than the
number of possible actions, |W| > | A|, in which case the statement of the theorem is vacuous.

3 Continuity of the reward and localization of nearly optimal policies
In order to remedy the shortcomings of Theorem[4} we need a continuous version of the characterization. Our continuous

extension is as follows. We show that if the observation channel £ is close to some other channel 4, in an appropriate
sense, then we can find a near to optimal policy 7 with | supp(n(-|s))| < | supp(8’(s|-))| forall s € S.

Theorem 5. Consider a POMDP with v < 1 and ||RHOO = MaXy,q |[R(w, a)|. Let 5’ be a Markov kernel VW — S that satisfies
1B(-|w) = B'(-lw)|lrv = Z |B(s|lw) — B'(slw)| < e forallw e W.

Then there is a policy 7 that satisfies | supp(7(-|s))| < |bupp( '(s]))| for all s and R (7) > R

We prove this theorem based on a continuity result for the discounted reward function with respect to the observation
channel.

Theorem 6. Consider two POMDPs (W, S, A, a, 8, R) and (W, S, A, a, B, R) that satisfy
/ 1 !
1BC1w) = B Clw)llrv = 5 D |B(slw) = B'(slw)| < € forallw € W.
Then the discounted reward functions R, R’ of the two POMDPs satisfy
IRy (m) = RL ()| < ﬁHRHw for any policy m € Ag 4 and any v < 1,

where || R|| o := maxy, o |R(w, a)|. This implies, in particular, |R> — R| <

We present the proofs in the following section.



4 Proofs of the continuity result

Lemma 7. Under the assumptions of Theorem @ denote by A*, W the action and world process of the POMDP with (3, and denote
by A", W't the action and world process of the POMDP with (', where both POMDPs are controlled by the same policy 7. Then,

|Pr(A" = a|W' = w) — Pr(A" = a|W" =w)| < e forall a,w.

Proof. (Proof of Lemma@ The inequality follows from
Pr(A! = a|W! = w)— Pr(A" = a|W" = w)‘

S (als) (B(she) — 6’(8|w))‘

S

Yo wlals)(Blslw) — B (s|w)) - Y wlals)(B (slw) - 5(Slw))‘

s:B(s|w)>B’ (s|w) s:8" (s|w)>pB(s|w)
Smax{ Y Bl - B, Y W(als)(ﬂ’(slw)—ﬁ(slw))}
B(s|lw)>p’(s|w) s:B(s|lw)>pB(s|w)

§max{ . Z (B(s|w) — B'(s|w)), Z (B (slw) — 5(8|w))}

B(slw) 2B (s|w) 518/ (s|w)>B(s|w)
= / . —_— . TV'
18°(-lw) = B(:|w)|

O
Lemma 8. Under the assumptions of Lemmal[7} for all t > 0,
Pr(A'W' = aw) — Pr(A"W" = aw)| < (t + 1)e la
> I Px( ) = Pr( )< (41, (1a)
D IPr(W! = w) — Pr(W" = w)| < te. (1b)

w

Proof. (Proof of Lemma [8) The proof is by induction. For ¢t = 0, Pr(W° = w) = Pr(W" = w), so holds for ¢ = 0.
Assuming that (Ib) holds for some ¢,

Z | Pr(A'W! = aw) — Pr(A"W" = aw)|
<Z|Pr —Pr(W' = |Z\Pr t=a|W! = w)|
—|—Z|Pr t= oW = w) —Pr(A’t = a|W' = w)||Pr(W" = w)|

< Z|Pr —Pr(W' = w)|
+SupZ|Pr P =a|W'=w) — Pr(A" = a|W'" = w)|

<tet+e=(t+1)e
Assuming that (Ta) holds for t — 1,

S IPr(W' = w) — Pr(W" = w)|
=2

< Z Za(w|a, w')‘ Pr(A™'Wi! = qw’) — Pr(A"'W" = aw’)

a,w’ w

=3

a,w’

Z (w]a,w")(Pr(A"™'W' ! = aw’) — Pr(A" "Wt = aw’))‘

Pr(At—lwt—l — aw/) _ Pr(A/t—lwlt—l _ CL’U)/) < te.




Proof. (Proof of Theorem[f) Using

> 1 & 0 = a 1 1
t+ 1)t == At = — t_— — —
Srin =13 0= g St =g =

t=0 = t=0

and Lemmalg]
[R(m) = R(x")|

< (1 - ’Y)ZZ’VtR(waa”P(WtaAt = w7a) - P(W/t7A,t = w7a)‘

t=0 w,a

> €
< @=7)3 2 VI Rlste = 7 IRl
t=1
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Let R(f, ) be the expected reward for observation kernel 5 and policy .

Lemma 9. Let R, R, be the discounted reward functions of two POMDPs (W, S, A, o, B, R), W, S, A, o, B', R), and suppose
that there exists ¢ > 0 with |R(m)—R. ()| < cfor all policies 7. If n'* is the optimal policy for R! , then R > R (7") > R% —2c.

Proof. (Proof of Lemma@) The first inequality is by definition of Rf/ For any policy 7 for R,
Ry(n"™) >R (™) —ec >R/ (7) —c > R (m) — 2¢.

The second inequality follows when 7 is an optimal policy for R.,. O

Proof. (Proof of Theorem [p) This follows from Theorem [f|and Lemma [9]and Theorem [4] O

5 Discussion

We presented a continuity result that extends the applicability of previous theoretical results on the structure of optimal
policies of POMDPs, and allows us to discuss approximately optimal policies. Continuity, in the way that we studied
here, could be investigated not only in terms of the observation channel, but also in terms the state transition kernel.
These continuity results might also serve to make statements about consistency in policy optimization in reinforcement
learning, when the agent needs to estimate the world model (i.e., the kernels 5 and «).
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