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Abstract

The degenerate Keller-Segel type system{
ut = ∇ · (um−1∇u)−∇ · (u∇v), x ∈ Ω, t > 0,

0 = ∆v − µ+ u,
∫

Ω
v = 0, µ = 1

|Ω|
∫

Ω
u, x ∈ Ω, t > 0,

is considerd in balls Ω = BR(0) ⊂ Rn with n ≥ 1, R > 0 and m > 1.

Our main results reveal that throughout the entire degeneracy range m ∈ (1,∞), the interplay
between degenerate diffusion and cross-diffusive attraction herein can enforce persistent localization
of solutions inside a compact subset of Ω, no matter whether solutions remain bounded or blow
up. More precisely, it is shown that for arbitrary µ > 0, σ ∈ (0, 1) and θ ∈ (0, σ) one can find
R? = R?(n,m, µ, σ, θ) > 0 such that if R ≥ R? and u0 ∈ L∞(Ω) is nonnegative and radially
symmetric with 1

|Ω|
∫

Ω
u0 = µ and

1

|Br(0)|

∫
Br(0)

u0 ≥
µ

θn
for all r ∈ (0, θR),

then a corresponding zero-flux type initial-boundary value problem admits a radial weak solution
(u, v), extensible up to a maximal time Tmax ∈ (0,∞] and satisfying limt↗Tmax ‖u(·, t)‖L∞(Ω) =∞
if Tmax <∞, which has the additional property that

suppu(·, t) ⊂ BσR(0) for all t ∈ (0, Tmax).

In particular, this conclusion is seen to be valid whenever u0 is radially nonincreasing with suppu0 ⊂
BθR(0).
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1 Introduction

The literature concerned with the detection of taxis-driven phenomena in Keller-Segel type bound-
ary value problems has concentrated to a large percentage on questions related to the emergence of
structures. Indeed, strong indications for the ability of such systems to describe pattern formation
have become manifest not only in results on richly structured equilibrium sets ([44], [37], [17], [16]),
but beyond this also in a meanwhile considerable collection of findings on spontaneous singularity
formation and their related mechanisms and scalings ([27], [23], [22], [41], [4], [49]; see also the surveys
[24], [25] and [36]).

In comparison to this, aspects of mass propagation appear to have been understood to a significantly
lower extent, and large parts of the literature in this regard seem devoted to issues naturally requiring
unboundedness of the underlying physical domain as a prerequisite. In fact, various facets of wave-like
transport mechanisms, mainly in contexts of particular solutions reflecting traveling fronts, have been
addressed quite thoroughly in the literature over the past few years (see [43], [39], [10], [26], [31] for a
small selection of examples and [48] for an overview), and in certain Cauchy problems also some state-
ments on asymptotic self-similarity of solutions emanating from fairly general spatially decaying initial
data have been derived ([38], [34]). The knowledge on possible influences of chemotactic cross-diffusion
on population distributions initially confined to a bounded region, however, so far seems essentially
limited to results on temporally local features such as finite speed of propagation, asserting finite
speed of support propagation ([21], [32], [45]). One exception can be found in [32], where a statement
on persistent localization in a Cauchy problem in Rn has been derived, but possibly involving large
eventual positivity sets.

Main results: Quantitative control of localization in chemotaxis systems with arbitrary
porous medium diffusion. In connection to the latter, the present study will be devoted to the
discovery of a genuinely taxis-driven effect on spatial localization throughout evolution, arbitrarily
strong in the sense that the maximum possible support can a priori be asserted to remain close to the
corresponding initial positivity set.

The specific framework within which this will be examined is the zero-flux type initial-boundary value
problem 

ut = ∇ · (um−1∇u)−∇ · (u∇v), x ∈ Ω, t > 0,

0 = ∆v − µ+ u,
∫

Ω v = 0, µ = 1
|Ω|
∫

Ω u0, x ∈ Ω, t > 0,

(um−1∇u− u∇v) · ν = ∇v · ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

in a smoothly bounded domain Ω = BR(0) ⊂ Rn. Our subsequently standing assumption m > 1 will
let us exclusively focus on a degenerate version of the classical Keller-Segel system ([30]), simplified
here to a parabolic-elliptic variant according to a standard model reduction argument based on a fast
signal diffusion assumption (see [27], [4] and the discussion at the end of this paper). As is well-
known from a comprehensive literature on porous medium problems, one of the core characteristics
of the taxis-free counterpart of (1.1), as formed by the corresponding problem for the scalar equation
ut = ∇· (um−1∇u), consists in the fact that the support of any nontrivial nonnegative initial data will
propagate at an at most finite speed, and coincide with all of Ω after some finite time ([1]).

Our main results will reveal that this key spreading tendency of nonlinear diffusion can be counteracted
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by the attractive cross-diffusion/taxis mechanism in (1.1) in such a way that even persistent localiza-
tion within the interior of Ω can be observed, throughout the entire degeneracy range m ∈ (1,∞).

Indeed, resorting to radial symmetry so as to make (1.1) accessible to a comparison argument to be
described in Sections 2-4, we shall see that solutions to (1.1) can persistently have their spatial positiv-
ity set remain in an arbitrarily close neighborhood of their initial support, in the sense quantitatively
described in the following main statement of this note:

Theorem 1.1 Let n ≥ 1,m > 1, µ > 0 and 0 < θ < σ < 1. Then there exists R? = R?(n,m, µ, σ, θ) >
0 such that whenever Ω = BR(0) ⊂ Rn with some R ≥ R? and u0 ∈ L∞(Ω) is nonnegative and radially
symmetric and satisfies 1

|Ω|
∫

Ω u0 = µ as well as

1

|Br(0)|

∫
Br(0)

u0 ≥
µ

θn
for all r ∈ (0, θR), (1.2)

one can find Tmax ∈ (0,∞] and at least one radial weak solution (u, v) of (1.1) in Ω× (0, Tmax) in the
sense of Definition 2.1, having the properties that

if Tmax <∞, then ‖u(·, t‖L∞(Ω) →∞ as t↗ Tmax, (1.3)

and that additionally

u(·, t) ≡ 0 a.e. in Ω \BσR(0) for all t ∈ (0, Tmax). (1.4)

A straightfoward consequence thereof replaces (1.2) with a more convenient though slightly stronger
set of assumptions on the initial data:

Corollary 1.2 Let n ≥ 1,m > 1, µ > 0, σ ∈ (0, 1) and θ ∈ (0, σ), and let Ω = BR(0) ⊂ Rn for some
R ≥ R? with R? = R?(n,m, µ, σ, θ) > 0 as given by Theorem 1.1. Then for any nonnegative radially
symmetric u0 ∈ L∞(Ω) with 1

|Ω|
∫

Ω u0 = µ which is such that u0 is nonincreasing with respect to |x|,
and which moreover satisfies

suppu0 ⊂ BθR(0), (1.5)

the problem (1.1) possesses a radial weak solution (u, v), extended up to a maximal time Tmax ∈ (0,∞]
fulfilling (1.3), which furthermore has the property that

suppu(·, t) ⊂ BσR(0) for all t ∈ (0, Tmax). (1.6)

Remark. i) Especially in view of the circumstance that the localization result in [32] seems to
strongly depend on the assumption m > 2− 2

n made there, let us emphasize that by covering the whole
degeneracy range m ∈ (1,∞), our results particularly apply to the case when n ≥ 3 and m ∈ (1, 2− 2

n),
in which some radial solutions to (1.1) may blow up in finite time (see [15]).

ii) As will become clear in the course of our analysis, the results of Theorem 1.1 and Corollary 1.2
extend to ∆D(u) in place of ∇(um−1∇u) if D is suitably regular and behaves in a way appropriately
controllable by that of u 7→ um . Further, variants of (1.1) containing arbitrary positive factors for its
summands are included in our setting; cf. also the discussion near the end of this manuscript.

iii) Unlike in the scalar porous medium equation, uniqueness seems unclear unless additional assump-
tions on Hölder continuity are imposed ([33]). According to the standard parabolic regularity result
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from [42], this additional property is satisfied when m < 3; for stronger degeneracies, however, this
seems unknown.

iv) Connections to results on so-called aggregation equations will be given in the discussion at the
end of this paper.

2 Preliminaries. Preparations for a comparison argument

In order to outline the basis of our strategy, we recall a procedure well-known from [27], and prepare
a reduction to a scalar parabolic setting accessible to comparison arguments: Given a nonnegative
radial function u0 ∈ L∞(Ω) in Ω = BR(0) ⊂ Rn with 1

|Ω|
∫

Ω u0 = µ, and assuming (u, v) to be a

suitably regular radially symmetric solution of (1.1) in Ω × (0, T ) for some T ∈ (0,∞] with u ≥ 0
a.e. in Ω× (0, T ), we observe that defining

w(s, t) :=

∫ s
1
n

0
ρn−1u(ρ, t)dρ, s ∈ [0, Rn], t ∈ (0, T ), (2.1)

and, accordingly,

w0(s) :=

∫ s
1
n

0
ρn−1u0(ρ)dρ, s ∈ [0, Rn], (2.2)

introduces a function w which satisfies ws ≥ 0 a.e. in (0, Rn)× (0, T ), and which should solve
wt = n2s2− 2

nwm−1
s wss + nwws − µsws, s ∈ (0, Rn), t ∈ (0, T ),

w(0, t) = 0, w(Rn, t) = µRn

n , t ∈ (0, T ),

w(s, 0) = w0(s), s ∈ (0, Rn),

(2.3)

in an appropriate sense (cf. also [15]). Our approach will now be guided by the idea that if from
whatever source we can find stationary subsolutions w = w(s) to this problem satisfying w ≡ µRn

n
on (s0, R

n) with some s0 ∈ (0, Rn), then whenever u0 is such that the function w0 in (2.2) satisfies
w0 ≥ w, a comparison argument should assert that throughout evolution we have w ≥ w and hence,
by conservation of mass and (2.1), suppu ⊂ B

s
1
n
0

(0).

In order to substantiate this in the context of appropriately regularized variants of (1.1) for which
a comparison principle can rigorously be derived, let us consider the non-degenerate approximations
given by 

∂tuε = ∇ · ((uε + ε)m−1∇uε)−∇ · (uε∇vε), x ∈ Ω, t > 0,

0 = ∆vε − µ+ uε,
∫

Ω vε = 0, µ = 1
|Ω|
∫

Ω u0, x ∈ Ω, t > 0,
∂uε
∂ν = ∂vε

∂ν = 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), x ∈ Ω,

(2.4)

for ε ∈ (0, 1). For the family of these uniformly parabolic problems, the following quantitative version
of a local-in-time existence statement can essentially be imported from known literature.
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Lemma 2.1 Let Ω = BR(0) ⊂ Rn with n ≥ 1 and R > 0, and let m > 1 and µ > 0. Then for all
M > 0 there exists a time T (M) > 0 with the following property: Whenever u0 ∈ L∞(Ω) is radially
symmetric with 0 ≤ u0 ≤M a.e. in Ω, for each ε ∈ (0, 1) the boundary value problem in (2.4) possesses
at least one classical solution (uε, vε) with{

uε ∈ C2,1(Ω× (0, T (M))) and

vε ∈ C2,0(Ω× (0, T (M))),
(2.5)

for which uε(·, t) and vε(·, t) are radially symmetric for all t ∈ (0, T (M)) with

0 < uε ≤M + 1 in Ω× (0, T (M)), (2.6)

and for which in addition uε ∈ C0([0, T (M));L1(Ω)).
Moreover, one can find (εj)j∈N ⊂ (0, 1) and a radial weak solution (u, v) of (1.1) in Ω × (0, T (M))
such that εj ↘ 0 as j →∞ and

uε → u a.e. in Ω× (0, T (M)) as ε = εj ↘ 0.

Proof. Using that for fixed ε ∈ (0, 1) the problem (2.4) is non-degenerate, one can derive all
statements by combining arguments well-established in the context of parabolic-elliptic chemotaxis
systems (cf. e.g. [15], [19]) with standard arguments from elliptic and parabolic regularity theory, as
well as the strong maximum principle. �

In their respective versions accordingly transformed in the style of (2.1)-(2.3), these non-degenerate
problems (2.4) now indeed allow for a comparison principle. The following lemma in this regard
can be viewed as reducing a more general statement presented in [3, Lemma 5.1] to the particular
nonlinearities present in (2.4). Although in its original formulation the corresponding statement in
the latter reference requires slightly stronger regularity assumptions, a verbatim copy of its proof can
readily be seen to cover also the present setting.

Lemma 2.2 Let L > 0 and T > 0, and suppose that w and w are two functions from C0([0, L] ×
[0, T )) ∩ C1((0, L)× (0, T )) for which ws and ws belong to L∞loc([0, L]× [0, T )), and which satisfy

ws(s, t) > 0 and ws(s, t) > 0 for all s ∈ (0, L) and t ∈ (0, T )

as well as

w(·, t) ∈W 2,∞
loc ((0, L)) and w(·, t) ∈W 2,∞

loc ((0, L)) for all t ∈ (0, T ).

Then if for all t ∈ (0, T ) and a.e. s ∈ (0, L),

wt − n2s2− 2
n (ws + ε)m−1wss − nwws + µsws ≤ 0 ≤ wt − n2s2− 2

n (ws + ε)m−1wss − nwws + µsws

if

w(s, 0) ≤ w(s, 0) for all s ∈ (0, L)

and if

w(0, t) ≤ w(0, t) and w(L, t) ≤ w(L, t) for all t ∈ (0, T ),

we have

w(s, t) ≤ w(s, t) for all s ∈ [0, L] and t ∈ [0, T ).
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In order to formulate a template for our final conclusion thereof concerning the original problem (1.1),
let us now specify the concept of weak solvability to be pursued in the sequel.

Definition 2.1 Let n ≥ 1, R > 0,m > 0, µ > 0 and T ∈ (0,∞], and assume that u0 ∈ L∞(Ω) is
nonnegative and radially symmetric in Ω = BR(0) ⊂ Rn with 1

|Ω|
∫

Ω u0 = µ. Then by a radial weak

solution of (1.1) in Ω× (0, T ) we mean a pair of radially symmetric functions u and v on Ω× (0,∞)
such that u ≥ 0 a.e. in Ω× (0,∞), that{

u ∈ L∞loc
(
Ω× [0, T )

)
with um ∈ L2

loc

(
[0, T );W 1,2(Ω)

)
and

v ∈ L∞loc
(
[0, T );W 1,2(Ω)

) (2.7)

and that both

−
∫ T

0

∫
Ω
uϕt −

∫
Ω
u0ϕ(·, 0) = − 1

m

∫ T

0

∫
Ω
∇um · ∇ϕ+

∫ T

0

∫
Ω
u∇v · ∇ϕ (2.8)

and ∫ T

0

∫
Ω
∇v · ∇ϕ = −µ

∫ T

0

∫
Ω
ϕ+

∫ T

0

∫
Ω
uϕ (2.9)

hold for all ϕ ∈ C∞0 (Ω× [0, T )).

Remark. i) As (2.7) asserts that for any radial weak solution (u, v) in Ω × (0, T ) we know that
− 1
m∇u

m + u∇v ∈ L2
loc(Ω × [0, T )) and that hence ut ∈ L2

loc

(
[0, T ); (W 1,2(Ω))?

)
, it follows that after

redefining u on a null set of times we may assume that actually u belongs to C0([0, T );L2(Ω)).

ii) On the basis of (2.8) it can readily be checked that according to i), any radial weak solution (u, v)
in Ω× (0, T ) enjoys the mass conservation property∫

Ω
u(·, t) =

∫
Ω
u0 for all t ∈ (0, T ). (2.10)

The following lemma now combines Lemma 2.1 with Lemma 2.2 to establish the main result of this
section, which fleshes out the essence of our subsequent ambitions.

Lemma 2.3 Let n ≥ 1, R > 0, m > 1 and µ > 0, and suppose that there exists a family of functions
F ⊂ W 2,∞((0, Rn)) such that for all w ∈ F we have ws > 0 in [0, Rn], and that for any such w we
can find ε?(w) ∈ (0, 1) with the property that

n2s2− 2
n (ws + ε)m−1wss + nw ws − µsws ≥ 0 for a.e. s ∈ (0, Rn) and all ε ∈ (0, ε?(w)). (2.11)

Moreover, suppose that u0 ∈ L∞(Ω) is nonnegative and radially symmetric with 1
|Ω|
∫

Ω u0 = µ, and

that the function w0 from (2.2) satisfies

w0(s) ≥ w(s) for all s ∈ (0, Rn) and each w ∈ F . (2.12)

Then there exist T > 0 and a radial weak solution (u, v) of (1.1) in Ω × (0, T ) for which in addition
we have

w(s, t) ≥ w(s) for all s ∈ (0, Rn), t ∈ (0, T ) and w ∈ F , (2.13)

with w as defined in (2.1).
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Proof. An application of Lemma 2.1 to M := ‖u0‖L∞(Ω) yields T (M) > 0 such that for all
ε ∈ (0, 1), the boundary value problem in (2.4) possesses a radially symmetric classical solution
(uε, vε) ∈ C2,1(Ω × (0, T (M))) × C2,0(Ω × (0, T (M))) with 0 ≤ uε ≤ M + 1 and the regularity
properties listed in (2.5). Since in particular uε lies in C0([0, T (M));L1(Ω)) ∩ C2,1(Ω × (0, T (M))),

it follows that wε(s, t) :=
∫ s 1

n

0 ρn−1uε(ρ, t)dρ, s ∈ [0, Rn], t ∈ [0, T (M)), defines a function wε on
[0, Rn]× [0, T (M)) which does not only belong to C2,1((0, Rn]×(0, T (M))) but moreover is continuous
in all of [0, Rn]× [0, T (M)), and which, as can be seen similarly to the derivation of (2.3), is a classical
solution of the problem

∂twε = n2s2− 2
n (∂swε + ε)m−1∂2

swε + nwε∂swε − µs∂swε, s ∈ (0, Rn), t ∈ (0, T (M)),

wε(0, t) = 0, wε(R
n, t) = µRn

n , t ∈ (0, T (M)),

wε(s, 0) = w0(s), s ∈ (0, Rn).

(2.14)

Now for fixed w ∈ F and ε? = ε?(w) taken from our hypothesis, (2.14) together with (2.12) clearly
implies that wε(0, t) ≥ w(0) and wε(R

n, t) ≥ w(Rn) for all t ∈ (0, T (M)) and any ε ∈ (0, ε?), whence in
view of the subsolution feature in (2.11) the comparison principle from Lemma 2.2 becomes applicable
so as to assert that the initial ordering property (2.12) is inherited by wε in the sense that

wε(s, t) ≥ w(s) for all s ∈ (0, Rn), any t ∈ (0, T (M)) and each ε ∈ (0, ε?). (2.15)

Now since from Lemma 2.1 we moreover know that with (εj)j∈N ⊂ (0, 1) as provided there and some
radial weak solution (u, v) of (1.1) in Ω× (0, T (M)) we have uε → u a.e. in Ω× (0, T (M)) and thus, by
boundedness of (uε)ε∈(0,1) in L∞(Ω× (0, T (M))), also uε(·, t)→ u(·, t) in L1(Ω) for a.e. t ∈ (0, T (M))
as ε = εj ↘ 0, according to the Fubini-Tonelli theorem and the dominated convergence theorem.
Therefore, (2.15) implies that for this solution and the correspondingly defined function w from (2.1)
we have

w(·, t) ≥ w in (0, Rn) for a.e. t ∈ (0, T (M)) and all w ∈ F .

As also w is continuous in Ω× [0, T (M)) by L1(Ω)-valued continuity of u, this establishes (2.13). �

3 Construction of stationary subsolutions

In accordance with the above, the purpose of this core section now consists in the constrution of
an appropriate family F of functions to be used in Lemma 2.3. Our candidates for such stationary
subsolutions will exhibit a tripartite structure, the outer two parts of which will be described in the
following.

Lemma 3.1 Let n ≥ 1, R > 0,m > 1, µ > 0, 0 < λ < κ < 1, γ ≥ 1 and η > 0, and suppose that

A >
µ

n(κ− λ+ γλ) ·
(

(κ− λ)Rn + η
)γ−1 . (3.1)

Then

wmid(s) :=
{µ
n
− (1− κ)γAηγ−1

}
·Rn +Aηγ −A(κRn + η − s)γ , s ∈ [λRn, κRn], (3.2)
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and

wout(s) :=
µRn

n
− γAηγ−1(Rn − s), s ∈ [κRn, Rn], (3.3)

satisfy
∂swmid(s) = γA(κRn + η − s)γ−1 for all s ∈ [λRn, κRn] (3.4)

and
wmid(κR

n) = wout(κR
n) (3.5)

as well as
∂swmid(κR

n) = ∂swout(κR
n) (3.6)

and
wmid(λR

n) < λRn · ∂swmid(λRn). (3.7)

Proof. The properties in (3.4), (3.5) and (3.6) can be verified by direct computation. To see that
(3.1) ensures (3.7), we use (3.4) along with the inequalities η ≥ 0 and γ ≥ 1 in estimating

wmid(λR
n)− λRn · ∂swmid(λRn)

=
{µ
n
− (1− κ)γAηγ−1

}
·Rn +Aηγ −Aη

(
(κ− λ)Rn + η

)γ−1

−(κ− λ+ γλ)Rn ·A
(

(κ− λ)Rn + η
)γ−1

≤ µRn

n
− (κ− λ+ γλ)Rn ·A

(
(κ− λ)Rn + η

)γ−1

< 0

due to (3.1). �

Here the inequality (3.7) provides a key for a linear extension of these candidates to globally C1-regular
functions, possible whenever the parameter η is suitably small.

Lemma 3.2 Let n ≥ 1, R > 0,m > 1, µ > 0, 0 < λ < κ < 1 and γ ≥ 1, and assume that η > 0 and
A > 0 satisfy (3.1) and

ηγ−1 <
µ

nγA
. (3.8)

Then with wmid and wout taken from Lemma 3.1,

k := min
{
k̃ > 0

∣∣∣ k̃s ≥ wmid(s) for all s ∈ [λRn, κRn]
}

(3.9)

and
s0 := min

{
s ∈ [λRn, κRn]

∣∣∣ ks = wmid(s)
}

(3.10)

are well-defined and have the properties that

µ

n
< k ≤ µ

nλ
(3.11)

as well as
s0 ∈ (λRn, κRn). (3.12)
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Moreover,

w(s) :=


win(s) := ks, s ∈ [0, s0],

wmid(s), s ∈ (s0, κR
n),

wout(s), s ∈ [κRn, Rn],

(3.13)

defines a nonnegative function belonging to W 2,∞((0, Rn)) with ws(s) > 0 for all s ∈ [0, Rn].

Proof. That both k and s0 are well-defined is an immediate consequence of the continuity of wmid,
and the second inequality in (3.11) is directly implied by (3.9), (3.10) and the fact that wmid ≤ µRn

n .
Next, introducing ϕ(s) := ks− wmid(s), s ∈ [λRn, κRn], by definition of k and s0 we see that

ϕ(s) ≥ 0 for all s ∈ [λRn, κRn] and ϕ(s0) = 0, (3.14)

which implies that we must have s0 > λRn, because if we had s0 = λRn, then since from Lemma 3.1
we know that the assumption (3.1) ensures that (3.7) holds, by definition of k we could infer that

ϕ′(λRn) = k − ∂swmid(λRn) < k − wmid(λR
n)

λRn
= k − k · λRn

λRn
= 0,

and that hence ϕ < 0 on (s0, s0 + δ) with some appropriately small δ > 0.
Next, the nonnegativity feature in (3.14) together with (3.5) in particular ensures that

0 ≤ ϕ(κRn) = k · κRn − wmid(κRn) = k · κRn − wout(κRn)

and thus

k ≥ wout(κR
n)

κRn
=

µ

nκ
− (1− κ)γAηγ−1

κ
>

µ

nκ
− µ(1− κ)

nκ
=
µ

n

thanks to (3.8). Furthermore, (3.8) shows that s0 < κRn, for if we had s0 = κRn, then due to (3.14)
we should have ϕ(κRn) = 0 and ϕs(κR

n) ≤ 0, in view of (3.5) and (3.6) meaning that

k =
wout(κR

n)

κRn
=

µ

nκ
− γAηγ−1(1− κ)

κ

and that

0 ≥ k − ∂swout(κRn) = k − γAηγ−1,

and that hence (3.8) would lead to the absurd conclusion that

0 ≥ µ

nκ
− γAηγ−1(1− κ)

κ
− γAηγ−1 =

µ

nκ
− γAηγ−1

κ
> 0.

Thus knowing (3.12), we may go back to (3.14) to infer that necessarily ϕs(s0) = 0, that is, ∂swin(s0) =
∂swmid(s0), so that once more relying on (3.5) and (3.6) we readily obtain all claimed properties. �

Next turning our attention to the derivation of the subsolution features required in (2.12), in the
following lemma we first concentrate on the intermediate region in (3.13), within which the intended
inequality will turn out to hold under the assumption that besides the exponent γ, especially also the
factor A in (3.2) is suitably large.

9



Lemma 3.3 Let n ≥ 1, R > 0,m > 1, µ > 0 and 0 < λ < κ < 1, and suppose that γ > 1, η > 0 and
A > 0 are such that

γ ≥ m

m− 1
(3.15)

and

A ≤ µ(1− κ)Rn

4n
(

(κ− λ)Rn + η
)γ (3.16)

and

Am−1 ≤ µ(1− κ)Rn[−(m−1)γ+m−1+ 2
n

]

2mn2γm−1(γ − 1)κ(m−1)γ−m+2− 2
n

, (3.17)

as well as
η ≤ λRn (3.18)

and
ηγ−1 ≤ µ

4nγA
. (3.19)

Then for any ε > 0 fulfilling
ε ≤ γAηγ−1, (3.20)

the function wmid from (3.2) has the property that

n2s2− 2
n (∂swmid + ε)m−1∂sswmid + nwmid∂swmid − µs∂swmid > 0 for all s ∈ (λRn, κRn). (3.21)

Proof. Since nAηγ > 0, we see that within the range of s under consideration we have

nwmid(s)− µs = n ·
{µ
n
− (1− κ)γAηγ−1

}
·Rn + nAηγ − nA(κRn + η − s)γ − µs

= µ(Rn − s)− n(1− κ)γAηγ−1Rn + nAηγ − nA(κRn + η − s)γ

≥ µ(Rn − κRn)− n(1− κ)γAηγ−1Rn − nA(κRn + η − λRn)γ

= µ(1− κ)Rn − n(1− κ)γAηγ−1Rn − nA
(

(κ− λ)Rn + η
)γ

for all s ∈ (λRn, κRn).

Here according to (3.19) we can estimate

n(1− κ)γAηγ−1Rn

µ(1− κ)Rn
=
nγAηγ−1

µ
≤ 1

4
,

whereas (3.16) warrants that also

nA
(

(κ− λ)Rn + η
)γ

µ(1− κ)Rn
≤ 1

4
,

so that altogether,

nwmid(s)− µs ≥
µ(1− κ)Rn

2
for all s ∈ (λRn, κRn). (3.22)
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Next, recalling (3.4) we compute

∂sswmid(s) = −γ(γ − 1)A(κRn + η − s)γ−2, s ∈ (λRn, κRn), (3.23)

and moreover make use of (3.20) in estimating ∂swmid(s) ≥ γAηγ−1 ≥ ε and hence

∂swmid(s) + ε ≤ 2∂swmid(s) for all s ∈ (λRn, κRn).

In conjunction with (3.23) and, particularly, the negativity of ∂sswmid on (λRn, κRn) thereby implied,
this ensures that

n2s2− 2
n

(
∂swmid(s) + ε

)m−1
· ∂sswmid(s)
∂swmid(s)

> 2m−1n2(κRn)2− 2
n · (∂swmid(s))m−2 ∂sswmid(s)

= −2m−1n2γm−1(γ − 1)κ2− 2
nR2n−2Am−1(κRn + η − s)(m−1)γ−m for all s ∈ (λRn, κRn).

Here we may rely on the nonnegativity of (m−1)γ−m, as asserted by (3.15), to use (3.18) in verifying
that

(κRn + η − s)(m−1)γ−m ≤ (κRn + η − λRn)(m−1)γ−m ≤ (κRn)(m−1)γ−m for all s ∈ (λRn, κRn),

so that an application of (3.17) shows that

n2s2− 2
n

(
∂swmid(s) + ε

)m−1
· ∂sswmid(s)
∂swmid(s)

> −2m−1n2γm−1(γ − 1)κ(m−1)γ−m+2− 2
nRn[(m−1)γ−m+2− 2

n ]Am−1

≥ −µ(1− κ)Rn

2
for all s ∈ (λRn, κRn).

When combined with (3.22), once more by positivity of ∂swmid this entails (3.21). �

The corresponding subsolution features, both in the inner and in the outer region appearing in (3.13),
quite easily result from the linear structure of the functions wη in these parts. Therefore, completing
our construction from this section essentially reduces to making sure that the requirements on the free
parameters made in Lemma 3.1 and Lemma 3.2 in fact can simultaneously be fulfilled:

Lemma 3.4 Let n ≥ 1,m > 1, µ > 0 and 0 < λ < κ < 1. Then there exist γ = γ(m,κ) > 1 and
R0 = R0(n,m, µ, κ, λ) > 0 such that for any choice of R ≥ R0 one can find η0 = η0(R,n,m, µ, κ, λ) > 0
and A0 = A0(R,n,m, µ, κ, λ) > 0 with the property that for all η ∈ (0, η0) there exist Aη > 0 and
εη > 0 such that Aη < A0 and that the function w = wη defined through (3.13), with wmid, wout, k = kη
and s0 = s0,η as given in (3.2), (3.3), (3.9) and (3.10) with A = Aη, belongs to W 2,∞((0, Rn)) with
ws > 0 in [0, Rn], and that whenever ε ∈ (0, εη),

n2s2− 2
n (ws + ε)m−1wss + nw ws − µsws > 0 for all s ∈ (0, Rn) \ {s0, κR

n}. (3.24)
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Proof. Given n ≥ 1,m > 1, µ > 0, κ ∈ (0, 1) and λ ∈ (0, κ), we fix γ = γ(m,κ) > 1 such that

γ ≥ m

m− 1
(3.25)

as well as

γ >
(3 + κ)κ

(1− κ)λ
+ 1 (3.26)

and thereupon define

R0 = R0(n,m, µ, κ, λ) :=

√
22−mn3−mγm−1(γ − 1)κ(m−1)γ−m+2− 2

n (κ− λ)−(m−1)γ(1− κ)m−2µm−2.
(3.27)

Then for R ≥ R0, we pick η0 = η0(R,n,m, µ, κ, λ) > 0 small enough such that both

η0 ≤ λRn (3.28)

and

ηγ−1
0 ≤ (κ− λ)γRn(γ−1)

(1− κ)γ
(3.29)

hold, and for given η ∈ (0, η0) we let

Aη :=
(1− κ)µRn

4n ·
(

(κ− λ)Rn + η
)γ (3.30)

and
εη := γAηη

γ−1, (3.31)

noting that then, clearly,

Aη < A0 :=
(1− κ)µ

4n(κ− λ)γRn(γ−1)
for all η ∈ (0, η0). (3.32)

In order to verify that these choices moreover ensure simultaneous applicability of Lemma 3.2 and
Lemma 3.3 for all η ∈ (0, η0) and each ε ∈ (0, εη), we first observe that thanks to (3.26) we have
4κ < (1− κ)(κ− λ+ γλ) and therefore, by (3.30),

Aη
µ
· n(κ− λ+ γλ)

(
(κ− λ)Rn + η

)γ−1
=

(1− κ)(κ− λ+ γλ)Rn

4
(

(κ− λ)Rn + η
)

>
4κRn

4 ((κ− λ)Rn + η)
> 1,

meaning that indeed (3.1) is valid.
Next, (3.15), (3.16) and (3.18) are trivially asserted by (3.25), (3.30) and (3.28), whereas (3.19), itself
obviously implying (3.8), results from (3.29), which due to (3.32) namely guarantees that

Aηη
γ−1 < A0 ·

(κ− λ)γRn(γ−1)

(1− κ)γ
=

µ

4nγ
. (3.33)
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Finally, once more by (3.32) we may use (3.27) along with our restriction R ≥ R0 to derive (3.17) by
estimating

2mn2γm−1(γ − 1)κ(m−1)γ−m+2− 2
n

µ(1− κ)Rn[−(m−1)γ+m−1+ 2
n

]
·Am−1

η

<
2mn2γm−1(γ − 1)κ(m−1)γ−m+2− 2

n

µ(1− κ)Rn[−(m−1)γ+m−1+ 2
n

]
·
{ (1− κ)µ

4n(κ− λ)γRn(γ−1)

}m−1

=
22−mn3−mγm−1(γ − 1)κ(m−1)γ−m+2− 2

n (1− κ)m−2µm−2

(κ− λ)(m−1)γR2
≤ 1.

As (3.31) implies (3.20), we may thus invoke both Lemma 3.2 and Lemma 3.3 to conclude that
w = wη as in (3.13), with k = kη and s0 = s0,η taken from (3.9) and (3.10) and A = Aη, has the
claimed regularity and monotonicity properties and moreover satisfies the inequality in (3.24) for each
s ∈ (s0, κR

n), because s0 > λRn according to (3.12).
Apart from that, Lemma 3.2 warrants validity of (3.24) also for s ∈ (0, s0), because from (3.11) we
know that

win(s) = ks >
µ

n
s for all s ∈ (0, s0)

and that thus
nw(s)ws(s)− µsws(s) = nws(s) ·

(
w(s)− µ

n
s
)
> 0 (3.34)

for any such s, by linearity of w clearly implying (3.24) within this region.
Similarly, recalling (3.3) and (3.33) we find that also in the corresponding outer part,

wout(s)−
µ

n
s =

{µRn
n
− γAηηγ−1(Rn − s)

}
− µ

n
s

=
(µ
n
− γAηηγ−1

)
· (Rn − s) > 0 for all s ∈ (κRn, Rn)

and that consequently (3.34) and thus (3.24) hold throughout this interval as well. �

4 Persistently localized solutions. Proof of the main results

We are now in the position to apply Lemma 2.3, with subsolutions suitably selected from the ones in
Lemma 3.4, to derive our main result on persistent localization by means of an extension argument
appropriately arranged in such a manner that also in cases of finite-time singularity formation, the
respective entire existence interval can be exhausted.

Proof of Theorem 1.1. We let κ := σn, λ := θn and l := µ
nλ , and observe that then κ ∈ (0, 1) and

λ ∈ (0, κ), and that our assumption (1.2) means that w0 as in (2.2) satisfies

w0(s) ≥ ls for all s ∈ (0, λRn). (4.1)
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We then let R? = R?(n,m, µ, σ, θ) := R0(n,m, µ, κ, λ) with R0(·) taken from Lemma 3.4, and given
R ≥ R? we also rely on Lemma 3.4 in defining η? := η0(n,m, µ, κ, λ) and A? := A0(n,m, µ, κ, λ). For
η ∈ (0, η?), we thereupon let wη be as addressed in Lemma 3.4, and we claim that actually

w0(s) ≥ wη(s) for all s ∈ (0, Rn) and each η ∈ (0, η?). (4.2)

Indeed, this is evident from (4.1), because in view of (3.13), (3.12) and the second inequality in (3.11)
we have

wη(s) ≤
µ

nλ
· s = ls for all s ∈ (0, λRn),

and because for larger s we can use that 1
|Ω|
∫

Ω u0 = µ to trivially estimate

w0(s) =
µRn

n
≥ wη(s) for all s ∈ [λRn, Rn).

Now as a consequence of (4.2) when combined with an application of Lemma 2.3 to F := {wη | η ∈
(0, η?)}, and to ε?(wη) := εη for η ∈ (0, η?), we see that the set

S :=
{

(T, u, v)
∣∣∣ T ∈ (0,∞] and (u, v) is a radial weak solution of (1.1) in Ω× (0, T ) such that

w from (2.1) satisfies w(s, t) ≥ wη(s) for all s ∈ (0, Rn), t ∈ (0, T ) and η ∈ (0, η?)
}

is not empty, and following [35] we introduce a partial ordering � on S by saying that (T, u, v) �
(T̃ , ũ, ṽ) if and only if T ≤ T̃ and (ũ, ṽ)|Ω×(0,T ) = (u, v). If I is any index set and SI := {(Tι, uι, vι) | ι ∈
I} is totally ordered, then it is obvious that letting T := supι∈I Tι and (u, v) := (uι, vι) in Ω× (0, Tι)
uniquely determines an upper bound (T, u, v) of SI . Therefore, Zorn’s lemma provides a maximal
element (Tmax, u, v) of S for which again by means of Lemma 2.3 we can derive (1.3):
In fact, assuming on the contrary that Tmax be finite but that u be bounded in Ω × (0, Tmax), from
elliptic regularity theory applied to (2.9) we could infer boundedness of ∇v in Ω×(0, Tmax), whereupon
a standard testing procedure for (2.8) involving suitable regularized approximations of um as test
functions would assert that um−1∇u ∈ L2(Ω × (0, Tmax)). Directly through (2.8), this would imply
that ut ∈ L2

(
(0, Tmax); (W 1,2(Ω))?

)
, which together with the boundedness of u would assert that u

actually was uniformly continuous in (0, Tmax) as an L2(Ω)-valued function. Therefore, with some
nonnegative radial ũ0 ∈ L∞(Ω) we would have u(·, t) → ũ0 in L2(Ω) as t ↗ Tmax, where from the

definition of S we clearly obtain that also
∫ s 1

n

0 ρn−1ũ0(ρ)dρ ≥ wη(s) for all s ∈ (0, Rn) and η ∈ (0, η?).
Now Lemma 2.3 would once again apply so as to yield T > 0 and a radial weak solution (ũ, ṽ) of

(1.1) in Ω× (0, T ) with ũ|t=0 = ũ0, additionally fulfilling
∫ s 1

n

0 ρn−1ũ(ρ, t)dρ ≥ wη(s) for all s ∈ (0, Rn),
t ∈ (0, T ) and η ∈ (0, η?). In consequence,

(U, V )(·, t) :=

{
(u, v)(·, t), t ∈ (0, Tmax),

(ũ, ṽ)(·, t− Tmax), t ∈ [Tmax, Tmax + T ),

would define an extension of (u, v) to a radial weak solution (U, V ) of (1.1) in Ω × (0, Tmax + T )

such that
∫ s 1

n

0 ρn−1U(ρ, t)dρ ≥ wη(s) for all s ∈ (0, Rn), any t ∈ (0, Tmax + T ) and each η ∈ (0, η?),
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contradicting the maximality of (Tmax, u, v).

In order to finally derive (1.4), once more relying on the definition of S we now exploit the inequality

w(s, t) ≥ wη(s), s ∈ (0, Rn), t ∈ (0, Tmax), (4.3)

exclusively for values s ∈ (κRn, Rn), as for which, namely, from (3.13), Lemma 3.1 and Lemma 3.4
we know that

wη(s) =
µRn

n
− γAηηγ−1(Rn − s) ≥ µRn

n
− γA?ηγ−1Rn → µRn

n
as η ↘ 0,

because γ > 1 by Lemma 3.4. Thus, (4.3) entails that for all t ∈ (0, Tmax),

w(s, t) ≥ µRn

n
for all s ∈ (κRn, Rn),

which we may combine with the opposite inequality w ≤ µRn

n , as implied throughout (0, Rn)×(0, Tmax)
due to the mass conservation property (2.10). We thereby conclude that for each t ∈ (0, Tmax) we
have

w(s, t) =
µRn

n
for all s ∈ (κRn, Rn)

and hence

u(r, t) = nws(r
n, t) = 0 for a.e. r ∈ (κ

1
nR,R) = (σR,R),

as claimed. �

Our application of this to essentially bell-shaped initial data with compact support, finally, is straight-
forward:

Proof of Corollary 1.2. When translated to the variables in (2.2), the assumed monotonicity of
u0 ensures that w0 is concave on (0, Rn), while (1.5) asserts that supp ∂sw0 ⊂ [0, θnRn] and hence
w0 ≡ µRn

n in [θnRn, Rn]. In combination, these properties can easily be seen to guarantee that
w0(s) ≥ µ

nθn · s for all s ∈ (0, θnRn), which is equivalent to (1.2). The claim therefore results from
Theorem 1.1. �

5 Discussion

An interesting question complementary to the one addressed in our Theorem 1.1 is whether for suitable
large classes of solutions also lower estimates for the corresponding positivity sets can be derived. In
view of precedents concerned with large time behavior of bounded solutions to related problems in the
literature ([20], [28]), it is likely to be expected that ω-limit sets of trajectories, which are global and
bounded, should contain a reasonable regular nontrivial steady state, and that hence the corresponding
support can at least not shrink to single points asymptotically.
Along with the seemingly yet more delicate question, whether some exploding solutions might have
their support collapse into a singleton, however, detailing this in the current problem setting based on
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the approximation in (2.4) would go beyond the scope of the present manuscript.

Now let us shortly repeat the rescaling arguments as given in [27] for (degenerate) chemotaxis-systems
of the form

∂tu = D∇
(
um−1∇u

)
− χ∇(u∇v) , ∂tv = γ∆v − ηv + βu in Ω = BR(0) ⊂ Rn , (5.1)

with Neumann-type boundary conditons and positive parameters D,χ, γ, η, β. After rescaling space,
we obtain that ∂tu = ∇

(
um−1∇u

)
− χ

D∇(u∇v) and ∂tv = γ
D∆v − ηv + βu .

Setting ṽ := χ
Dv, we get ∂tu = ∇

(
um−1∇u

)
−∇(u∇ṽ) and ∂tṽ = γ

D∆ṽ − ηṽ + χβ
D u .

Now let w̄ := 1
|Ω|
∫

Ωw dx, then ū(t) = ū0 and ∂t¯̃v + η¯̃v = χβ
D ū0 .

Expressing β = αγ and defining v̂ := ṽ − ¯̃v, we obtain D
γ (∂t + η) v̂ = ∆v̂ + χα(u− ū0) .

Assuming γ >> D we can approximate the last equation by 0 = ∆v̂ + χα (u− ū0) .
Since ∇v̂ = ∇ṽ, the rescaled system reads, after renaming v̂ back to v:

∂tu = ∇
(
um−1∇u

)
−∇(u∇v) , 0 = ∆v + χα (u− ū0) . (5.2)

This is the version we have been looking at for χ · α = 1 and ū0 = µ.
Now let u∗ = u

ū0
and v∗ = v

χαū0
, then

∂tu
∗ = ūm−1

0 ∇
(

(u∗)m−1∇u∗
)
− χαū0∇ (u∗∇v∗) , 0 = ∆v∗ + u∗ − 1 . (5.3)

This is the version considered in [27] for general χ · α.

Recently there has been a renewed interest in the literature to understand steady states of (5.1) and
further generalized versions of this system, a by now classic contribution being [44]. One question of
interest concerns compactness and connectedness of the support of steady state solutions, respectively
its structure and size. In this context, also so-called aggregation equations are analyzed, which relate
to our system in the following way. Considering (5.1) in Rn, but setting 0 = ∆v − v + u, i.e. v =
(Id−∆)−1u, one obtains

∂tu = D∇
(
um−1∇u

)
− χ∇ (u∇ (G ∗ u)) , (5.4)

where G is the Besselkernel of order 2. Rescaling time we get

∂tu = ε∇
(
um−1∇u

)
−∇ (u∇ (W ∗ u)) , (5.5)

where W = G/||G||L1 has L1-norm one, and ε = D
χ||G||L1

. The corresponding energy in Rn reads

E [u] =

∫
ε(m− 1)

m
um(x) dx− 1

2

∫ ∫
W (x− y)u(y)u(x) dy dx . (5.6)

Similarly, with the respective adapted kernels, also bounded domains can be considered. The exis-
tence of minimizers of such energies and their structure are of interest, also in the context of steady
states of equations of type (5.4) for a variety of kernels W . Therefore we give a glimpse on some of
the related literature here. Before doing so, let us briefly mention that degenerate diffusion equations
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with non-local aggregation effects have been of interest for a long time in mathematical ecology, see
e.g. [40] for one of many examples.

In [2], equation (5.4) and also more general equations and kernels, are considered in bounded domains
as well as in Rn. Local well-posedness is proved in bounded domains for n ≥ 2. Subcritical problems
are globally well-posed and a critical mass is obtained, which sharply divides the possibility of finite
time blow-up and global existence. This is well known for m = 1, which was first rigorously proved
in [27], where the sharp optimal parameter for this dichotomy can be directly read of the presented
estimates.
In connection with the Bessel potential (but also for other G), in [2] existence and uniqueness of weak
solutions was proved for n > 3. Existence and uniqueness w.r.t. entropy solutions were considered in
[5], and for n = 1 uniqueness was proved in [7].
Results on related stationary solutions of (5.4) in Rn, and thus on critical points of the associated free
energy functional (5.6) and compact support in the context of our system are mostly considered for the
Newtonian or regularized Newtonian potential - which means no decay of v - rather than the Bessel
potential. For m > 2 − 2

n and n ≥ 3 there exsits a unique radially symmetric stationary solution,
which is monotonically decreasing and has compact support, see [32] and references therein, and [14].
For n = 2 and the Newtonian potential, existence of a unique compactly supported stationary solution
was shown in [11]. For n ≥ 3 in the supercritical case 0 < m < 2 − 2

n see e.g. [8], and [9], [13] for
further cases, as well as [29], also for some literature before 2017.

Connections to constrained aggregation equations, the respective constrained interaction energy and
their relations to shape optimization problems have been recently considered in [6] and [18], where also
uniform bounds on the support of minimizers were proved. The geometry of minimizers for general
mildly repulsive interaction potentials at the origin was classified in [12].

Varying the classical simplified Keller-Segel-system, m = 1, by m > 1 is not the only way to obtain
localization of (the main amount of) mass in patches, since for these patterns to occur, a balance
between repulsion and attraction is needed. In [46] and [47], the regularized system ∂tu = ∆u −
∇(gε(u)∇v), 0 = ∆v + u, was considered in R2, with e.g. gε being a saturating function. For the

steady state solution ū, ū = Ū
ε and V̄ = log(Ū), in the radial symmetric setting V̄ fulfills the Emden

equation. The solution u can be decomposed in a regular part and a set of concentration regions
of order

√
ε where an amount of mass of order one concentrates. Detailed dynamics/interactions of

these patchy concentration regions, their respective mass and the regular part are derived. For ε→ 0
and regions with a high density of mass it is proved that the solution makes a transition between the
blowing up behavior and the ”quasi-steady behavior”. The size of the transition region is described
as well.
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