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Abstract

The text is an essentially self-contained introduction to four-dimensional
N=1 supergravity, including its couplings to super Yang-Mills and chiral matter
multiplets, for readers with basic knowledge of standard gauge theories and
general relativity. Emphasis is put on showing how supergravity fits in the general
framework of gauge theories and how it can be derived from a tensor calculus for
gauge theories of a standard form.
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1 Introduction

Supergravity (SUGRA) is for several reasons an interesting concept in modern high
energy physics. It raises supersymmetry (SUSY) to a gauge symmetry and thus combines
two principles of major interest, namely gauge invariance which underlies our present
models of fundamental interactions, and SUSY, one of the most promising theoretical
concepts for extending these models. In addition SUGRA includes and extends general
relativity (GR) which makes it an interesting framework for describing gravitational
interactions in high energy physics. In particular SUGRA theories arise in string theory,
one of the presently most favoured approaches in the field of “quantum gravity”.

SUGRA had an important impact on the development of general concepts in the field
of gauge theories, such as the reformulation and refinement of the BRST-approach, be-
cause it exhibited properties which are not encountered in more familiar gauge theories,
such as Yang-Mills (YM) theories or standard GR. Such properties are gauge transfor-
mations whose commutator algebra does not close off-shell or involves field dependent
structure functions. Therefore SUGRA can serve as an instructive example to illustrate
the general structure of gauge theories.

As SUGRA is a generalization of GR, it may be worthwhile to compile further
differences from standard GR. The most fundamental difference is that SUGRA theories



have more gauge symmetries than standard GR. In particular they have of course local
SUSY and contain corresponding gauge fields, so-called gravitinos (Rarita-Schwinger
fields) which are spinor fields. Owing to the presence of spinor fields, SUGRA theories
are formulated in the vielbein formulation (Cartan formulation) of GR rather than in
the metric formulation, and therefore they are always invariant under local Lorentz
transformations. Many SUGRA theories, especially in higher dimensions, contain in
addition p-form gauge fields which generalize the electromagnetic gauge potential and
are invariant under corresponding gauge transformations of these fields.

Fields which occur typically in SUGRA theories are thus the vielbein which we
denote by e (u is a “world index” of the same as type as the indices of the metric
in GR, a is a Lorentz vector index), the gravitino(s) v, (whose spinor index has been
suppressed), p-form gauge fields A, . ,, which are totally antisymmetric in their world
indices (the electromagnetic gauge field and YM gauge fields are 1-form gauge fields in
this terminology), and standard matter fields such as spacetime scalar fields ¢ or ordinary
spinor fields A (again the spinor index has been suppressed). A standard SUGRA theory
contains always the vielbein and at least one gravitino. Whether and which other fields
are present depends on the particular SUGRA theory.

An important restriction on the possible field content is that the number of bosonic
degrees of freedom and the number of fermionic degrees of freedom must coincide on-
shell (for SUGRA theories of standard type). This is required by SUSY because SUSY
relates bosonic fields and fermionic fields in a particular way. The number of degrees of
freedom (DOF) relevant here is the number of linearly independent plane wave solutions
of the free field equations with given Fourier-momentum, up to linearized gauge trans-
formations. The free field equations are the linearized equations of motion (EOM) in a
flat gravitational background. For the standard fields, with standard free field equations,
these DOF are compiled in (1.1) and (1.2) where D is the spacetime dimension, f is the
real dimension of the smallest nontrivial irreducible spinor representation, and D = 2
mod 8 means D = 248k with k = 0,1, ..., for example. Details of the derivation of the
numbers in (1.1) and (1.2) can be found, for example, in [1] and [2], some elementary
facts about spinors in various dimensions are provided in appendix A.

field DOF off-shell | DOF on-shell (D > 3)
vielbein e, D(D-1)/2 D(D -3)/2
gravitino v, f(D—-1) f(D—-3)/2
D—1 D-2 (1.1)
p-form gauge field 4, ,, ( » ) ( » )
real scalar field ¢ 1 1
spinor field A f f/2
2D/2=1 for D = 2 mod 8 Majorana-Weyl spinors
f=1< 2P2 for D =1,3,4,6,8 mod 8 Weyl or (pseudo) Majorana spinors* (1.2)
2(P+1)/2 for D = 5,7 mod 8 Dirac spinors

* Weyl spinors only if D = 2k, no (pseudo) Majorana spinors if D = 6 mod 8.
(1.1) contains also the number of DOF off-shell given by the number of independent



components of the respective field up to gauge transformations (taking reducibility rela-
tions into account, if any). These numbers are relevant for so-called off-shell formulations
of SUGRA theories, i.e., formulations where the commutator algebra of the gauge trans-
formations closes off-shell. Namely in such formulations the number of bosonic DOF
and the number of fermionic DOF must coincide both on-shell and off-shell (again, for
SUGRA theories of standard type).

An additional restriction on possible SUGRA theories of standard type is the upper
bound on the number of real SUSYs. This upper bound is 32 when one requires that
dimensional reduction to D = 4 must not yield fields with spin > 5/2 (this requirement
reflects that theories with spin > 5/2 are believed to be inconsistent or physically un-
acceptable). The number of SUSYs is often given in terms of the number N of sets of
SUSYs where each set has f elements with f as in (1.2) [i.e., the corresponding gauge
parameters sit in an irreducible spinor representation]. Hence, if in this terminology one
says that a theory has N SUSYs, it has thus actually N f real SUSYs. The bound of at
most 32 SUSYs limits standard SUGRA theories, which can be characterized in this way
by a value of N, to spacetime dimensions D < 11 because for D > 12 one has f > 64.!
Therefore, SUGRA theories of standard type exist only up to eleven dimensions.

In (1.3) the values of f and the on-shell DOF for some fields are spelled out explicitly
for 4 < D < 11. In addition the maximal value Ny, of N is given. One sees from these
numbers, for example, that in D = 4 it might be possible to construct an N =1 SUGRA
theory whose only fields are the vielbein e, (called “vierbein” in D = 4) and one gravitino
¥y (N is also the number of gravitinos because these sit in spinor representations with
dimension f). This theory does indeed exist and will be presented in some detail later.
Other possibilities would be, for example, a D = 4, N = 2 SUGRA theory with vierbein
ey, two gravitinos ¢y, 1/);” and one “photon” A,, or a D = 11, N = 1 SUGRA theory
with “elfbein” ej;, one gravitino ¢, and one 3-form gauge field A,,,. Both SUGRA
theories do also exist.

D 4|56 |7 [8]9]10] 11
f 4188 16|16 |16 |16 | 32
Nmax 8l4l4 22221
DOF of 1, on-shell |2 |8 |12|32|40 |48 |56 | 128 (13)
DOF ofez on-shell [2 5|9 |14 (20|27 |35 | 44
DOF of A, on-shell |23 4|5 |6 | 7]38 9
DOF of A, on-shell | 1|3| 6 [10 |15 |21 |28 36
DOF of A, on-shell | 0 [ 1| 4 | 10|20 | 35|56 | 84

The remainder of this text is devoted to D = 4, N =1 SUGRA. It aims at giving
an essentially self-contained introduction to the structure of this theory at a non-expert
level, for readers with basic knowledge of GR and standard gauge theories (in particular,
some knowledge of YM theory might be helpful). The text is limited to basic material. In
particular it does not cover more technical stuff, such as the use of superspace techniques,

'In “non-standard theories” the number of SUSYs need not be an integer multiple of f.



or a discussion of phenomenological aspects, which may be found in textbooks or reviews
on SUGRA, such as [3, 4, 5, 6, 7, 8, 1, 9]. Rather I have tried to emphasize that and how
SUGRA fits in with general principles of gauge theories. These principles are briefly
reviewed in section 2. Section 3 presents in some detail the simplest D = 4, N =1
SUGRA theory mentioned above, whose only fields are the vierbein and the gravitino.
Section 4 introduces the concept of a tensor calculus for a class of standard gauge
theories. This calculus is used in section 5 as a framework to present the “old minimal”
and the “new minimal” off-shell formulations of D = 4, N = 1 SUGRA including the
coupling to matter multiplets (super YM multiplets, chiral multiplets). Conventions,
especially concerning spinors, and the explicit verification that the SUGRA actions
given in the text are indeed supersymmetric are relegated to the appendix.

2 (Gauge symmetries in the jet space approach

This section assembles the general definition and basic properties of Lagrangean gauge
theories, using the jet space approach.

2.1 Jet spaces

The concept of jet-spaces originates from the theory of partial differential equations (see,
for example, [10, 11, 12, 13, 14]). It provides a mathematically rigorous, simple and gen-
eral framework for the discussion of many aspects of symmetries. For our purposes it
suffices to know that jet spaces are spaces whose coordinates are the ordinary coordi-
nates z* of a base space M (in our case: spacetime), and additional variables 0y, .., g
representing fields ¢ (k = 0) and their first and higher order derivatives (k = 1,2,...)%.
The fields and their derivatives are thus regarded as algebraic objects. The conception
of fields as functions of the coordinates z*, or as mappings from M to some space F
arise only as sections s of the corresponding jet bundle over M where the jet variables
Opr o ¢* turn into functions M — F according to
i 0% ¢! (z)
O ¥'lo = G g
As the partial derivatives commute on smooth functions, we identify jet coordinates
Opr o ¢" which differ only by permutations of the derivative indices:

Vr,s: 8u1...ur...us...uk¢i = aul...us...ur...uk¢i- (22)

One may either work with a set of independent jet coordinates, such as {*,0,, . ., P
wi < piv1,k =0,1,...}, or with the redundant set of all jet variables. We prefer the
second option because it allows one to avoid inconvenient combinatorical factors. The
partial derivatives are then represented in the infinite jet space by algebraic operations
0, defined by

(2.1)

0 0°

O = 9o+ gaum...uﬁ R (2.3)

2Henceforth we shall work in the infinite jet space, containing all derivatives.



where the derivatives 9° /00, .. ¢" act on the jet variables according to

S J S J
8 8111...l/k¢- a aljl...llré. — 0 (24)
aa}tl...ukéz aa}tl...uk ¢Z

Here the round parantheses denote symmetrization with weight one, such as §

=6 oM kA

(11 vg)

P S0 _
(nv) —
1/2(607 + 0107). With these definitions the derivatives 9, have indeed the same alge-

braic properties as the partial derivatives of smooth functions — as they should, in order
that (2.1) makes sense. In particular they satisfy

8#‘9#1---;% ¢i = 8##1...;% ¢i (2.5)

and they commute,
[Oy,0,] = 0. (2.6)

A basic and important fact is that a function f on the jet space is a total divergence
if and only if it has vanishing Euler-Lagrange derivatives with respect to all fields on
which it depends,

@ l6) = 0K (w, [8)) & W%x—ﬂzo v, (2.7)

where 9 f/ (§¢i denotes the Euler-Lagrange derivative of f with respect to ¢,

Of (@,[8) _ <~ 0% f (z, [¢])
5 _kzm( ), -+ Oy, s (2.8)

Here [¢] indicates local dependence on the fields (which usually means dependence on
derivatives up to some arbitrary but finite order).

2.2 Gauge symmetries of a Lagrangian

An (infinitesimal) gauge transformation is a transformation of the fields involving lin-
early “gauge parameters” or their derivatives. The gauge parameters are arbitrary fields
and therefore these parameters and their derivatives are also treated as jet variables.
Hence, when dealing with gauge symmetries, we work in an enlarged jet space involving
also these extra variables in addition to the coordinates z* and the “fields” ¢* and their
derivatives. The basic difference between the gauge parameters and the fields is that the
former do not occur in the Lagrangian and the field equations (Euler-Lagrange equations
of motion) derived from it. Hence the Lagrangian is a function on the “original” jet space
with coordinates z# and 8“1___ukq§i. Each jet variable (including the gauge parameters
and their derivatives) has a Grassmann parity which is 0 for “bosonic” (commuting)
fields or 1 for “fermionic” (anticommuting) fields, cf. appendix A for our conventions in
the SUGRA context. By assumption, the Lagrangian is a Grassmann even function on
the jet space and the gauge transformations are Grassmann even operations.



Gauge transformations (5§¢i of the fields are given by operators Ré\/[ which act on
gauge parameters ¢¥ and may depend on the fields and their derivatives:

Sed’ = Riy€™,  Riy = el (2, [4)) 0y, - - O, (2.9)
k=0

These transformations are extended to derivatives of the fields and to local functions on
jet spaces according to

85

be= (Op ...0u0c4") —=—— . (2.10)
3 kz>0 K1 w 9€ 86111---Mk¢z
In particular this gives
[0¢, 0] =0, (2.11)
dext =0, (2.12)
d¢(ab) = (d¢a)b + a(0¢h). (2.13)

(2.11) means simply that the gauge transformations of the derivatives of the fields
are so-called ‘prolongations’ of the gauge transformations of the undifferentiated fields
(6c0,¢" = 0,(0¢4’) etc). (2.12) means that explicit coordinates z# are never trans-
formed, i.e., when evaluated on a section of the jet bundle, (J¢¢’)(z) represents the
transformation of ¢’(z) as a function of its arguments but not of the arguments them-
selves (it represents thus the Lie derivative of ¢%). (2.13) is the Leibniz rule and means
that the gauge transformations are derivations on the jet space. We can now define
gauge symmetries of a Lagrangian:

Definition. A gauge transformation J¢ is called a gauge symmetry of a Lagrangian
L(z,[¢]) if it leaves the Lagrangian invariant up to a total divergence:

¢ L(z, [¢]) = 0. K" (x, [¢,£]). (2.14)

2.3 Noether identities and gauge symmetry of the EOM

Owing to (2.7), the gauge invariance condition (2.14) imposes

RBeL(,[#) _ o yemr (2.15)
dEM |
and
DL [9) _
o —0 V4 (2.16)

(2.15) are the Noether identities corresponding to the gauge symmetry. Explicitly they
read

(=) Rt 513?7%2@]) _0 (2.17)



where |¢?| is the Grassmann parity of ¢* and Ré\}' is the operator adjoint to the operator
R’ ; which defines the gauge symmetry according to (2.9). This adjoint operator is given,
on all functions f on the jet space, by

Ry F = (=)f0u, 0 [f il (2, [8])]. (2.18)

k>0

(2.16) yields the gauge transformations of the EOM. Explicitly one obtains (see, for
example, formula (6.43) of [15]):

OL(z,[¢) _ N~ _yk 0%0¢¢)  OL(x,[¢])
¢ ek %( )8”1"'8"’“[88m...%¢i 5 ] (2.19)

Remark. Actually (2.17) is equivalent to (2.14) (Noether’s second theorem [16]).
The reason is that every term in d¢L is linear in the ¢’s (or their derivatives) which
implies
v 90¢L(z, [4])

oM

5eL(a, [9]) = ¢ + 9uK (. [9.£)).

Hence (2.17) implies indeed (2.14), and thus it also implies (2.16).

2.4 Trivial gauge symmetries

Consider the transformations

riv i i OL
S = S () Oy Oy M) (5 [ €110, B, a—] (2.20)
k,m>0 @
where
Mj(Vl...I/m)i(ﬂl...ﬂk)(x’ [6,€]) = _(_)|¢i| ‘d)j‘Mi(ul...ltk)j(ljl...ljm)(l" 6, €)). (2.21)

The transformation (2.20), extended to the whole jet space as in (2.10), is a gauge
symmetry of L according to our definition because of

éLHw oL — 0

3L 0 0, [0, ) 040 5] OB ] =
where ~ denotes equality up to a total divergence and the last equality (= 0) holds
because of the graded antisymmetry of the M’s as in (2.21). For obvious reasons, such
transformations are called trivial gauge symmetries. They exist for every Lagrangian
and vanish on-shell, i.e., they vanish on all solutions of the EOM. Conversely one can
prove under fairly general assumptions (regularity conditions) that a gauge symmetry
which vanishes on-shell takes necessarily the form (2.20) [17, 15].



2.5 Generating set of gauge symmetries

When trying to characterize the gauge symmetries of a model satisfactorily one faces
two complications. On the one hand, one has to deal with the trivial gauge symmetries
which one wants to “mod out”. On the other hand one has to take the following
fact into account: whenever (5§¢i = §\4§M is a gauge symmetry, then Sé& = AilfA
with Ri, = Ry, K} is also a gauge symmetry, for any (possibly field dependent) local
operators KA!: indeed, when d¢ is a gauge symmetry, it satisfies (2.14) for all &’s and
thus in particular for €M = K i‘{[ 5‘4, whatever operators K i‘{[ we choose and for arbitrary
£4. Notice that even the range of the index A may differ from the range of the index
M. But clearly 55 is not a new gauge symmetry as it arises from J¢ just by substituting

M(z, [, f]) = Ki\([fA for ¢M. This motivates the following definition: we say a set of
operators {R),} provides a generating set of the gauge symmetries of a Lagrangian if
any gauge symmetry of the Lagrangian can be generated through them according to

0eL = 0,K" = 64" = Ry fM(2,[$,€)) + 6"V ¢, (2.22)

for some local functions fM(z, [¢, €]).

The concept of a generating set of gauge symmetries is of fundamental importance
for the theory of gauge symmetries. It is somewhat analogous to the concept of a basis of
a vector space although the analogy must be used with great care because a generating
set evidently is not a basis of gauge symmetries in the vector space sense. Within
the analogy, (2.22) corresponds to the completeness of a basis of a vector space. The
independence of the elements of a basis also has a counterpart: it is the irreducibility
of a generating set. The latter requires that the operators R}, have no nontrivial ‘zero
mode’, i.e.,

M (@ [9,6]) = g 5 fM(a,[h8) ~ 0 (irreducibility)  (2.23)
where = is equality on-shell,
i OL(z,[4])
~ : —g=M"—"-" 2.24
frg & f-yg 56 (2.24)

for some local operators M*. However, unlike the situation in the case of (finite di-
mensional) vector spaces, it is not always possible to choose an irreducible set because
locality may obstruct this. So, one sometimes has to deal with reducible generating sets
of gauge transformations.

The choice of a generating set of gauge transformations is by no means unique;
switching from one generating set to another one corresponds in the above analogy to
changing the basis of a vecor space, albeit the freedom in the choice of a generating set
evidently exceeds by far the freedom in the choice of a basis of a vector space. The
relation between two generating sets { R%,} and {R/,} is of the type discussed above,

Ry ~ Ry, KM | Ry ~RYKi | (2.25)

for some local, generally field dependent operators K ﬁ/[ and K ]\“}l. Again, the ranges of
the indices M and A may differ; in particular one may switch from an irreducible to a



reducible set. Notice that switching between different generating sets is accompanied
by redefinitions of the corresponding sets of gauge parameters because (2.25) yields

b = By +0", (KON = KY€,
ke + 0, (KO = Kype. (2.26)

Example. Let us consider 3-dimensional abelian Chern-Simons theory with La-
grangian

L =¢e""A,0,A,.
The set of fields ¢’ is in this case given by the components of the gauge field,

{¢'} = {Au}.

It can be proved that a generating set of gauge symmetries of the abelian Chern-Simons
Lagrangian is given by the abelian gauge transformations

0¢Ay = 0u€.
The corresponding set of operators Rﬁv is thus given just by the derivatives 9,:

{By} = {0}

Now, if this provides really a generating set, it must be possible to express every gauge
symmetry of the abelian Chern-Simons Lagrangian in terms of these operators up to
trivial gauge symmetries, as in (2.22). Let us verify that this holds for the spacetime
diffeomorphisms [the latter are indeed gauge symmetries because the Chern-Simons
Lagrangian is a scalar density with weight one under spacetime diffeomorphisms:

6diffe0Au = fl/&,Au + augyAz/
= &(0,A, —0,A)) +€70,A, + 0,8 A,
1 oL
= &€ =—+0u(€"A).
2° 0 ha

Note that the first term in the last line is a trivial symmetry as in (2.20) (with M7¢ =
1 &%€up), while the second term is of the form Ri, fM (¢, ¢) (with fM =¢7A,).

2.6 Algebra of gauge symmetries

The concept of a generating set of gauge symmetries allows one to derive the gen-
eral form of the commutator algebra of gauge symmetries. The commutator of two
gauge symmetries d¢, and ¢, is again a gauge symmetry because it leaves the La-
grangian invariant (simply because §¢L = 0,K*(z,[¢,&]) and [6¢,0,] = 0 imply
0,06, L = 6¢ 0, K*(x,[¢,&2]) = 0ude, KH(x,[p,€2])) and is a derivation (because the
commutator of two derivations is again a derivation). Owing to (2.22) it can thus be



expressed through the operators R}, of the generating set and a trivial gauge symmetry.
In particular one has

651 ¢Z = 3\/[5{\/[7 652‘# = 3\/[55\/[ = [6611652]¢i = R?\/[fM(xa [¢a£1a£2]) + 6triv¢i. (227)

Notice that Rﬁ\J fM is a gauge transformation § 7 as dg ¢* and ¢, #" but with “composite”
(possibly field dependent) parameter fM(z, [¢, 1, &2]). Owing to (2.19), the commuta-
tor of a trivial gauge symmetry and any other gauge symmetry (trivial or non-trivial)
vanishes on-shell,

[0V 6e]pt = 0 V. (2.28)

As already remarked at the end of section 2.4 this implies under fairly general assump-
tions that this commutator is again a trivial gauge symmetry,

[6"1Y, 6¢] = 6™1Y. (2.29)

Hence the only possibly nontrivial part of the commutator algebra of gauge symmetries
is made up of the terms R%, fM (z, [¢, &1, &2]) in the commutators of two nontrivial gauge
symmetries as in (2.27). If these commutators involve a nonvanishing 'V on the right
hand side, the commutator algebra is called an “open gauge algebra”. Notice that it
may depend on the choice of the generating set whether or not the algebra is open.

3 D=4, N=1 pure SUGRA

This section presents the Lagrangian and gauge transformations of the simplest four-
dimensional SUGRA theory [18, 19] (N = 1 SUGRA without matter multiplets) in
the basic formulation with open gauge algebra, using the Weyl-spinor notation as in
appendix A.

3.1 Lagrangian

Vielbein formulation. Owing to the presence of spinor fields, SUGRA theories are
constructed in the vielbein formulation (Cartan formulation) of general relativity. In D
dimensions the vielbein is a real D X D-matrix field denoted by e}, and related to the
spacetime metric g, according to

Juv = ezerb/'?ab (3'1)

where 7, is the Minkowski metric. In order that the metric be invertible, the vielbein
must be invertible. We denote its inverse by E%,

eLEy =0y, e By =10, . (3.2)

In contrast to the standard (metric) formulation of general relativity, the metric is thus
not treated as an elementary field but constructed from the vielbein according to (3.1).
Conversely, given a metric (with the same signature as the Minkowski metric), one can

10



always construct a vielbein satisfying (3.1): as the metric is symmetric, it can at each
point be diagonalized by some orthogonal matrix O and one may choose the vielbein
as DO where D = diag(|r1|'/?,...,|rp|*/?) is a diagonal matrix and the r’s are the
eigenvalues of the metric. Of course, both O and the r’s in general depend on the
point, i.e., they are fields, and so is the vielbein. Actually this choice of the vielbein is
not unique because (3.1) determines the vielbein only modulo arbitrary local Lorentz
transformations as these leave the Minkowski metric invariant. Hence GR has in the
vielbein formulation more gauge symmetries than in the metric formulation because it
is also invariant under local Lorentz transformations in addition to the diffeomorphism
invariance.

SUGRA Lagrangian in first order formulation. In four dimensions the vielbein
is called vierbein. The gravitino is denoted by 1, where o are Weyl spinor indices, see
appendix A. Hence, for each value of y, 45 is a complex 2-component Weyl spinor field.
Its complex conjugate is denoted by 1/_)3 Our index notation is thus: Greek indices from
the beginning of the alphabet denote Weyl spinor indices, Greek indices from the middle
of the alphabet denote world indices and lower case Latin indices from the beginning of
the alphabet denote Lorentz vector indices. The spinor indices and the Lorentz vector
indices indicate the transformation properties under local Lorentz transformations, the
world indices the transformation properties under spacetime diffeomorphisms.

In addition to the vielbein and the gravitino one may introduce the so-called spin
connection w,ﬂb = —wub“ as an independent field. It serves as the gauge field for the
local Lorentz transformations. However, it is only an auxiliary field, i.e., it can be
eliminated by solving algebraically its EOM. The formulation with the spin connection
as an auxiliary field is called first order formulation, the one which uses from the very
beginning only the vielbein and the gravitino is called second order formulation. We
shall first introduce the first order formulation and then focus on the second order
formulation.

In the first order formulation, the Lagrangian is a function of the vielbein, gravitino,
spin connection and their derivatives, given by

L = 3By EY Ry + 2(V upu0ythe + o0,V by )P (3.3)
where:
e = det(ey),

Ru™ = 0w — 0,0, + w,%w,’ —w, %W, (field strength of w,),
Vuy = 0uy — %wﬂab(z/)yaab)o‘ (Lorentz-covariant derivative of ),

Ve = 0,4% + 10, (6w,)*  (Lorentz-covariant derivative of ¢,),

Opai = €040 (field dependent!),

PT = e EMEVEPESe™ € {0,1,—1} (field independent!).

-~

xdet(EL)=1/e

11



Remarks:

e The Lorentz-covariant derivative V is built in the standard manner (cf. electro-
dynamics, YM theory, GR, ...) by means of the gauge field wu“b. It is defined
not only on spinor fields, but also on any other Lorentz-covariant fields by

Vy=0,— %wu“blab (conventional factor 1/2 because of loy = —lp,).

° Eé‘ EY Rw,“b is a spacetime curvature scalar built from Ru,,“b,

R=E}'E} R,,"  (“curvature scalar”).

e Because of the antisymmetry of €77, the derivatives of 1, and 1), occur only
through the combinations

Vutby — Vo, (“field strength of wu”)’
Vo = VB (“field strength of 7).

e In terms of Majorana-spinors ¥, (see appendix A), one has
(Vb0 o + o0,V by )e'P” = =0, 47,V , U ,eP7

= ieﬁu,},[l&y”,},p]vy\ym Uy = <2i)/_)ﬂo'¢a>'
n

e Notice that e = +/—det(g,,) because of (3.1).

e The definition of o, illustrates the general rule how one converts Lorentz-indices
into world-indices and vice versa by means of the vierbein and its inverse:

Xy =e€iXe, Xo=E!X,, Xu =clelXy etc

Determination of wuab from its EOM and second order formulation. Varying
w,® in the Lagrangian (3.3) yields

L(le,pw + 0) = L(le, 1, w]) = 5By BL(Vubor,™ = Vb, )

_ 5wuab€uz/pa¢y (UabUp + Up6ab) 1/_)0
—

=i€abpco'c
=ieE‘éE‘gE'gekﬁpTo'c
AL e, P, w . -
% = LV, (eB'EY — eBLEY) + 66l By B, 0%,
Wy
= 30,(eE}'E} — eBLEY) + ewgp — ewcc[aEﬁ + GeiE[’; Ey Eqpuo s
where [...] denotes complete antisymmetrization with “weight one”, and the above rules

for conversion of world and Lorentz indices were used, e.g.:

_ 1 _ d n
‘U[ab]” = E(Wabu —wpt), wap! = Eqw,” Mo Ly -
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The EOM for the wﬂab are 3L/ éwu“b = 0. They can be solved algebraically for the
wﬂab (the wﬂab appear only linearly and undifferentiated in (§L/ éwﬂab). To do so, one
may first determine wg,® by contracting the equation OL / éwu“b = 0 with ej;, then insert
the result into 3L/(§wu“b = 0 and solve the latter for wyy* (hint: use the identity

oue = eEY0,el). The result is, written in convenient form:

u)[l“,}a = 8[“63} — 2i¢[#0a2;1,}. (3.4)

This yields wu“b because w,, = —w,, implies
Wavp = Wiwlp =~ Wil + Doty = Wp® = Wiy (20, B75) — e, BV EP).
Using (3.4), we obtain:

w#“b = E"“(?[Meg] — E"ba[“eg] — e#cE”“pra[Vez] + 2i(2/)ua[“1,zb] + Q/J[aab]@zu + Q/J[aauz/jb}).
(3.5)
The Lagrangian in the second order formulation is given by (3.3) with w, as in (3.5).

3.2 EOM

From now on we shall always work in the second order formulation, i.e., with wu“” as in

(3.5). The Euler-Lagrange derivatives of the second order Lagrangian (3.3) with respect
to the vierbein and gravitino are (one may apply the “1.5 order formalism” here, see
appendix B.1):

oL _ _
Foe = e(3BFR — R, EPEY EY) + 26" (V y1hp0athe + Po0aVuthy),  (3.6)
°w
L _ )L
? = —4e""7 (0, V 15 )as Aa,. = 4e"P7(V p1heoy) 4 - (3.7)
g s

The EOM are thus obtained by setting the Euler-Lagrange derivatives in (3.6) and
(3.7) to zero. In particular (3.6) yields Einstein’s field equations with a stress-energy
tensor containing the gravitino and its derivatives. Notice that RW“” contains gravitino
dependent terms via the gravitino dependence of wu“b. Hence, in order to cast Einstein’s
field equations in the familiar form, one not only has to divide by e and convert the
Lorentz index a into a world index by means of the vierbein, but in addition one has
to separate the gravitino dependent terms contained in RW“” from those terms which
depend only on the vierbein (the latter give rise to the standard Einstein tensor on the
“left hand side” of Einstein’s field equations).

3.3 Gauge symmetries

The nontrivial gauge symmetries of the SUGRA action (3.3) may be grouped into three
types:

13



1. Invariance under spacetime diffeomorphisms with four real gauge parameters £#:

5diffeoez = fyauez + au Veza (38)
5diffe01/)u = fyau"[)u + 8;16111,01/7 .
5diffeo¢u = gyauz,bu + augy¢u- (3-10)

The invariance under these transformations can be deduced from the fact that the
Lagrangian is by construction a scalar density with weight one under spacetime
diffeomorphisms, as is familiar from standard GR (the induced transformation of
the spin connection (3.5) is (5diﬁ‘e0wuab = f”a,,wu“b + 8u§”w,,“b).

2. Invariance under local Lorentz transformations with six real gauge parameters

gab — _gba:

5L0rentzez = £ba€Za (311)
6Lorentz1/)lo; = %gab(wuaab)aa (312)
5Lorentz@zg = _%gab(aabﬁzu)d- (313)

The Lagrangian is invariant under local Lorentz transformations because it is
composed of Lorentz-covariant objects whose Lorentz-vector and spinor indices
are “correctly contracted” (the induced transformation of the spin connection is
(5L0remzwu“b = Vué’“b = auga” — wucaé’d’ — wucbé’“c, ie., wuab transforms indeed as
a gauge field for Lorentz transformations; Ru,,“b is Lorentz-covariant because it is
the field strength of w,ﬂb, and V,, is the Lorentz-covariant derivative).

3. Local SUSY with gauge parameters £ that are complex Weyl spinors (and thus
make up four real gauge parameters):

Osusy€ly = 2i€0%p, — 2ith,0°E, (3.14)
5susy¢lof = Vufa = 8;150[ - %Wuab(go'ab)aa (3'15)
5susy¢lof = Vufa = 8;150[ + %wuab(aabf)a- (3.16)

The invariance under these transformations is explicitly demonstrated in appendix
B.1 using the “1.5 order formalism”.

3.4 Algebra of gauge transformations

Let us first compute the commutator of two SUSY transformations on the vierbein. We
shall use the notation dgysy(¢) meaning a SUSY transformation with parameters £*, and
analogous notation for diffeomorphism and local Lorentz transformations.

[5susy(§1)a 5susy(§2)]ez = 5susy(§1)(2i§20'a@zu - 2i¢ugag2) - (1 < 2)
210"V &1 — 2iV €107, — 2i610°V 1€s + 21V €908
= V,(2i&0" — 2i&0%E). (3.17)
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Notice that this expression does not contain derivatives of the gravitino and at most first
order derivatives of the vierbein. Hence, in the second order formulation it cannot con-
tain a trivial gauge transformation discussed in section 2.4 because the Euler-Lagrange
derivatives (3.6) and (3.7) contain second order derivatives of the vierbein and first or-
der derivatives of the gravitino, respectively. Therefore the commutator (3.17) should
be a combination of the gauge transformations (3.8), (3.11) and (3.14) with composite
parameters depending on the fields and the gauge parameters £, £ (and their deriva-
tives). To verify that this is indeed the case, we examine a general gauge transformation
of the vierbein (diffeomorphism + local Lorentz + SUSY transformation):

Jgauge €5 = £yl + 0,8 el + & el, + 2i0 ey, — 2ih,0°E
= & (Ovey —Ouey) + E£70ue), + 0ut”e;, + &€y, + 20(E0 P — uo®E)

~ /
-~

4 “ Ou(€¥ed) .
= ‘-’JV‘L —LIJ‘LU = v,a a v
+21(¢V0_a1;#_¢#0_a1zu) v#(g eu)+‘-’-’p,b 3729

= Vu(€el) + (6" + Ewi")e), + 2(E + 7)o"y — 2ipo® (€ + E74hy).

Hence we have

~

Sgauge €4 = V€ + &,%€b, + 2i€0%1p, — 2inp, 0% (3.18)

where

fr=gres, =gt pgw®, =g reyp, 9= el | (319)

Consider now gauge transformations with €% = ( and €% = 0. These are combinations

of diffeomorphism transformations of e}, with parameters ¢”, Lorentz transformations

of ef} with composite parameters £ = —¢v4,% (as this is equivalent to gab — 0), and
SUSY transformations of ef, with composite parameters {* = —£"¢ (& £ = 0). Since
the right hand side of (3.18) reduces for gab = £2 = () to Vufa, one has thus:

Odifteo (€”) €% + OLorents(—E"wy ™) €4 + Ggusy (—E"9) €4 = V€7 (3-20)

Using this in (3.17) we obtain that, on the vielbein, [dsysy(£1), Osusy (£2)] is the sum of
a diffeomorphism transformation with parameters {7, = 2i(§20" & — £0Y&), a local
Lorentz transformation with parameters —f’l’,QwV“b and a SUSY transformation with
parameters —&7 91b7. On the gravitino this holds only on-shell as can be explicitly verified
but the computation is cumbersome because one must compute 5susywu“b with wﬂab given
by (3.5), and use the EOM of the gravitino. We shall not perform this computation here
because its result can be obtained more elegantly from the supercovariant tensor calculus
to be discussed later. One obtains thus

[5susy (fl)a 5susy (62)] = 5diffe0 (flV,Q) + 5L0rentz(_fly,2wuab) + 5susy(_fly,2¢3) + 5triv

with | &/, = 2i(&07E1 — &1078),

3.21)
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where 0"V is a trivial gauge transformation as in section 2.4 involving the Euler-Lagrange
derivatives (3.7). The remaining part of the algebra is quite standard and can be easily

derived:

[Sdifreo (€1), Odiffeo (§2)] = ddiffeo (§1,2)  With 552 =£50,¢8) — £10,85, (3.22)
[6Lorentz (€1)5 OLorentz (€2)] = 5Lorentz (b12) with 1% = ¢7°6." — €5°¢6.", (3.23)
[Odifteo (1), OLorentz(€2)] = OLorentz (612)  with  &f% = —¢'9,£5", (3.24)
[ddifreo (1), Osusy (§2)] = usy(fl 2) with  £f'y = —£{'0,£5, (3.25)
[Brorents (£1); Gsusy (€2)] = Gsusy (€12)  with €7y = —3£%(£2000)".  (3.26)

Owing to the trivial gauge transformations in (3.21) the algebra is open. This is
one difference as compared to simpler gauge theories such as YM theory or standard
GR. Another difference is that the composite parameters of the gauge transformations
which occur on the right hand side of (3.21) are field dependent, whereas in YM theory
or standard GR one has [d¢,, d¢,] = ¢, , With {12 depending only on &1, > and their
derivatives, as in (3.22)—(3.26).

Remark: Note that the £ in (3.19) are related to the £ by gauge parameter redef-
initions of the type discussed already in section 2.5, namely EN =K A]\/;fM with field
dependent K ]\]\/5 We are free to use the é as gauge parameters instead of the £. As
explained in section 2.5, this is equivalent to changing the generating set of gauge trans-
formations. This alternative form of the gauge transformations arises naturally within
an approach to SUGRA based on a supercovariant tensor calculus to be discussed in
the following sections. The gauge transformations of the vierbein in terms of these
parameters are given by (3.18), the corresponding transformations of the gravitino read:

Ogauge P = £ 0% + 0,82 + 3(€% — €W, %) (Yu0ap)® + V(6% — E92)
& | OgaugethS = EEY(Vothy — Vyuthy)® + 560 (1hu00)® + V,E° (3.27)

4 Tensor calculus for standard gauge theories

So far we discussed pure D =4, N =1 SUGRA with field content made up only of the
vierbein and gravitino fields. In that basic formulation the gauge transformations form
an open algebra in the terminology of section 2.5. There is an alternative formulation
[20, 21], often called “off-shell formulation” because in that formulation the commutator
algebra of the gauge transformations closes off-shell. This is made possible by the
inclusion of additional fields which do not carry physical degrees of freedom and can
be eliminated algebraically using their equations of motion (analogously to the spin
connection w,ﬂb in the first order fomulation, see section 3.1). Therefore they are called
auxiliary fields. Elimination of the auxiliary fields reproduces the “on-shell formulation”
of pure D =4, N =1 SUGRA discussed in section 3. An off-shell formulation does not
only exist for pure D =4, N =1 SUGRA but also for its coupling to standard “matter
multiplets” which is of great help for the construction of matter couplings to D = 4,
N =1 SUGRA.
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These off-shell formulations can be derived within a scheme that is not restricted to
D =4, N =1 SUGRA but extends to a more general class of gauge theories. T refer
to this class of gauge theories as standard gauge theories because it is characterized by
properties familiar from YM theories or GR. The scheme itself may be called “tensor
calculus for standard gauge theories” and is presented in this section®. In section 5 we
shall specify how it can be used to derive the off-shell formulation of D = 4, N =1
SUGRA.

4.1 Basic input

The tensor calculus centers round the notion of gauge covariance, in particular gauge
covariant quantities and operations, such as tensor fields and covariant derivatives. Its
structure resembles properties familiar from YM theories and GR. However we shall
introduce it in a somewhat unfamiliar manner which starts off from formulae for the
gauge transformations and the “partial derivatives” (d,) of tensor fields. The formula for
the gauge transformations characterizes tensor fields through a certain transformation
law and is thus analogous to the definition of tensor fields in GR through transformation
properties under general coordinate transformation, for instance. The formula for the
derivatives of tensor fields is an unusual but quite useful way to introduce gauge covariant
derivatives.

We denote the gauge parameters by é M The hat on ¢ indicates that these parameters
might correspond to an unusal formulation of the gauge transformations. For instance, in
pure SUGRA this formulation corresponds to the parameters in equation (3.19) rather
than to those used in section 3.3. At the end of section 4.2 we shall cast the gauge
transformations in more standard form with “unhatted” parameters. Tensor fields are
now characterized as follows: a tensor field T is a local function of the fields whose
gauge transformations do not contain derivatives of gauge parameters é M and thus take
the form 6,7 = f M X s, for some local functions X,;. Moreover we require that these
functions are themselves tensor fields and that they can be written in terms of operators
Ay (graded derivations, see below) according to Ay T = X),. Basically, the latter
just means that we can define Ay; on T through AyT := Xjs. Hence, tensor fields
transform in this setting according to

0T = EMANT. (4.1)

This is the formula for the gauge transformations of tensor fields announced above. The
formula for the derivatives of tensor fields takes a similar form. In terms of the exterior
derivative on the jet space, d = dz"0,, it reads

dT = AMAYT. (4.2)

This expresses the exterior derivative of a tensor field as a linear combination of the
operations Ajs with coefficients that are 1-forms AM (because d has form-degree 1). In

3 Actually the scheme can be extended to rather general gauge theories and thus to a general tensor
calculus [22, 23] but the explanation of this extension is beyond the scope of this work.
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general these 1-forms will not be tensor fields because dT' = dz#9,T is a combination of
the derivatives of 7' which are usually not tensor fields (cf. GR or YM theories). Rather
we shall see that the AM should be interpreted as “connections” built of gauge fields
Ai‘[f according to

AM = dgt AN (4.3)

(4.2) will now be used to introduce gauge covariant derivatives. To that end we assume
that a subset of the gauge fields Aﬂ/[ forms a field dependent invertible matrix (in
the SUGRA case this will be the vierbein). We denote that subset by {V,!}, and the

remaining gauge fields by Aﬁz where we have split the index set {M} into subsets {a}
and {M}:

(M} = {a, M}, {AMY={v&, AN} ae{0,...,D—1}. (4.4)
Equation (4.2) can now be interpreted as a definition of the operators A,:

AT = (VTYE(8, — AMA ) T. (4.5)

a

Notice that A, has a form analogous to covariant derivatives in YM theory or GR.
Therefore we interpret it as a gauge covariant derivative. It is indeed gauge covariant if
AT is a tensor field for any M and every tensor field T, as we have assumed. Let us
elaborate in some more detail on this assumption. It demands that the A’s are graded
derivations in the space of tensor fields, i.e., they map tensor fields to tensor fields and
satisfy the Leibniz rule

A (TiTy) = (ApT) Ty + (=) MITIT (A T), (4.6)

where |M| denotes the Grassmann parity of the gauge parameter £M. (4.6) must hold
because the gauge transformations are to be Grassmann even derivations, cf. (2.13), and
shows that Ajps has the same Grassmann parity as the corresponding gauge parameter;
moreover A, should have even Grassmann parity (the same as d,,),

Al =1 = M|, Al = €] = |a| =0. (4.7)

Owing to (4.2) (and because d is Grassmann odd, as it contains the differentials dz*),
this also fixes the Grassmann parities of the gauge fields:

|AM| = |M|+1 (mod2), |A)|=|M]|. (4.8)

Remark: (4.1) and (4.2) establish a formal similarity of the gauge transformations
and the derivatives of tensor fields which might be surprising at first glance. However,
at a second glance it makes quite some sense: from a purely algebraic point of view
(in particular in the jet space approach) the gauge transformations and the derivatives
are actually quite similar and differ basically only in their commutation relations (the
derivatives are required to commute among themselves and with the gauge transforma-
tions, whereas the latter in general do not necessarily commute among themselves, see
equations (4.9) through (4.11) below). Furthermore, it may be worthwhile to compare
with the fiber bundle formulation of YM theories: there the gauge transformations and
the partial derivatives are also similar operations in the sense that the former correspond
to displacements in the fiber, the latter to displacements in the base manifold.
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4.2 Consistency requirements

We proceed by working out the consistency conditions which must be satisfied in order
that (4.1) and (4.2) can provide an off-shell formulation of a gauge theory. These consis-
tency conditions arise from the algebra of gauge transformations and partial derivatives
which is to read

[6¢,,0¢8,) = 67, [ = M (2, 61, 6o, ¢]), (4.9)
[d,0:] = 0, (4.10)
d?>=0. (4.11)

In (4.9), 67 is to be a gauge transformation of the same form as oz, and oz, but with
“composite parameters” fM, in order that the commutator algebra of the gauge trans-
formations closes off-shell. (4.10) is equivalent to [0, 65] = 0 and thus expresses (2.11).
(4.11) is equivalent to [, 0,] = 0 and is included because (4.2) is to be consistent with
these basic commutation relations of the derivatives.

We start with the commutator of two gauge transformations on tensor fields. Using

(4.1) and that the AT are tensor fields, we obtain
[551,552]7‘ = (551 (ééVANT) — (1 — 2) = éévéfwAMANT — é{vééMAMANT

= éévéiw [AMv AN] T, (4'12)
where [, ] is the graded commutator
X, Y] = XY — ()X Myx, (4.13)

On a tensor field, the right hand side of (4.9) must again be a gauge transformation
of the form (4.1) when we impose off-shell closure of the gauge algebra, i.e., it must
be a combination of the AT with certain coefficient functions f*. Since the gauge
transformations of a tensor field do not involve derivatives of the gauge parameters,
these coefficient functions do not involve derivatives of the ¢’s, cf. (4.12). Hence we
require
EM N P

[551,552]T =&7& Fnu' ApT, (4.14)
for some tensor fields Fasn’ [that these must be tensor fields is also seen by comparing
with (4.12), since AyT is to be a tensor field whenever 7' is]. As [d; ,0z,] is skew-
symmetric under exchange of fl and 52, these tensor fields are subject to the symmetry
property

Fun® = —(—)‘M| ‘N|.7:NMP. (4.15)

Since (4.12) and (4.14) must coincide for all gauge parameters and all tensor fields, we
require that the A’s satisfy the graded commutator algebra*

[Anr, An] = —Fun"Ap . (4.16)

*Note that (4.16) is a sufficient condition for the compatibility of (4.12) and (4.14). In special cases
it might not be a necessary condition. Analogously, equations (4.21) and (4.23) are only sufficient for
consistency, but in general not necessary.
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[The minus sign is due to f{‘/ffévaMP = —févf{‘/[]:MNP.] This algebra implies consis-
tency conditions for the tensor fields Fas ~F and their A-transformations. These follow
from the following identity for graded commutators:

¥ [Au,[An, Ap]] =0 (4.17)
MNP

where the graded cyclic sum was used defined by

¥ Xuwp = ()" Xynp + ()M M Xy py + ()N Xppy . (4.18)
MNP

(4.16) and (4.17) yield

z (AM.FNPQ -i-.FMNRprQ) =0. (4.19)
MNP

As we shall see, these equations are the crucial consistency requirements.

Next we consider the commutators of the exterior derivative and gauge transforma-
tions on tensor fields. Using (4.1), (4.2), (4.16) and that the AT are tensor fields, we
obtain

[d,6]T = d(EMANT) = 5:(AM AnT)

M) AMT + (-)MEVA(ANT) = (3;AM) AnT — AM S (ApT)
dEM)AMT + (-)MEMANANANT — (5, AM)AnT — AMEN AN ANT
deM — 0. AM)ANT — AMENTAN, AT

dEM — 5, AM + APEN FypM) AN T. (4.20)

~—~ o~ o~

According to (4.10), these commutators must vanish for all 7. Therefore we require
that the sum of the terms in parantheses in the last line of (4.20) vanishes for each M.
This fixes the gauge transformations of the connections:

(5§AAM = déM + APEN]:NPM (4.21)

i.e., for the gauge fields:

0 AN = 0, €M + ALEN Fyp™. (4.22)

Last but not least we compute d? on tensor fields using (4.2). We obtain
T = d(AMAyT)
(dAM)A LT + (=) M AM g( Ay T)
= (dAM)AyT + (—)MIF1AM AN AN Ay T
(dAM) AT + L(—) ML AM AN 4 (<) IMEDANED AN AMYA A T
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= (dAM)ApT + L (=) MFLAMAN AN AT + L (=) IMEDINIAN AMA AT
= (dAM)ApT + L (=) MIFLAMAN AN AT + L (=) INHEDIMIAM AN Ay AT
_ (dAM)AMT + %(—)‘MHIAMAN(ANAM + (_)(|N\+1)|M\+|M\+1AMAN)T
= (dAM)ANT + ()M AM AN (AnAp — (=) NIMIA A N)T

= (dAM)ANT + L (=) ML AMANIA N, Ay )T

= (dAM — %(_)\PHIAPAN}-NPM)AMT

where we used (4.2), (4.8), (4.16) and, again, that the AT are tensor fields [note
that (4.8) implies AM AN = (—)(IMIFDUNIH) AN AM] - As d?>T must vanish for all T we
require

dAM + 5 (=) PIAP AN Fiyp = 0. (4.23)

This equation looks at first glance like a differential equation for AM > However, actually
it determines the curvatures of the covariant derivatives [this is similar — and related —
to the fact that (4.2) is no differential equation for tensor fields but the definition of the
covariant derivatives]. To see this we spell it out in components. Using

dAM = dz"0,AM = datda” 0, A) = Ldz'dz”(0,A) — 9,A)))

and
AP AN = dot AV dz¥ AY = (—)IPldztdz” AT AY

we obtain from (4.23)

OuAM — 9, AM + AP AN Ty pM = 0. (4.24)

[One has AP AN Fyp™ = — AP AN Fiyp™ owing to (4.8) and (4.15).] Now, AP AN Fyp™M
contains VlfVlf’fbaM, cf. (4.4). We can thus write (4.24) as

VeVE FopM = 9,AM — 8,AM 4 AP ANF M 4 VoANF e M _VeANF M |(4.25)

where we used Fon™ = —Fno™ which follows from (4.15) owing to |a| = 0, see (4.7).
As V is assumed to be invertible, (4.25) can be solved for F.4* by contracting it with
(V-1 and (V1)4. Hence (4.23) can be viewed as an equation for the F,," which can
indeed be interpreted as curvatures or torsions for the covariant derivatives, as (4.16)
reads for M = a and N = b:

[Ag, M) T = —F o M ApT.

This ends the discussion of (4.9) through (4.11) on tensor fields. What about the
gauge fields? It turns out that (4.9) through (4.11) do automatically hold also on the

®Notice also that it looks formally like a Maurer-Cartan equation, or a “zero-curvature condition”.

Actually it is indeed a zero-curvature condition, but just for the derivatives as it expresses [0y, 0,|T = 0.
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gauge fields as a consequence of (4.19), with the same f as in (4.14) (note that the
latter is required because the commutator algebra of the gauge transformations must of
course coincide on tensor field and gauge fields in an off-shell formulation). Indeed one
obtains, using the formulae derived so far:

[6¢,,05,) AM = 0g (63" + ATEY Fyp™) — (14 2)
= ((5£IAP) AéVFNPM + Apéév(éélprM) — (1 — 2)
= (déf + A% TR )& Fnvp™ + APEY EPAQFNPM — (14 2)
= AN Fnp™) + ATEPER Frot Fnp™
+(_)|Q||P‘AP55V£1Q z (AQ}—NPM —{—.7:QNR.7:RPM), (4.26)
MNP
(d, 6] AM = d(d€M + ATEN Fiyp™) — 05 (=5 (=) P1AP AN FypM) =
= %(_)|P‘(1+|Q|)APAN£Q z (AQ}—NPM —{—.7:QNR.7:RPM), (4.27)
MNP
d*AM = d(=L(—)IPIAP AN FypM) = .
= —4(—)NHQIPIAP AN AR N (A Fnp™ + FonFrp™). (4.28)
MNP

Hence (4.9) through (4.11) are indeed satisfied on AM when (4.19) holds. This empha-
sizes the central importance of (4.19). Furthermore, we can now specify (4.9):

[651’652] = 6f ) fP = E{Méév}-NMP (4.29)

Let us finally rewrite the gauge transformations in terms of parameters £+, ¢ M pelated
to the €M analogously to (3.19):

o =enve, €M =M g gnal, (4.30)

For the gauge transformations of tensor fields we have
6T = EMANMT = EVINT + EMA LT = 640, — AMA )T+ EMA LT

where we used VAT = (0, — Al]f[AM)T which is nothing but a rewriting of (4.2).
Hence the gauge transformations of tensor fields read in terms of the £’s:

0T = €10, T + EMA T (4.31)

For the gauge transformations of the gauge fields Al]f[ we obtain from (4.22):
(55142/[ = aﬂ éM + AﬁéN.FNPM
= Ou(EM + A + ALY + ANV F M + AV IF PN
= 0.8 + 0, AY + (0, A) = 0, A1) + €0, A)
+AL(EN + & AN F o M+ ALV F M
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Using now equation (4.24), i.e., OHAIJYI — 8,,Ai\;4 = —AﬁA,],V}"NpM, we obtain

SeAM = €79, AM 1 9,6V AM 4 9, €M 4 APeNF o M (4.32)

An analogous computation for Vji" yields

VI = E D,V + 8,8V + APENF L . (4.33)

Notice that the right hand sides of equations (4.31), (4.32) and (4.33) involve &£* only
via the “Lie derivative terms” {#9,T and £ GVA% + 0,8 AM yespectively.

Remark: Formally the formulae above look quite familiar. For instance, (4.21)
looks formally like the gauge transformations of a gauge field in YM theory if the Fyp™
were the structure constants of a Lie algebra. However, in general (and in particular in
SUGRA) the FypM are not constant but rather they are tensor fields, and therefore the
algebra (4.16) is not a (graded) Lie algebra but a more general structure. In fact, Lie
algebras are just the simplest examples of this structure, because in these examples the
FnpM are constants and (4.19) turns into the Jacobi identity for the structure constants
of a Lie algebra. Hence (4.19) generalizes the Jacobi identity for Lie algebras to the more
general algebras (4.16).

5 Off-shell formulations of D=4, N=1 SUGRA with matter

5.1 Supercovariant tensor calculus

We shall now outline how an off-shell formulation of D=4, N=1 SUGRA and its coupling
to matter is obtained within the scheme described in section 4. The gauge symmetries to
be implemented are in this case the spacetime diffeomorphisms, local Lorentz symmetry,
SUSY and YM gauge symmetry. The corresponding “hatted” gauge parameters ¢ are

(€M) = (€0, £ €4 ¢ ¢1y (5.1)

where the éz are the hatted Yang-Mills gauge parameters, i.e., the index i refers to some
basis of the Lie algebra of a YM gauge group (for pure SUGRA, {f Y is simply the empty
set). The other gauge parameters and indices have already been introduced in section
3. The gauge fields Aﬂ/f are the vierbein ey, the gravitino j; and its complex conjugate
1/32‘, the spin connection wu“b and Yang-Mills gauge fields AL,

{A)Y = {ef it gy, wu ™, ALY (5.2)

The vierbein is in this case identified with the gauge fields V! in (4.4),

Vi = e (5.3)
The A-operations are denoted by
{AM} = {DaaDaaﬁdalaba(sz’}- (54)
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Concerning summations over the indices M, we employ the following convention:
XMYy = XV, + X9V, + 2 XY + X5, X2V, = XY, + XaV7 (5.5)
For instance, (4.2) reads thus explicitly in this case:
OuT = (4Dg + Y5 Da + Yua DY + 5w, loy + ALS;) T
The covariant derivatives (4.5) are thus given by

Do T = EY(0y — 3 Da — huaD* — jwu™lay — A}, 5:) T (5.6)
Notice that these covariant derivatives involve not only the spin connection and Yang-
Mills gauge fields, but in addition also the gravitino. They are thus covariant also with
respect to local SUSY transformations. To distinguish them from the more familiar
covariant derivatives in standard GR, we shall refer to them as supercovariant deriva-
tives and to the corresponding tensor fields as supercovariant tensor fields. Notice also
that D, does not contain a connection I',,” for world indices. The reason is that all
supercovariant tensor fields must be scalar fields with regard to spacetime diffeomor-
phisms because otherwise their gauge transformations would contain derivatives of the
diffeomorphism parameters, in contradiction to the definition of tensor fields according
to (4.1). Hence, according to this definition, supercovariant tensor fields do not carry
world indices, and therefore a term with I',,” is not needed in D,. For the same rea-
son the supercovariant derivatives themselves must be scalar operators with regard to
diffeomorphisms which explains why the carry a Lorentz index instead of a world index.

5.2 Bianchi identities

D =4, N =1 SUGRA arises now by a suitable specification of the tensor fields Fysn"
occurring in (4.16). This has to be done such that the consistency conditions (4.19) are

satisfied. To describe this specification, we introduce the index sets {A} = {a, @, &} and
{I} = {[ab],i} so that (5.4) becomes

{AM} = {,DAa(sI}a {DA} = {IDMIDCHIDC'%}’ {61} = {lab’(si}' (5'7)

The graded commutator algebra (4.16) for an off-shell formulation of D = 4, N = 1
SUGRA reads

[D4,Dp] = —Tap“Dc — Fap'or, (5.8)
[613 DA] = _gIABDB y .
01,671 = frs/"0x - (5.10)

Note that this is not the most general form that the algebra of the D4 and d; could have
because the right hand side of (5.9) contains no term with a 67 while the right hand side
of (5.10) contains no term with a D4. Furthermore we impose that the frs% and gra®
are constants (whereas the T4 5% and F4p! are in general field dependent),

fIJK = constant, gIAB = constant.
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The conditions (4.19) read then for the various index pictures p;xp@:

~

" fiM k" A+ fr™ far” + e faa™ =0, (5.11)
s 0=0, (5.12)
Ak 0=0, (5.13)
A% 91a%sc® — 954%01c” = fri gk a®, (5.14)
148 6Tap” = —graPTop" — g18°Tap® + Tas®910°, (5.15)
1ag”t 8iFap’ = —g1a%Fep” — g1 Fac” — fix’ Fap™, (5.16)
Apc’ z (DaFpc’ +Tap”Fpc') =0, (5.17)
ABC
apc” E (DaTpc” + Tap"Trc” + Fap'gic”) = 0. (5.18)
ABC

(5.11) is the Jacobi identity for structure constants of Lie algebra. It just reflects that,
according to (5.10), the d; are to form a Lie algebra with structure constants fr 7%, This
Lie algebra is denoted by g and chosen to be the direct sum of the Lorentz group and
the Lie algebra gyy of a YM gauge group, g = s0(1,3) ® gywm.-

(5.14) imposes that the constants gr4® are the entries of matrices g representing
g on the D’s because in matrix notation it reads just [g7,9s] = fri%gr. To fulfill it,
we choose the only nonvanishing gy to be those for the Lorentz algebra and, possibly,
for two abelian elements J(g), oy € gym which belong to so-called R-transformations
(these are U(1)-transformations which do not commute with SUSY transformations) and
Weyl-transformations [Weyl-transformations are included here for the sake of generality;
we shall drop them later again]:

[laba Dc] = NevDa — 1eaDh,s [laba Da] = —Ogp aﬁDBa [laba d] = 6-0,()6-(541_)37
[0(r)s Dal = 0, [6(r)» Pal = —1Da, [0(r), Da 3
(6w, Da] = —Da, [0y, Dol = =3Das 6wy, Dal = —3Da.-

(5.15) and (5.16) require that the “torsions” T4p® and “curvatures” Fap' transform
under g according to linear representations characterized by their index pictures. They
are thus fulfilled when the T3¢ and F4p' are ordinary tensor fields with regard to the
Lorentz group and the YM gauge group.

(5.17) and (5.18) are conditions on the Tsp¢ and Fup’ and their Dy-
transformations. They provide in particular in part the SUSY-transformations of these
tensor fields (recall that the gauge transformations of a tensor fields are 55T = EMANT

whose “SUSY-part” is thus £*D,T +£&4DT). (5.17) and (5.18) are called the Bianchi
identities of D = 4, N = 1 SUGRA because they generalize the Bianchi identities of GR
and YM theory (the latter are obtained from (5.17) for ABC = abe by setting all fields
with spinors indices to zero). A set of tensor fields {TABC, Fap! } which satisfies these
equations is called a “solution of the Bianchi identities”. It was shown in [24] that the
Bianchi identities (5.17) follow from (5.18) [using (4.16) and (5.15)].

Different solutions of the Bianchi identities lead to different formulations of D =
4, N = 1 SUGRA. However, two such ‘different’ formulations can actually still be
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equivalent because they may only differ by redefinitions of the fields or gauge parameters.
Indeed, consider redefinitions of the gauge parameters of the form &M = N X M where
X is a local invertible matrix whose entries are tensor fields. Such redefinitions of the
gauge parameters correspond to redefinitions A’, = (X~1)¥ Ay of the A’s (as these
yield the same gauge transformations: on tensor fields one has é MALT = é’M AT for
all tensor fields). Hence, two solutions of the Bianchi identities differing only by such
redefinitions (which preserve (5.9) and (5.10)) must be considered equivalent, since such
redefinitions of gauge parameters can always be made in gauge theories (cf. section 2.5).
By such redefinitions one can always achieve [25] that

Tada = 2i0’gd, Tao'cﬁ = Tadﬁ = Taﬁ’y = Tdﬁ';y = ,I'abc = Focdi =0. (520)
Hence (5.20) can be assumed without loss of generality. These choices are therefore called

“conventional constraints”. The constraint T, = 0 determines the spin connection
because (4.25) yields for M = ¢

eZelb, Top” = 0ye, — O,e, + 2/);67 %Tgéc + (epty — eptpi) Toa” + (eZAlI, - e,‘jAﬁ)glac(f).Ql)

where {7} = {2/)2‘,1/32‘} and summation convention as in (5.5). Using (5.19), the term

eZAlI,glac which occurs in (5.21) reads explicitly

(W)

v .

a Al c __ c c
epAygr.” = wy, + e A

Hence, for T,,¢ = 0 we obtain from (5.21):

T %d)gd)l%Tgéc + 6&1,0%]Tgac +ee AT, (5.22)

W) = 9 [uy]

e
wv

Note that this is analogous to (3.4) and determines w,? analogously to (3.5), using
Wuvp = Wiuvlp ~ Wluplp T Wipply-

Constraints in addition to (5.20) yield different off-shell formulations of D = 4,
N = 1 SUGRA. The additional constraints cannot be arbitrarily chosen because the
Bianchi identities (5.17) and (5.18) must be satisfied. The simplest solutions to the
Bianchi identities are spelled out in the next subsections.

5.3 Old minimal SUGRA

We shall now present the so-called “old minimal” SUGRA theory which is certainly
the most popular off-shell formulation of D = 4, N = 1 SUGRA. We shall start from
the corresponding solution of the Bianchi identities (5.17) and (5.18) in presence of
super-YM multiplets without discussing how one derives this solution systematically
(for details see, e.g., [26]). Then we shall introduce chiral matter multiplets, spell out
the gauge transformations and finally the construction of invariant actions, including
the higher order invariants.
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5.3.1 Old minimal solution of the Bianchi identities

We shall present the solution for the case that R-transformations are possibly gauged
(the version without gauged R-transformation is obtained simply by setting all fields
with an index (R) to zero), but without gauged Weyl-transformations,

dwy & {0i}-

The torsions and curvatures are, except for those that can be obtained from the others
using the graded symmetry in AB, or the following relations

Taaﬁ = _(Tdaﬁ)*a Taaﬁ = _(Tdaﬁ)*a Faal = (Fdal)*a Faﬁab = _(Fdﬁ'ab)*a

or (4.25) (with T,,° = 0):

AB = ab AB=aB| AB=af
C 1 ~C
Tap 0 0 210aB
TAB'.Y éMe'Yaabad | 0 0 (5.23)
Ta” —i ((5ng + Bcﬁcb7d) 0 0
Fap' N g 0 0
Fap | iT 0, 05 — 2i0l, T, | ~M5 5 | 2ie®lo, :B,

Here M is a complex scalar field and B, is a real vector field. These fields are the
auxiliary fields of the old minimal SUGRA multiplet [of course, that these fields are
indeed auxiliary ones can not really be seen at this point but only from the action to be
constructed later; however, one may anticipate it by counting the DOF off-shell and by
inspecting the dimensions of these fields]. The \i are the fermions (“gauginos”) of the
super-YM multiplets, i.e., the “superpartners” of the YM gauge fields. Explicitly this
yields:

>
£
>

b = =3 Fup“Uleq — Fup'6; — Top®Do — Topa DY

[

Doy D] = — L FouUeq + i000aA¥0; + i(Bods — B'0paa”)Dp — LM 0y0sD®

[Das Da] = — 4 Faalea — 10a0a X'0: — i(Bad] + B'51a%4)D; + §M0aaa D" 5.24)
Dy, Da] = —2i0% Dy — €U0 406 Bylea = —2iDag + 2Bgala” — QBaBl_dﬁ

Do, Dp) = Mo o5la = Mlygs

[ﬁd,ﬁﬁ-] = %M&“bd/; lap = —Midﬁ-

where lo3 and [, ;5 are the Lorentz (s[(2,C)) generators acting on undotted and dotted
spinor indices according to

lapXy = —€yaXp)y lapXa =0, 35Xy = —€56Xp, lz5Xa =0 (5.25)

They are related to the [, by

lab = 0™ Plag — 5™l s (5.26)

27



Furthermore the Bianchi identities yield

DM = (s, —ia{), 5.27

DM = 0, 5.28
i

DoBy; = éeﬁa(sﬁ-+4mé N—U 5.29

(
(
aBB’ ( :
'DO)\% = iEagDi—l-Gaﬂi, (
DX, = 0. (
DoD' = DaaN'® + LBy N . (
where D' are real auxiliary fields of the super-YM multiplets and S, Udf-h and Gafgi
are given by

S =Tat" 0wy Uspy = Tatn @™ 455 Wapy = Tupa0™ g1y Gap' = —Fup'0®ap. (5.33)

Notice that the fields D* do not occur in any of the torsions or curvatures. They arise
only ‘indirectly’ from the Bianchi identities because the latter determine Do)\% only up
to the piece which is antisymmetric in @ and § and purely imaginary. That piece is
written as ieagDi which introduces thus additional fields D?. That these fields are really
needed, i.e., that they cannot be set to zero off-shell is then seen by imposing the algebra
(5.24) on the A’ and A\’ with the result given in (5.32) (the right hand side of (5.32) does
not vanish off-shell and therefore the D’ cannot be set to zero off-shell either).

The tensor fields (5.33) arise when one decomposes T,,“ and F,;" into Lorentz-
irreducible parts by expressing them in terms of spinor indices (using F,, s Bi =

agdog BFabi etc) and then decomposing the resulting expressions into pieces which are

totally symmetric in all undotted and all undotted spinor indices, respectively (splitting
off €’s):
— . . 2
Too iy = €asUspy + €56(Wapy + 564(aSp))
= Topy = %(TabdﬂUdﬂ',y + %O’a(,aBWagfy — %oabMSo‘, (5.34)
Fos /m'i = eaﬁéaﬁi + edﬁGaﬂi

& Fabi = %5’abdﬁ.édﬁ'i — %UabaﬁGagi. (5.35)

For the sake of completeness, and for later use, let me also give the corresponding
decomposition of the supercovariant version of the Riemann tensor F,°:

F e 83yq06 = eaﬁ%é[Xaﬁw - %(Eaveﬁé + €py€as) R] — €aB€s4Y 545 T C-C-
Xogys = 0 (s ) Fabeds  Yagap = 0% 550 apFapeas R =Fap"".  (5.36)

[0}

Xapys, Y, sa and R are the supercovariant versions of the Weyl tensor, traceless Ricci
tensor and Riemann curvature scalar, respectively (in spinor notation). I also note for
later use another important result:

DDy M = R + 32D 4 2M N — 16B°B, + 161D, B". (5.37)
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Using the torsions in the table (5.23), one obtains from (5.22):
Wit = 8[Mel‘f] — 2i@b[uaa1ﬁy] . (5.38)

This is precisely the same expression as (3.4). Hence the spin connection of the old
minimal formulation is given again by (3.5).

5.3.2 Chiral matter multiplets

Next we discuss so-called chiral matter multiplets. These consist of tensorial matter
fields ¢, xq, F' where ¢ and F' are complex scalar fields and y, are Weyl spinor fields.
These fields may carry additional indices which refer to the YM gauge group (more
precisely, a representation thereof), which we shall suppress. So, one should think of ¢
as a column vector on which representation matrices T; of the YM-Lie algebra gya act,
and the same applies to x, and F'. These representation matrices T; agree on ¢, xq, F
for all 7 except for ¢ = (R) (this exception will become clear below),

i#£(R):  6ip=—-T¢, dixa = —TiXa, 6;F = —T;F;
i=(R):  drye=—Tre dryXa = —(T(r) +1)Xa, dr)F = —(T(g) + 2i)F;
T3, T5) = fij" Tk (5.39)

The Lorentz group acts on ¢, x4, F' in the standard way,

lab‘p = 0, labXa = _(UabX)o“ labF =0. (540)

Then (5.9), (5.10) are satisfied on the ¢, xo, F. (5.24) is satisfied with the following
transformations:

Do = Xa 5 Dap =0,
Duoxp = —€apl', deXa = —2i0% Dap, (5.41)
DoF = —3Mxa, DaF = —2iDaax® — 4N,0i¢ + Baax™-

This explains in particular the relations for § ) in (5.39), as Dy carries R-weight 1, cf.
(5.19).

The field content of chiral matter multiplets and the transformations (5.41) can be
found as follows. We start just with the field ¢, which is chosen to be the “lowest”
component field of the multiplet to be constructed (i.e., it has lowest dimension). We
impose Dgw = 0 which may be viewed as the simplest possible Dg-transformation one
may choose® (that choice is possible because (5.24) requires [Dy, @B]Lp =1 M5 5 labp
which vanishes owing to lg,¢0 = 0). Dy is then defined to be a new field denoted by x4
which thus becomes the second member of the multiplet.

We have thus fixed the D,-transformations of ¢ (and also of ¢ by complex conjuga-
tion) and introduced new fields y,. Next we have to define the transformations of these
fields. Let us first consider Dy xg. Using x3 = Dgy we obtain

Daxs = DaDpp = 5(DaDp + DsDa)p + 3(PaDy — DsDa)p.

bIn accordance with standard SUSY terminology, Ds-invariant fields are called “chiral fields”. Hence,
@ is a chiral field and that explains why the whole multiplet is termed “chiral multiplet”.
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Up to the factor 1/2, the first term on the right hand side is the graded commutator
[Dy, Dg] (since D, and Dg are Grassmann odd their graded commutator is the anticom-
mutator). (5.24) imposes that this term must vanish (owing to l4¢ = 0). The second
term is antisymmetric in o and 8 and thus proportional to €,3. We define it to be
—eqpF where F is a new field (an additional member of the multiplet). This yields the
transformations Dy x5 = —€qpF in (5.41). To define Dsxo we proceed similarly:

DiXa = DaDap = (DaDa + DuDa)p — DaDap.

The first term on the right hand side is the graded commutator [D,, Dg]e. According
to (5.24) it should be equal to —2i0% Dy (owing to [ = 0). The second term must
vanish because of Z_)dgo = 0. This yields the transformations Dgxa = —2i0% Dy in
(5.41). Note that this really defines Dy, completely because, using (5.6), we obtain:

Dop = E{(Ou— ¢, Do — @Eud'f)d - %wuablab - Aiﬁi)(p
= E(Oup — uxa — AL0ip). (5.42)

As we have introduced a new field F, we must now determine its transformations.
Duoxp = —€apkF gives 2F = Dﬁxﬁ. Using this, we obtain

Do F = 3DDsx” = 3[Da, Dplx” — 1DsDax’. (5.43)
Using the algebra (5.24), we obtain for the first term on the right hand side of (5.43):
LD, Dslx”® = SMlagx® = —2Mxa.
Using once again D, xp = —€qgF, the second term on the right hand side of (5.43) is:
—1DsDux’ = —iD4(F) = 4D F

Bringing this term to the left hand side of (5.43) we obtain the transformation Dy F =
—%an in (5.41). Finally we compute DaF starting again from 2F = Dﬁxﬁ and then
using the results for Dy x® and Dy p:

DoF = 3DaDax®
= 3[Da; Da)x® — 3DaDax”
[Da, Da]X® + 10" 4Da Dy
= $[Da, Dalx® +10°%4[Da, Dal + i0"*3DeDagp
5[Da, Dalx® +1i0"*4[Da, Dalip +i0°* 4 DaXa

—

=N

[De, Da)x® and 0% 4[Dy, Dy]p can be worked out using the algebra (5.24): the former
yields terms proportional to Dy x* and B,gx®, the latter terms proportional to Xgéigo
and B,gx®. Working out the precise coefficients one obtains the result for DsF given
in (5.41). This time we did not introduce any new field and therefore this ends the
derivation of the multiplet and the transformations (5.41). The fields F are the auxiliary
fields of the chiral matter multiplets.
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5.3.3 Gauge transformations

We can now spell out the gauge transformations of old minimal SUGRA coupled to
super-YM multiplets and chiral matter multiplets with field content

s Y, M,By; Al N, D% 9, xa, F. (5.44)

0y o

(e, iy, M, By) is called the old minimal SUGRA multiplet, (AZ, AL, DY) the super-YM
multiplet(s), (¢, Xa, F') the chiral matter multiplet(s). The gauge transformations of M,
Ba, D', ¢, xo and F are obtained from (4.1) using (5.27) through (5.32) and (5.41)
and their complex conjugates, the gauge transformations of the gauge fields from (4.22)
using the torsions and curvatures of old minimal SUGRA:

dgeh = Oub" + 5 — w0, ) greap® + VEE T e
— 0 — w8+ &€l + 200", — 2idh0%E (5.45)
oy = Ou€™ + L(RE™P — w, " EP)grap™ + (EER) — AP ) g )5
(€8 — ) Te™ + €Ty
= 04" — 3w (Coap)™ —IAJIEY + LW (uoap)™ + inpe ()

+(ep? — i) Taa® — (€€ — e Ty, " + el Tho (5.46)
M = DM + K £%(S0 — ) + 21 M (5.47)

0¢Boa = &"DyBy —00ala”By + [~3a(Sa + 4iXP) 4 PT40s + el (5.48)
0 Al = Ol — ALERfiit 4 (" — eff) Fog' + el Fiy
= 3ufi - Aszfkji - iéaﬂj\i + iAiaﬂf

HE (Puoa N’ — Nogipy) + el Fy,' (5.49)

0eMy = E'DaX, — 56 (0w o + FN fijt + 1IN, —idaD' 467G 0" (5.50)
6:D" = £9Da D + &I D frit + (9D N + TE¥ BN + c.c.) (5.51)
dpp = EDap+E0ip+Ex (5.52)

biXa = EDuxa — 3P (0wX)a + EGiXa + EaF + 2(0°€)aDay (5.53)
0;F = €D F +E§F — LM — 2iDoxo" — ANEbip + Baxo®é.  (5.54)

The gauge transformation (5.45) of the vierbein agrees entirely with the transformation
given in equation (3.18). The gauge transformations (5.46) of the gravitino involve the
torsions Tg,", T)3,“ given in table (5.23), and Tj," obtained from (4.25). If one sets

M, B,, A,(LR) and £B) to zero, T,® reduces to ELEY (V4% — Vi) and the whole
expression (5.46) collapses to the transformation given in equation (3.27). This reflects
that the auxiliary fields M and B, vanish on-shell in the off-shell formulation of pure
D =4, N =1 SUGRA when R-transformations are not gauged, as we shall see below.
Let us also indicate how the transformations (5.45) through (5.54) read in terms of the
parameters £. According to (4.31) the transformations of M, B,, X, D', ¢, xa, F are
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obtained from those given above simply by the replacements E“Da — &HO, {CQ — &%
gab 5 gab ¢i_y i For the transformations of the gauge fields one obtains from (4.32)
and (4.33):

deet = £yl + 0uLlel + & el + 20 ipy, — 2ith,0°E (5.55)
S = €0 + 0uE Pl + O™ — 3w (€0 ) — 1A
3P (Pu0a)® + gE T 4 ehei Ty, — o 9T °
= 0N + 0l Py + 56 (Yhuoa)® + i
+Vu£a — igO‘BM + iB”(fayu)a + §M(£&u)°‘ (5.56)
Al = €0, AL + 0,8 AL + 9,6 — ALEF frit — ko N + N oL (5.57)

5.3.4 Action

It was proved in [25, 27] that the most general local function invariant up to a to-
tal divergence under the gauge transformations given in section 5.3.3 is, up to a total
divergence:

Loa = e(D*—4ip,0"D —3M + 164,0""¢p,) A+ c.c.
A = P(W,\ @)+ (D*— M)QT) (5.58)

where Waf}y is the complex conjugate of W3, in (5.33), D? and D? are shorthand
notations for DD and D*D,, respectively,

D? = D*D,, D? = DD,

Q is invariant under all §;, P is invariant under all §; except under R-transformations
and has R-weight 2,

0i2=0 VI, 6;P=0 VI#(R), opP =-2P. (5.59)

Of course the conditions imposed by d(g) are present only if we require R-invariance.
The invariance of (5.58) under local SUSY transformations up to a total divergence
is explicitly demonstrated in appendix B.2 (the invariance under the remaining gauge
transformations is evident). I emphasize that P, as indicated by its arguments, depends
only on the de, 5\3 and @ but no (covariant) derivatives thereof. In contrast, € is
an arbitrary function of the tensor fields only subject to (5.59). Let us now spell out
various contributions to the Lagrangian obtained from (5.58).

Pure SUGRA action. The off-shell version of the pure SUGRA action arises when
A is proportional to M (i.e., P = 0 and Q = constant). Then (5.27) and (5.37) (resp.
their complex conjugates) yield straightforwardly:

A=3IM =
Lotg = ¢ [AR — 20" (S + iAB)) 4 2i(S — iA(B))gtep, + 2DF)
—3B,B® — MM + 3(Mp,0" 1, + M1p,5"1),)] (5.60)
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where A(®) and D) contribute of course only if R-transformations are gauged — other-
wise these fields simply have to be set to zero. In fact the Lagrangian (5.60) by itself is
inconsistent in presence of these fields as one sees, for instance, from the EOM for D(®)
which would read 2e = 0. This is cured when the YM Lagrangian Ly given below is
added as it contains terms which are quadratic and of higher order in AELR), A and
D), The locally R-symmetric SUGRA Lagrangian was first constructed in [28]. When
R-transformations are not gauged, (5.60) reduces to the old minimal version of the pure
SUGRA action (3.3) as given first in [20, 21]:

Lypure = € (3R — 3B,B®* — 2 MM) + 26" (V 1,005 + 1050,V yiby) (5.61)

with R = E}'EYR,,% as in (3.3). (5.61) arises from (5.60) by working out the su-
percovariant tensor fields R and S, explicitly. For instance, the supercovariant curva-
ture scalar R contains gravitino dependent contributions that combine with the term
ZiSa“zﬁu + c.c. to the familiar kinetic term for the gravitino in (5.61). Furthermore, the
terms linear in B, M and M, i.e. those contained in R, S and S and the last two terms
in (5.60), cancel out exactly. Notice that the EOM deriving from (5.61) set indeed both
M and B, to zero.

Locally supersymmetric YM action. The locally supersymmetric YM Lagrangian
arises from the contribution 1—165\’5\1- to P (nonabelian indices i are lowered with the
Cartan—Killing metric of the Yang—Mills gauge group and Abelian ones with the unit
matrix). It reads

e 'Lyy = —1 FW'F"; — 3 (N'o"V, N\ + N6PV,N) + 2 D'D; + 3 Xo# )\, B,
—5 € Fu' e (00X + Nioothy) + 0" N Xi + " NN (5.62)
where V, is the usual covariant derivative (not the super-covariant one),
Viu=0u— A0 — 5w, "l (5.63)
and Fw,i is the supercovariant Yang—Mills field strength,

Fu' = 0u Ay = 0u Ay, + [ AL AL + 2 (N o) + o). (5.64)

Contributions with chiral matter multiplets and Kéahler structure. Kinetic
terms for the chiral matter multiplets arise from a contribution to £ of the form K (yp, ¢)
with K invariant under all §;. To see this observe that

- _ - o OK (o, 0
D*D*K (¢, ) = (D*D*p") 73(; 2,

where we have introduced an index s labelling the chiral multiplets (instead of inter-
preting ¢ as a “column vector” in the representation space of gyy as before) and have
omitted a bunch of terms. Using (5.41) it is easy to verify that

D*D?p* = —16D,Dp* + ...
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where again we omitted many other terms. This shows that a contribution K(p, @) to
Q leads to a contribution to the Lagrangian of the form

0K (p, ¢ 0K (¢, ¢ _
Latter = —160 L) g 160 ZKNE) gy
&ps 8(,05
9*K (¢, p) ;
~ 320 LENDP) w5055 4 |
32 5 aps I Onp et (5.65)

I shall not spell out Ly,qter in more detail. It has quite a number of terms. T only note
that it also involves a term proportional to

eK(p,p) R (5.66)

which originates from D?M K (i, ¢) + c.c. owing to (5.37). Hence one actually obtains a
Brans-Dicke type action from (5.58) in presence of chiral matter multiplets. To bring this
action to the standard (Einstein) form one has to do a redefinition (“Weyl rescaling”)
of the vierbein according to

e, xVKe, = eg" x K tegh.

[In order to get a standard form of the action, one usually also redefines similarly the
fermion fields.] In terms of the redefined vierbein, (5.65) reads

Lnatter X € Ggs(p, @) g 0up® Q"+ ... (5.67)

where we have introduced a Kéahler metric in the space of the scalar fields ¢°® and @°
given by

9 _
G, @) = %a(g;‘p) (Kéihler metric). (5.68)
It turns out that the other terms in Ly,4¢ter can also be expressed nicely in terms of quan-
tities related to the Kéhler structure (for instance, there are 4-fermion-terms containing
the curvature of Ggz). T refer to the textbooks for the details and only add the remark
that geometrical structures related to scalar fields are typical of SUGRA theories, also
for higher N or D. Of course, they are not always Kahler structures as above but of a
similar type.

Notice that Lpaier can be viewed as a generalization of the pure SUGRA action
(5.61) because the latter arises from the special choice K = constant. The YM part
(5.62) of the Lagrangian can also be generalized in presence of chiral matter multiplets.
Namely a contribution (—1/2)fi;(@)AN'N to P, with f;;(¢) a symmetric 2-tensor of the
YM group, results in a contribution to the Lagrangian of the form

Ly = elfij(p) + c.c]Fu ' F*7 + . (5.69)

This generalizes indeed (5.62) which is just the special case of a constant f;;.
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Further invariants. Of course (5.58) can be also used to construct other invariants.
In particular, a constant contribution m to P gives rise to

e Leosmo = —3mM + 16map,o™ 1, + c.c. (5.70)

which, when included, contributes to the cosmological constant. Note however that
Lcosmo is neither locally nor globally R-invariant and is thus forbidden when global or
local R-invariance is imposed. Furthermore (5.58) can be used to construct higher order
invariants containing terms with more than two derivatives. For instance, a contribu-
tion of the form W?2W?2X?"X?" to Q results in an invariant containing a contribution
eX2( 1) X2 +1) ie. a term of order 4(n + 1) in the Weyl tensor. Such invariants are
candidate counterterms in a perturbative quantum field theoretical approach to SUGRA.

5.4 New minimal SUGRA

Actually new minimal SUGRA [29] is not fully described by the framework of section
5.1 because it contains a 2-form gauge potential and is thus a reducible gauge theory.
Nevertheless it can be obtained within this framework — it only gives rise to additional
formulas for the gauge transformations and Bianchi identities of the 2-form gauge po-
tential and its field strength. The solution to the Bianchi identities is very similar to
that of old minimal SUGRA; the differences are that the complex auxiliary field M is
zero and the consequences thereof. These consequences arise because M = 0 requires
that the transformations of M must also be zero by consistency. (5.27) and the real
part of the right hand side of (5.37) show that this imposes the identifications

(0}

M=0, \P=-iS,, D® =-1r+3B,B" (5.71)
The imaginary part of the right hand side of (5.37) imposes in addition
D,B" = 0. (5.72)

(5.71) shows that in new minimal SUGRA R-transformations must be included among
the gauge transformations and that )\&R) and D(F) disappear from the list of independent
fields. (5.72) must hold as an identity in elementary fields (off-shell). Hence, B, cannot
be an independent field either. Rather we must replace it by an expression that satisfies
(5.72) identically in the fields and their derivatives. To get an idea how this might work,

note that (5.72) is reminiscent of the equation dws = 0 because of
dw3 =0, w3= %dm“dm”dwpfw,p & Oh =0, Bt =€e"Pf,,,. (5.73)
We know that dws = 0 is identically solved by
wy = dwy, wo = %dm“dm”fw, & fuvp = 30 ) (5.74)

where f,, are arbitrary functions. Notice that wo is by no means unique because, owing
to d> = 0, it can be shifted by dw; with an arbitrary 1-form w;. It turns out that
(5.72) can be solved similarly even though it is much more complicated. In particular, it
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contains gravitino dependent terms through the wu“b occuring in the covariant deriva-

tives D, and through the terms EhiD,B® present in D,B% Notice that the latter
terms involve in particular derivatives of the gravitino because, according to (5.29), the
transformations D, B® contain the torsions T,;* which are obtained from (4.25). It is
therefore by no means obvious whether or not (5.72) can be satisfied but an explicit
computation shows that this is indeed the case. The solution is surprisingly simple:

B = el (30, Aps + 10y 01hs), (5.75)

where A, are arbitrary antisymmetric real fields analogous to the f,, in (5.74). Obvi-
ously they are determined only up to redefinitions of the form

A;w = A+ 0w, — Oywy, (5.76)

for arbitrary w, (this is completely analogous to the arbitrary shifts wo — wo + dw; in
the example above). This indicates that A,, is a 2-form gauge potential. The gauge
transformations are reducible because the gauge parameters w,, can be shifted by J,w
with arbitrary w without altering (5.76).

Having “solved” (5.72) by (5.75), it is still not clear whether this solution is consistent
in the sense that we can assign supersymmetry transformations to A,, consistently:
namely the expression on the right hand side of (5.75) is to transform exactly as B in
old minimal SUGRA with the identifications (5.71) and (5.75). It is not obvious that this
is possible because the SUSY transformations of B, in old minimal SUGRA are quite
complicated. But, again, this turns out to be the case and the solution is very simple.
Together with the diffeomorphism transformations and the gauge transformations (5.76)
one obtains the following general gauge transformations of A, :

OewAu = Opwy — Opwy +EP0, A + 0,EP Ay, + 0,67 Ay
—1 (50';/(/;1/ - 50'1/@5# + Q/)ugug - Q/JVUME)- (577)

It follows that the expression on the right hand side of (5.75) is a supercovariant tensor
field because in old minimal SUGRA B?® is a tensor field. The supercovariant field
strength of A,, can thus be identified with the expression dual to (5.75):

Hgpe = B} EY Ef (30, A, + 6ith,0,1,)). (5.78)
In terms of Hyp,, (5.72) reads €D, Hy,y = 0, i.e.,
D[aHbcd} =0

which can be interpreted as the Bianchi identity for H .

The gauge transformations of the other fields are obtained from those given in section
5.3.3 using the identifications (5.71) and (5.75). Together with (5.77) they make up the
gauge transformations of new minimal SUGRA with field content

et Ay, AP ALNL DY (i £ (R); @, Xa, F. (5.79)
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(el it Apws AELR)) is the new minimal SUGRA multiplet. Notice that it consists solely
of gauge fields. Both A,, and ALR) have three DOF off-shell, and thus the number

of bosonic and fermionic DOF match off-shell. As the number of DOF of e}, and 4,

match on-shell, neither A,, nor AELR) must have DOF on-shell, i.e., these fields must not

propagate (in particular, their DOF on-shell are thus not obtained from (1.1)). This is
indeed the case because the pure new minimal SUGRA action reads
Lyure new = %eR + 2ie(Sa“z/;M — @blp“g) + %eHabCH“bc — 2EWWAELR)3VAW
= JeR+ 26" (V1,055 + c.c.) + SeHup H™ — 26477 A0, A, (5.80)

where V, is covariant with respect to Lorentz and R-transformations,

Vit = 0y — 0" (Poow)” — ALY
The EOM for AEL}E) derived from Lpyrenew Set Hgpe to zero (notice that AELR) 0OCCurs
in V9, and V,1,). The EOM for A,, set the ordinary (non-supercovariant) field

strength of AELR) proportional to 9, H""? and thus, together with the EOM for AELR), this

field strength vanishes on-shell. Hence AELR) and A, carry indeed no physical DOF.
It was proved in [27] that the most general local function invariant up to a total
divergence under the gauge transformations of new minimal SUGRA described above

is, up to a total divergence:

Lyew = M(R)Lpure,new + Lpr+ Lo
Ly = Z ,uia(eDi“ + e)\i“a“zﬁu + ez/;uauj\i“ + e‘“””’Af;‘ 0vApes) (5.81)
2
Ly = e(D*— 4ip,0"D + 16¢,0" ) A+ c.c. ,
A= P(W,\ @)+ D*QT) (5.82)

where i, are the abelian 4 different from (R) and the p’s are arbitrary constants. Ly is
the Fayet-Iliopoulos contribution (redefining the abelian super-YM multiplets by intro-
ducing appropriate linear combinations of them, one can achieve that at most one y;, is
different from zero). Actually Lyyye new is of the same type as the contributions to Lpy:
in fact it might be viewed as the “Fayet-Iliopoulos contribution” of the R-transformation
because of (5.71). ©Q and P are again subject to (5.59). The discussion of Ly proceeds
as the discussion of (5.58) in old minimal SUGRA.

A Lorentz algebra, spinors, Grassmann parity

A.1 Lorentz algebra

D-dimensional Minkowski metric:

Nap = diag(1,—1,...,-1), a,be{0,...,D —1}.
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Lorentz algebra:

[laba lcd] = Nadlbe — Naclba — (a Ans b)7 lab = —lpa-
Vector representation of the Lorentz algebra:

lapVe = NebVa — Nea Vb, labvc = 5(2‘/& - 52‘/(7

A.2 Spinor representation in even dimensions
Dirac algebra (v,: complex 2P/2 x 2P/2_matrices):
{Yas 10} = 2nap1.

The Dirac algebra implies that the matrices

Zab = %[%a’)’b]

form a matrix representation R of the Lorentz algebra (spinor representation):

[Zabs Bed] = NaaZoe — NacXbd — (@ < b).
Spinors ¥ are complex “column vectors” on which the «y-matrices act.

The Dirac algebra implies that the matrix

14+D/2

¥ = (—i) YoY1 - - - YD1

satisfies
’?2 = 13 {’?7704} = 03 ﬁ/a Z]a,b] =0.

Owing to 4 ¢¢ 1 and [§,X4] = 0, R is reducible (Schur’s lemma). It decomposes
into two inequivalent irreducible representations R, and R_ of the Lorentz algebra,
R =R, & R_. The corresponding spinors ¥, ¥_ are called Weyl spinors,

V=", 4+¥ , ¥y =+,
Projectors P,, P_: owing to 4°> = 1, one has
P, = %(1 +4), Pi=P., PP =0=P Py, P.+P =1, U =P.VU.

Dirac conjugation, Majorana conjugation, charge conjugation (the terminology used in
the literature varies a bit):

vl =Av,A7', T =0'A (Dirac conjugation);
—vt=B14,B, U°=BU* (Majorana conjugation);
— I = 14,0, T = ¢TC~!  (charge conjugation).

Majorana spinors: ¥ = BU* pseudo-Majorana spinors: ¥ = yBWU*.
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A.3 Spinor representation in odd dimensions

Can be obtained from a spinor representation in D = 2k by choosing ~y,...,¥2r_1 as in
D = 2k and o, = £iy with the 4 of the representation in D = 2k. There are no Weyl
spinors in D = 2k + 1 (in particular one has yoy1 ... Y25 o 73, = —1).

For further details see, e.g., [2].

A.4 Spinors in 4 dimensions
Weyl representation of y-matrices:

a 0 o b
Y = — 0 y Yo = Nab? > G,b € {Oa 13233}a

o
10 L (01 o (0 —i s (1 0
01)’ "‘(1 0)’ "_(i o)’ "_(0—1>’

Properties:

1. 4 is diagonal: '?:(E _(1)> = P+:<é 8)’ P_:<8 2)

0
= Weyl spinors reduce to 2-component spinors: ¥ = <<p0+>’ U= < )
X—

oay 0 1 — — — 1/= ~
2. g = ( 0 &y ) y Oab = 7(0a0y — 040a),  Tap = 7(Ta0b — Op0,)
Qa

3. all y-matrices are unitary: ;' =7}

4. A:'yo, B:<(€) _0€>, C':(_S 2), e:(_(l) (1)>

5. Majorana spinors: W = <<,0_|; >
€p’y

Infinitesimal Lorentz transformations of W:

lp¥ = =3 V.
Finite Lorentz transformations with real parameters £ = —gbe.
A
- 1 ¢ab _ [ A4+
v = exp(—ifa Zab)\lj - (A—X—>,
Ay = exp(—%é’“baab) € SL(2,C) [SL(2,C) because of o4, € {:l:%ai,:lzéai}],
5 gt
Gab=—0, o
Al = exp(—3&"Gw) =" exp(3¢”om) = (A1) € SL(2,0).

In general: if D(g) is a matrix representation of a group G, i.e., D(g1)D(g2) = D(g192)
for all g1, g2 € G, then [D(g)]*, [D(g)]~'" and [D(g)]~'! are also matrix representations
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of G (owing to M*N* = (MN)* and M~'T'N='" = (MN)~'T for all matrices M, N).
Therefore: in addition to Ay and A_ = (A,) "' one automatically has two further
representations of the Lorentz group given by (A;)~'" and (Ay)* = (A_)~'". However,
the latter are equivalent to A, and A = (A,)~', respectively:

VM eSL(2,C): M YT =eMel=—-eMe.

Hence, ep, and ex_ transform under the Lorentz group according to (A,)~ ' and
(A4)*, respectively.
Remark: the last equation is equivalent to e = MeMT, i.e., € is SL(2, C)-invariant tensor.

Change of notation: undotted and dotted spinor indices: indices o € {1,2},
& € {1,2} indicating the transformation properties under the Lorentz group:

new notation | old notation | representation transformation
Po (7258 A—l— lappa = _(Uab@)a = _Uabaﬁ(;oﬁ
p° P+ (Ap)~'T labp® = (p0ap)* = PP oaps®
a X A=A apx® = =(0ax)* = —0u® 3%
X —ex— | (M) T = (A" | X = (XFab)a = Xg0ab’ s

Indices of o-matrices:
_ . — — Jo] — = G, a _ ,ab — a . t
Oaq = Oaacty Oa =0a 5, Oagb=0qaba 5 Oab = Oqab B g =1 0p =0 aa E€ElC

Raising and lowering of spinor indices with € (“spinor metric”):

0" =5, pa=capp’s Xa=e€x" X =€y, 0% = ePogpa el
B = —eﬁa, €af = —€Bas €12
B — —eBd, €ap = €4 el?

= Yepg= (5%“, edﬁew = (53

=€ =1,

=6 =1,

Complex conjugation:
($a)" =Pa, (@) =% (o) =tar @) =9 (Yaps)" = bsp, ete.
Dirac and Majorana spinors:
Dirac spinor: <§Z> ,  Majorana spinor: (gg) .
Notation for contraction of undotted and dotted spinor indices:

YX = P Xas 1/_)2 = @Zdida 0q0p = (0a5b)aﬁ = Uaao'z&bdﬁ etc.
Vector indices — spinor indices:

Vaa = Uaao'cvaa Vet = 6_aaava.
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Remark. Since every vector index can be converted to a pair of spinor indices, vector
indices are actually superfluous and so are y-matrices and o-matrices. In particular,
every Lagrangian, EOM, transformation etc can be written in terms of objects carrying
only spinor indices, without y-matrices or o-matrices. When this is done, an expression
is only Lorentz invariant if all undotted spinor indices are contracted with €,g, e*8 or

55, and all dotted spinor indices are contracted with €, B €8 or 52.

Even though vector indices are superfluous, they are nevertheless still useful, and so
are the o-matrices (for instance, the use of vector indices may reduce the total number
of indices of an object, because one vector index can substitute for two spinor indices).
For dealing with the o-matrices, the following identities are often useful:

~ aa _ _ ad _ aB af . L — A . = Py
Oq —0q —E€ Pe Bgaﬁﬁa Oaac = Oaca = Eaﬁfdﬁaaﬁﬁa

5 = Uabﬁ y  OabaB = OabBas  Oab @ = 5abﬁda 60,()026 = 5(1(,3@’
(Uaab) ﬁ_nab5ﬁ+2aab ﬁ (Uaab) ﬁ_nab6a+2aabaﬁ.
Uaada“m = 2€ap€s: 5adaﬁfﬁ = ZEO‘Beo‘ﬁ, 0% 0i Bﬁ = 26@55,
EadeUcd — 2i0ab, abcda o —2i5ab 60123 — 1’

abac — %(nbc a naco,b +1€abcd )
O_ca_ab — %( anO'a +naca_b —I—leade d)
5_ab5,c — %(nbc—a o naco,b abcd d)
5_co_ab %( nbc a + 77 O' abcda_d).

A.5 Grassmann parity
Generalization of wedge product for differential forms:
Xy = (—)XMyx, |T3113f| = (m 4+ n + form-degree) mod 2,
where X, Y, T are fields or differential forms. |X| is called the Grassmann parity (or
simply the parity) of X.”
Complex conjugation of products:
(XY)* = (=)} Wx*y=,

Simple consequences:

¥X = 9"%a = € 1haxa = —"xathp = **xathp = X1,
(¥x)* = (¥xa)" = =9 Xa = +Xa¥” = X¢.

"In the BRST approach the definition of the Grassmann parity involves the ghost number in addition
to the number of spinor indices and the form-degree.
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B Explicit verification of local SUSY

B.1 Local SUSY of (3.3)

1.5 order formalism. This is a “trick” to simplify the variation of a second order
action if it derives from a first order one. The argument is simple and general: suppose
a Lagrangian L(¢, H) involves fields ¢* and H* such that the EOM for the H* have
the algebraic solution H4 = H*(¢).® Let us now consider the second order Lagrangian
L(¢, H(¢)) and vary the fields ¢'. We obtain

L H OL(p, 1 0L, H)
SL(6, H(#)) ~ 5¢1%+5HA<¢> et e = [ (ai e

Here L(¢, H) is the first order Lagrangian, ~ denotes equality up to a total divergence,
and 0HA(¢) = HA(¢+ d¢p) — H*(¢) is the variation of H*(4). The terms with dH*(¢)
on the right hand side vanish (no matter what the dH”(¢$) are) because the H4(¢)
algebraically solve the EOM of the H’s which means

7811(@ H) =0 (identically).
OHA |H=H(¢)
We observe that, up to a total derivative, the variation of the second order Lagrangian
L(¢, H(¢)) is obtained from varying only the ¢’ (but not the H4) in the first order
Lagrangian L(¢, H) and substituting H*(¢) for H* afterwards. Hence, one uses the
first order action to compute the variation of the second order one. This motivates the
term “1.5 order formalism”. Notice that the argument applies to all variations §. In
particular it shows that the EOM of the second order formulation can be obtained from
those of the first order formulation according to

OL(¢, H($)) _ OL(¢, H) (B.1)
dp gt IH=H(g) .

Furthermore it can be used to verify invariance of the second order Lagrangian under
symmetry transformations.

Verification of SUSY. Using the 1.5 order formalism, we shall now demonstrate
the SUSY of the Lagrangian (3.3) in the second order formulation under the SUSY
transformations (3.14) through (3.16). The advantage of the 1.5 order formalism is that
we do not need to transform the spin connection w but only the vierbein and gravitino,
using the first order Lagrangian. In fact, we can further simplify the calculation by
using only the part d4 of the SUSY transformations of the vierbein and gravitino which
involve the SUSY parameters £* but not their complex conjugates £%:

el =20y, O =V,uE®, 04ugh =0, dyw," =0.

8To simplify formulae, we use here the notation L(¢, H) and H(¢) in place of L([¢, H]) and H([¢]).
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The reason is that the other part d_, involving the £%, is the complex conjugate of .,
and thus, since the Lagrangian is real:

§_L = (5.L)".

Hence [04 L(e, 1), w)]y—w(e,p) = Ou K implies [6_L(e, ¢, w)]yw(e,p) = O K" with K" =
(Kﬁ:)* Conversely, [5SUSYL(6v¢vw)]w:w(e,¢) = 0, K" requires that [5+L( P, W)= (e,¥)
be a total divergence [remember that local SUSY requires invariance up to a total di-
vergence for arbitrary complex parameters, i.e., we may consider ¢ and ¢ as independent
fields (instead of their real and imaginary parts)]. Hence [04 L(e, 1, w)]u=w(e,p) ~ 0
is necessary and sufficient for dgusyL ~ 0 (again, “~” denotes equality up to a total
divergence).
Transformation of the “Einstein-part”:

L0 [eBlEYR, ()] = L (0e) BYEYR,,™(w)+e (0+E}) EYR,"(w)
—— ~——
eEfo e —E[Eld e
=e(04¢5)(3B°R — R.”) = ie({o*pu R 2§U“¢uRa“), (B.2)

where R,* = R,,'EfEVE!. Transformation of the “gravitino-part”:
200 . (Vb + 10y ) = 269 (V18,000 + 2975 1, (010,
2 (5,4, Vi 2607 (520,
Individual terms: V044, = V[, Vi€ = 5[V, Vo J§ = =R (w)lapé =
= _%EWMRuvab(w)fUabUpi/_)a
01+0pad = Oaaad4€% = 2i0aaalo®h, = 4ilaPps =

= 8ic"P7 £V 1h, Pphe =0, = 8ie"P7 E4py 1,V uthy -
~
=Y(cVp)

Fourth term: “integration by parts” to remove derivatives from ¢:

= V,(2e"P7¢0,V uz/),,) e“”f”’g(v o,)V uz/jy—Qe"”pgfapVgVu@Zy,

-~

0o (26M7P7 05V 1)

vpo a - (3.4) . LYoo a,7, n
[allcuiey = —26"77 (V| %) E0aVuthy = —4ie"P (1p50"1hp) €04V | uthy
= —8ie""7 &, 1,V |4, where V|, = 9, — 2w, (e, ) lap,
= —26“”””§Up%[vg,vﬂ]1ﬁ,, = —%e“"’wfoprab(w)éab@ZV .
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Terms 1, 2 and 4b cancel out [computation is similar to a computation before (3.4)]:

. + m euupale (w)§ (Uabgp + O'pa'ab) @Etr = ... = _
—_—
=i€qbpc0°

= [04L(e, ¥, w)]w=w(e.w) [.+.+m+ . +@+.} . =0, qed.
%,—/ =wl\e ),

:0

B.2 Local SUSY of (5.58)

Let us verify explicitly the invariance of (5.58) up to a total divergence under the local
SUSY-transformations given in section 5.3.3 (using unhatted parameters). Let us start
with the terms coming from the transformation of e which is given by

Ssusye = eEldgusyel, = e Bl (260", — 2iy),0°E) = 2ie(Eo b, — Pu0tE).
This gives:

(5susye)( — 4iyp, o"D —3M + 1640 1p,) A
= 2ie(¢oPtp, — 1,07&)(D? — 4ith, 0D — 3M + 169p,0"" 1), ) A. (B.3)

To evaluate the other contributions we shall use that A by construction is antichiral:
Dy A =0. (B.4)
This holds because P is antichiral, as it is a function of antichiral tensor fields,
DaW, 5, =0, DAl =0, D@ =0,

and because (D? — M)Q(T) is also antichiral, since (D? — M) f(T) is antichiral for every
log-invariant function f(7):

lagf(T) =0 = Da(D?— M)f(T) =0 (B.5)

(B.5) can be deduced from the calculation of D, F in section 5.3.2, see (5.43) and the
equations subsequent to it: namely, the result of that calculation was Dy F = ——M X
which can also be written as —%Dalﬂw = —%M'Datp or, equivalently, as D, (D?— M)(p =
0. As one can check, the derivation given in section 5.3.2 made only use of the (anti-
)commutators [Dy, Dg| = Mlas and of lagp = 0. Hence, it actually goes also through
with ¢ replaced by any [,s-invariant function of tensor fields, which yields (B.5).

Let us now consider e5susy1_)2.4. Since D% A is a (composite) tensor field, we have

e (5susy752.,4 = e(£°D, + E,DY) D2 A.
By the complex conjugate of (B.5) the second term on the right hand side is

e£aDYD? A = eMEgDYA.
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The evaluation of e£*D,D?A requires more work. We treat it as follows: we use the
graded commutator algebra (5.24) to pass D, through D? until it hits A where it pro-
duces a 0 because of (B.4). Furthermore we bring the covariant derivatives which arise
to the left of the spinor transformations, using again the graded commutator algebra:

et2D,D?’A = e&¥([Dy, Dg|D¥ — Dy[Dq, DY) A

= e£%(~21Daa D% — 2B, 51 DY — 2D Dyq) A

= e&%(—=2iDag D + 3BaaD® — 2[DY, Doy — 2iDae DY) A

= e£*(—2iDaq D + 3BaaD* + 8A6 p) — 5Baa DY — 2iDa DY) A
= e&(—4iDagD* — 2BoaD* — 16N A,

where we used (B.4) and (5.59). Finally we evaluate analogously the gravitino dependent
terms of the supercovariant derivative in the last line:

DasDPA = 0% (V, — D5 — ;D7) DA
= ohs(VuD* —i[Ds, D] + 34, D*) A
= oh (VDY — 2ith,55" (V, — 4, D) + 3P5D?) A
(0ha VD = 2i(0"0" )0 (Vs — D) + 3(0"u)aD?) A

where V, is covariant with regard to Lorentz and R-transformations. Collecting all
terms we obtain

e dsusy D2 A = e (—4i€o”V , D — 8¢0+5"4,V,, + 8¢5 4p,4p, D

—2ié0t), D? — 2B,£0°D — 16iEXT) + MED)A. (B.6)
Next we compute the SUSY transformation of —4iedg,sy (1,0*D.A). We obtain, using
Ssusy B = —E}' EY 6qusye?, and manipulations as above:
—4ie5susy(2/)ua“f)¢4)

= —die](ausy ) "D + (dsusy BE)puoD + ol (€9Ds + £5D%)DI)A
= —4ie(V,¢{ —iB, +iB"¢o,, + ngO’u)O' DA
+ieEl'EY (2i€0, — 2ith,0°€),0" DA
+8e1p, 0”5 (Y, — b, D) A + 2iep, 0" ED? A
= —4ieV, o' DA+ 2eB 0" DA + 2e MEDA
+8e(ih, o€ — Eat'ip, )0 DA
+8e1p, 0”5 E(V, — b, D) A + 2iep, o ED? A. (B.7)
To compute —3e dsusy (M. A) we use that (4.25) gives explicitly:
So = —(0""Typ)a = (—=20"V py, + 3 BHep, — I Moth,)a. (B.8)
This yields:

—3e bgusy (MA) = —16e(£S — iEAT) A — 3e MEDA
= e(3260M'V y1p, — 24iBFEp,, + 6iMEat e, + 16ENT) —3MED)A.  (B.9)
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Finally we compute 16eds,sy (4,0 1h,A):

16€ dsusy (0t 1, A)
= 32 [(5susy1/)u)guy'¢/)ll + (5susyEg)wugaywu + %@%U”VQ/)VE@]A
= e(32V, 0", + 24iBH €, — 6iM¢MU”§
+64i¢u0py¢u(¢paﬂg - fUuQ/_)p) + 16¢MUMV¢VE@)A- (B.10)

Summing up (B.3), (B.6), (B.7), (B.9) and (B.10) one sees that indeed all terms cancel
out except for terms containing V,, and terms at least quadratic in the gravitino. Playing
a bit with spinor indices and using (5.38), one can check that these therms combine to
a total divergence:

Ssusy Lot = 0(32e £ 4, A — die EoPDA) + c.c. (B.11)
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