
�����������	�
����

für Mathematik
in den Naturwissenschaften

Leipzig

Implementation and Usage of a Thread

Pool based on POSIX Threads

by

Ronald Kriemann

Technical Report no.: 2 2003

Implementation and Usage of a Thread Pool based

on POSIX Threads

Ronald Kriemann

Max-Planck-Institute for Mathematics in the Sciences,

Inselstr. 22-26, D-04103 Leipzig, Germany.

rok@mis.mpg.de

November 14, 2003

Abstract

When working on a shared memory system the thread model is an
easy and efficient way to change existing serial programs to make use
of more than one processor. A widely used interface to threads are
POSIX threads. Unfortunately, the interface is sometimes too difficult
to use, especially for beginners. Therefore a wrapper is introduced
which implements a pool of threads, where a job can be send to and
is executed in parallel. This article describes the implementation and
usage of this thread pool.

1 Introduction

Although distributed computing in the form of clusters gains more and more
popularity, shared memory machines, especially with only a few number of
processors, are still more often used as workstations or compute servers. In
such a situation often the wish arises, that a serial program makes use of all
processors in this machine.

Sometimes an easy way of doing this is using threads, which represent
parallel computation paths in a single process. A widely adopted interface
to threads are POSIX Threads or Pthreads. Most computer systems supply
a software library which implements the functions of this interface.

Unfortunately the handling of threads is complicated and often distracts
from the real problem to solve. Since most of the time, only a few of the
Pthread functions are used, an easier interface is wanted. Also, because the
creation of threads comes with some costs, using several hundreds of them
might not be efficient.

1

2 IMPLEMENTATION 2

One way out of this situation is a thread pool. A thread pool consists of
a fixed number, usually the same as the processor number, of threads and
delegates incoming jobs to these threads in an efficient and easy way.

This paper describes one way on how to implement such a thread pool
and how to use it. Section 2 shows the implementation in the programming
language C++. Typical examples for the usage are given in section 3.

A basic knowledge about C++ and POSIX threads is assumed. For a
good reference about Pthreads see [1].

The complete source code for the described implementation is freely
available from [4].

2 Implementation

A thread pool as implemented below was designed to allow at most p jobs to
work in parallel. But it should also be able to handle more than p requests.

By implementing these requirements, the thread pool is capable of work-
ing in two different kinds. In the first model, at most p jobs are started
simultaneously, working in parallel and are finally synchronised at the same
time by the calling thread. This working mode is usable if the load is al-
ready balanced between the processors and the thread pool is only used to
simplify the starting of the threads.

In the other mode an arbitrary number of jobs are given to the thread
pool at arbitrary times and are synchronised by the calling thread at the
same time. This kind of programming is especially helpful, if no load bal-
ancing is done, but the number of requests is much bigger than p and the
work per request is more or less the same.

The implementation is done in C++ and is inspired by the thread classes
defined in the Java programming language (see e.g. [3]).

2.1 Thread Class

The class TThread is implemented as a wrapper around the Pthread func-
tions. The interface is very similar to the thread classes in Java.

The member variables include the Pthread ID and attribute (thread id

and thread attr), a boolean variable indicating whether the thread is
running or not (running) and an integer to store a given thread num-
ber (thread no). This thread number can be used to identify the local
processor in the parallel algorithms.

The member functions of TThread include methods to access the local
data and start or stop the thread. The special function run() is abstract.

2 IMPLEMENTATION 3

It must be overloaded in derived classes and is called when the thread is
running.

The whole interface of TThread is listed in the following source.

class TThread {
protected:

pthread_t _thread_id; // ID of the thread

pthread_attr_t _thread_attr; // thread attributes

bool _running; // true if thread is running

int _thread_no; // opt. number of thread

public:

// constructor and destructor

TThread (int p = -1);

virtual ~TThread ();

// access local data

int thread_no () const { return _thread_no; }
void set_thread_no (int p) { _thread_no = p; }
bool on_proc (int p) const;

// user interface

virtual void run () = 0;

virtual void start (bool d = false,

bool s = false) { create(d, s); }
virtual void stop () { cancel(); }
// thread management

void create (bool d = false, bool s = false);

void join ();

void cancel ();

};

The default thread number of −1 can be used, if the algorithm needs no
identification of the local processor. If thread no is assign to this value, the
method on proc(int) always returns true. In any other case on proc(int)

only returns true if the given integer equals the local thread number or the
argument is −1.

A real POSIX thread is created by a call to create(bool,bool) or, indi-
rectly by start(bool,bool). The first boolean argument to both functions
determines, whether the thread should be started in a joinable or detached
state. If the thread is in the joinable state, other threads can synchronise
with the termination of the thread and gather informations about the ter-
mination status. If the thread is detached, all resources of the thread are
freed after the termination. It is therefore not possible to join with such a
thread. By default all threads start in the joinable state.

The second argument to create(bool,bool) and start(bool,bool)

2 IMPLEMENTATION 4

sets the contention scope of the thread. The default is process contention
scope. On most systems, such threads are cheaper to create, because they
compete for resources (e.g. processor time) only among themselves. If the
argument is false, the scope is set to system contention scope, where the
threads compete against all threads in the system. Although more costly
when creating a thread, system contention scope usually results in a more
predictable behaviour of the runtime and a better utilisation of system re-
sources.

A termination request to finish the execution can be send to the thread
by the method cancel(). After the termination by cancel() the thread is
still join-able if it was created in this state.

There are several other functions defined in the Pthread interface, like
pthread exit or pthread kill. Usually their functionality is not needed,
especially not in the thread pool, and therefore they are not included in the
thread class.

The following listing shows the implementation of the constructor, the
destructor and the method on proc(int).

TThread::TThread (int p)

: _running(false), _thread_no(p)

{}
TThread::~TThread ()

{ if (_running)

cancel();

}
bool TThread::on_proc (int p) const

{ if ((p == -1) || (_thread_no == -1) || (p == _thread_no))

return true;

else

return false

}

The method create(bool,bool) first checks, if the thread is already
running. After this, the attributes of the thread are initialised and, option-
ally, the detached state and system contention scope are set. Finally the
POSIX thread is created.

void

TThread::create (bool detached, bool sscope)

{
if (_running)

{

2 IMPLEMENTATION 5

int status;

pthread_attr_init(& _thread_attr);

if (detached)

pthread_attr_setdetachstate(& _thread_attr,

PTHREAD_CREATE_DETACHED);

if (sscope)

pthread_attr_setscope(& _thread_attr,

PTHREAD_SCOPE_SYSTEM);

pthread_create(& _thread_id, & _thread_attr,

_run_thread, this);

_running = true;

}
else

printf(‘‘ERROR : thread is already running\n’’);

}

Argument 3 of the function pthread create is not the member function
run() but an external, non-virtual function. Because of the way a virtual
method is called in C++, it is not possible to obtain a pointer to such a
function. Instead a pointer to the function run thread(void*) is supplied
which does nothing but call the member function run():

extern ‘‘C’’ void *

_run_thread (void * arg)

{ if (arg != NULL)

((TThread*) arg)->run();

return NULL;

}

The implementation of the methods join() and cancel() is straight-
forward: after ensuring, that a thread is running, the appropriate Pthread
function is called.

2.2 Classes for Mutices and Condition Variables

Two other ingredients are very important when working with threads: mu-
tices and condition variables.

A mutex allows the synchronisation between different threads, especially
important if several threads write to the same memory area.

The following listing shows a simple wrapper around the Pthread func-
tions for mutices.

class TMutex

2 IMPLEMENTATION 6

{
friend class TCondition;

protected:

// the mutex itself and the mutex attribute

pthread_mutex_t _mutex;

pthread_mutexattr_t _mutex_attr;

public:

TMutex ()

{ pthread_mutexattr_init(& _mutex_attr);

pthread_mutex_init(& _mutex, & _mutex_attr);

}
~TMutex ()

{ pthread_mutex_destroy(& _mutex);

pthread_mutexattr_destroy(& _mutex_attr);

}
// lock and unlock mutex (return 0 on success)

int lock () { return pthread_mutex_lock(& _mutex); }
int unlock () { return pthread_mutex_unlock(& _mutex); }
// try a lock (return 0 if lock was successful)

int trylock () { return pthread_mutex_trylock(& _mutex); }
};

A very convenient way to have some kind of signalling between threads
are condition variables. They are using mutices, which is the reason for the
friend declaration inside the TMutex class.

class TCondition

{
protected:

// the Pthread condition variable

pthread_cond_t _cond;

public:

// constructor and destructor

TCondition () { pthread_cond_init(& _cond, NULL); }
~TCondition () { pthread_cond_destroy(& _cond); }
// condition variable related methods

void wait (TMutex & m)

{ pthread_cond_wait(& _cond, & m._mutex); }
void signal ()

{ pthread_cond_signal(& _cond); }
void broadcast ()

{ pthread_cond_broadcast(& _cond); }
};

2 IMPLEMENTATION 7

Condition variables in the Pthread implementation can also be initialised
with attributes, but usually the standard attributes are sufficient and there-
fore the are not included in the wrapper.

2.3 Thread Pool Class

The thread pool works by starting p local threads during the initialisation
of the pool. These threads are blocked, until a job is given to the thread
pool. This job is then associated to one of these threads which executes the
job. After finishing, the thread is again blocked until the next job arrives.

If no free thread is available for an incoming job, the calling thread
blocks, until a local thread of the pool has finished and is idle.

2.3.1 Jobs for the Thread Pool

The implementation starts with a class for a job, which can be handled by
the pool. This class is similar to the thread class above, but should not be
a thread itself. Instead it just has to hold some informations for the thread
pool.

class TJob

{
protected:

// number of processor this job was assigned to

int _job_no;

// associated thread in thread pool

TPoolThr * _pool_thr;

public:

// constructor

TJob (int p) : _job_no(p), _pool_thr(NULL) {}
// running method

virtual void run (void * ptr) = 0;

// access local data

int job_no () const { return _job_no; }
TPoolThr * pool_thr () { return _pool_thr; }
void set_pool_thr (TPoolThr * t) { _pool_thr = t; }
// compare if given processor is local

bool on_proc (int p) const;

};

The variable job no and the method on proc(int) have the same pur-
pose as thread no and on proc(int) in the TThread class and the imple-
mentation is identical.

2 IMPLEMENTATION 8

For synchronisation purposes, which become clear later, a pointer (pool thr)
to the associated thread in the thread pool is kept within each job object.

As in the class for a thread, the function run(void*) has to be over-
written by a derived class and should contain the real computation to be
performed.

2.3.2 A Thread in a Thread Pool

The class TPoolThr is derived from TThread and contains mutices and con-
dition variables for the synchronisation with the thread pool. Also a pointer
to the actual pool it belongs to is saved.

class TPoolThr : public TThread

{
protected:

// thread pool we belong to

TThreadPool * _pool;

// job to run and data for the job

TJob * _job;

void * _data_ptr;

// condition and mutex for waiting for job

// and pool synchronisation

TCondition _work_cond, _sync_cond;

TMutex _work_mutex, _sync_mutex;

// indicates work-in-progress, end-of-thread

// and a mutex for the local variables

bool _work, _end;

TMutex _var_mutex;

// mutex for synchronisation with destructor

TMutex _del_mutex;

public:

// constructor and destructor

TPoolThr (int n, TThreadPool * p);

// running method

void run ();

// access local variables

void set_end (bool f);

void set_work (bool f);

void set_job (TJob * j, void * p);

bool is_working () const { return _job != NULL; }
TJob * job () { return _job; }
TCondition & work_cond () { return _work_cond; }
TMutex & work_mutex () { return _work_mutex; }
TCondition & sync_cond () { return _sync_cond; }

2 IMPLEMENTATION 9

TMutex & sync_mutex () { return _sync_mutex; }
TMutex & del_mutex () { return _del_mutex; }

};

All changes to the local variables, e.g. done by set end(bool), set work(bool)

and set job(TJob*,void*), are guarded by var mutex.

TThreadPool::TPoolThr::~TPoolThr ()

{
_del_mutex.lock();

_del_mutex.unlock();

}

The function run() is implemented as an infinite loop, waiting for a
job to arrive and executing it. To prevent the destruction of the object
before the thread has finished its execution, the mutex del mutex is used
for synchronisation.

void

TThreadPool::TPoolThr::run ()

{
_del_mutex.lock();

while (! _end)

{
// wait for work

_work_mutex.lock();

while ((_job == NULL) && ! _end)

_work_cond.wait(_work_mutex);

_work_mutex.unlock();

// check again if job is set and execute it

if (_job != NULL)

{
_job->run(_data_ptr);

// detach thread from job

_job->set_pool_thr(NULL);

set_job(NULL, NULL);

_sync_mutex.unlock();

}
// append thread to idle list

_pool->append_idle(this);

}
_del_mutex.unlock();

}

2 IMPLEMENTATION 10

The condition variable is guarded by the associated mutex and the pred-
icate (job == NULL) is checked twice before assuming it valid. After the
execution of the job, the connection between the thread and the job is reset.
That way, any synchronisation with the job can be skipped. Finally the
thread is inserted into the list of idle threads of the thread pool.

2.3.3 The Thread Pool Class

In the constructor of the thread pool, p threads of type TPoolThr are created
and p is saved in a local variable (max parallel). Because all threads in
the pool are only created once, system contention scope (see 2.1) is chosen
for a better system utilisation. The threads are stored in an array and also,
because they are immediately blocked, in a list holding the idle threads
(idle threads).

TArray and TSLL are classes representing dynamic arrays and single-
linked lists. The implementation of these classes is omitted in this paper.

The complete definition of TThreadPool is shown in the next listing:

class TThreadPool

{
public:

class TJob ... ;

class TPoolThr ... ;

protected:

// maximum degree of parallelism

uint _max_parallel;

// array of threads, handled by pool

TArray< TPoolThr * > _threads;

// list of idle threads, mutices and condition for it

TSLL< TPoolThr * > _idle_threads;

TMutex _idle_mutex, _list_mutex;

TCondition _idle_cond;

public:

// constructor and destructor

TThreadPool (uint max_p);

~TThreadPool ();

// access local variables

uint max_parallel () const { return _max_parallel; }
// run, stop and synchronise with job

void run (TJob * job, void * ptr = NULL);

void sync (TJob * job);

void sync_all ();

// return idle thread form pool

2 IMPLEMENTATION 11

TPoolThr * get_idle ();

// insert idle thread into pool

void append_idle (TPoolThr * t);

};

In the first section of TThreadPool are the definitions for the above de-
scribed classes TJob and TPoolThread, which are subclasses of TThreadPool.

The implementation of the constructor is as described above. Optionally
a call to pthread setconcurrencymight follow at the end of the constructor
to tell the Pthread implementation, how many concurrent threads to expect.
The destructor starts by synchronising with all threads. After that, each
thread is terminated by setting the variable end in the pool-thread and
signalling the termination. Finally, after ensuring that each thread has
finished by locking del mutex, all resources are freed.

TThreadPool::TThreadPool (uint p)

{
_max_parallel = p;

_threads.set_size(p);

for (uint i = 0; i < p; i++)

{
_threads[i] = new TPoolThr(i, this);

_idle_threads.append(_threads[i]);

_threads[i]->start(true, true);

}
// pthread_setconcurrency(p + pthread_getconcurrency());

}
TThreadPool::~TThreadPool ()

{
sync_all();

for (uint i = 0; i < _max_parallel; i++)

{
_threads[i]->sync_mutex().lock();

_threads[i]->set_end(true);

_threads[i]->set_job(NULL, NULL);

_threads[i]->work_mutex().lock();

_threads[i]->work_cond().signal();

_threads[i]->work_mutex().unlock();

_threads[i]->sync_mutex().unlock();

}
// cancel still pending threads and delete them all

for (uint i = 0; i < _max_parallel; i++)

{

2 IMPLEMENTATION 12

_threads[i]->del_mutex().lock();

delete _threads[i];

}
}

The method run(TJob*,void*) takes a given job with an optional ar-
gument, looks for an idle job, attaches the job to the thread and signals the
thread to begin the execution.

void

TThreadPool::run (TThreadPool::TJob * job, void * ptr)

TPoolThr * t = get_idle();

// and start the job

t->sync_mutex().lock();

t->set_job(job, ptr);

// attach thread to job

job->set_pool_thr(t);

t->work_mutex().lock();

t->work_cond().signal();

t->work_mutex().unlock();

To synchronise with the termination of a job, sync(TJob*) is used. This
function uses the pointer to the pool-thread, stored in the TJob object. If
this pointer exists, the synchronisation is done with this thread. In case
the pointer is NULL, e.g. the thread finished before calling sync(TJob*), the
method returns. Finally the connection between the job and the pool-thread
is nullified.

void

TThreadPool::sync (TJob * job)

if (job == NULL)

return;

TPoolThr * t = job->pool_thr();

// check if job is already released

if (t == NULL)

return;

// look if thread is working and wait for signal

t->sync_mutex().lock();

t->set_job(NULL, NULL);

t->sync_mutex().unlock();

// detach job and thread

job->set_pool_thr(NULL);

2 IMPLEMENTATION 13

To synchronise with all running threads, sync all() was implemented.
Instead of using the thread pointer in the job objects, it uses the pointer to
the threads, stored in the thread pool directly. To not block, when checking
if a thread is running, the function first tries to block, if this is successful, the
thread is already idle, otherwise sync all() waits for the thread to unlock
the mutex.

void

TThreadPool::sync_all ()

for (uint i = 0; i < _max_parallel; i++)

if (_threads[i]->sync_mutex().trylock())

_threads[i]->sync_mutex().lock();

_threads[i]->sync_mutex().unlock();

As mentioned above, the thread pool blocks if no idle thread is available
to execute the incoming job. This is done by the function get idle(). It
blocks, until the list of idle threads (idle list is non-empty and returns
the first thread in that list. All accesses to the list are guarded by a mutex.

TThreadPool::TPoolThr *

TThreadPool::get_idle ()

{
while (true)

{
// wait for an idle thread

_idle_mutex.lock();

while (_idle_threads.size() == 0)

_idle_cond.wait(_idle_mutex);

_idle_mutex.unlock();

// get first idle thread

_list_mutex.lock();

if (_idle_threads.size() > 0)

{
TPoolThr * t = _idle_threads.behead();

_list_mutex.unlock();

return t;

}
_list_mutex.unlock();

}
}

3 USAGE 14

The condition variable used in get idle() is signalled by the method
append idle(TPoolThr*) which inserts an idle thread into the list of the
pool. Before this, the list is tested, whether the given thread is already
inside or not. This is mainly for safety reasons. After the thread is inserted,
a signal is send to the condition variable idle cond, which wakes up any
blocking threads waiting for it.

void

TThreadPool::append_idle (TThreadPool::TPoolThr * t)

{
_list_mutex.lock();

// check if given thread is already in list

// and only append if not so

TSLL< TPoolThr * >::TIterator iter = _idle_threads.first();

while (! iter.eol())

{
if (iter() == t)

{
_list_mutex.unlock();

return;

}
++iter;

}
_idle_threads.append(t);

_list_mutex.unlock();

_idle_mutex.lock();

_idle_cond.broadcast();

_idle_mutex.unlock();

}

3 Usage

As mentioned is section 2, the thread pool was implemented with two differ-
ent kinds of usage in mind. The first case where the number of subproblems
n is much larger than the number of processors p and the costs between the
subproblems only vary little, list scheduling (see [2]) can be used for load
balancing.

List scheduling works by assigning the next available, not executed job
to the first free processor (or thread). This kind of scheduling is in general
not optimal, e.g. it approximates the time achieved by the best possible
scheduling by a factor of up to 2− 2

n−1 . But this worst case only occurs, if a

3 USAGE 15

small number of very costly jobs exists which are executed last. If the costs
per job do not differ much, as assumed above, list scheduling works quite
well.

The second method is based on load balancing done by the user and only
helps to simplify the parallel execution. Using this strategy n should be in
the order of p.

In both cases, the parallel work has to be put into an object of type
TJob. For this a new class must be derived and the run method has to by
overloaded.

class TMyJob : public TThreadPool::TJob

{
public:

TMyJob (int p) : TThreadPool::TJob(p)

void run (void * arg)

{ // do something }
};

The overhead involved in using the thread pool on different hardware
and software systems is shown in the following table. In this benchmark
1 000 000 jobs are created and executed, while each job immediately returns
from the run() method. The same is repeated using threads with process
(proc) and system (sys) contention scope.

System thread pool Thread (proc) Thread (sys)
Linux 20.7 s 76.8 s 77.0 s
Solaris 7 79.7 s 142.3 s 249.2 s
Solaris 9 49.1 s 100.4 s 100.3 s
HP-UX 76.8 s 192.8 s 194.4 s
IBM AIX 29.8 s 56.4 s 64.6 s

The advantage of the thread pool is clearly visible, with a factor between
3.7 (Linux) and 1.8 (Solaris 7) better than the execution times of Pthreads
alone. A penality in the creation time of a thread with system contention
scope is only visible in the Solaris 7 operating system. On the other sys-
tems either there is no increased costs in using system contention scope,
or the Pthread implementation does not distinguish between both kind of
contention scoping.

Typical examples for the above described programming paradigms are
presented in the following sections.

3 USAGE 16

3.1 Automatic Load Balancing

The example presented in this section uses a recursive function where the
computations are done in the last level (e.g. the leafs) of the recursion. All
computations are assumed to be independent.

TThreadPool * thread_pool;

void f (int l)

{
if (l == 0)

thread_pool->run(new TMyJob());

else

{ f(l-1); f(l-1); }
}
void

main ()

{
thread_pool = new TThreadPool(p);

f(max_depth);

thread_pool->sync_all();

}

The function creates new jobs until no idle threads remain in the thread
pool. Any new job blocks until a previous one has finished. After all jobs
have been given to the thread pool, the function returns and waits for the
termination of the running threads.

no. of threads

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
pe

ed
up

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Figure 1: Speedup with List Scheduling

In figure 1 the speedup for an example using the described strategy is
given. A total of 256 jobs is executed by an increasing number of threads.

REFERENCES 17

The work in each job varies randomly, whereat the minimal and maximal
costs differ by a factor of 1.5. As can be seen, the speedup is almost optimal,
indicating the good efficiency of list scheduling in such a case.

3.2 User Defined Load Balancing

In the following a load balancing is assumed, which distributes the work over
all p processors. Then p jobs have to be created and given to the thread
pool.

TThreadPool thread_pool(p);

TMyJob ** jobs = new TMyJob* [p];

for (int i = 0; i < p; i++) jobs[i] = new TMyJob(i);

for (int i = 0; i < p; i++) thread_pool.run(jobs[i]);

for (int i = 0; i < p; i++) thread_pool.sync(jobs[i]);

for (int i = 0; i < p; i++) delete jobs[i];

delete[] jobs;

The number of the local processor was assigned to each thread to allow
the parallel routines to identify each thread. If this is not necessary, it can
be omitted.

References

[1] D.R. Butenhof: Programming with POSIX Threads, Addison-Wesley,
1997.

[2] R.L. Graham: Bounds on Multiprocessing Timing Anomalies, SIAM
Journal of Applied Mathematics, Volume 17(2), 1969, pp. 416-429.

[3] P. Hyde: Java Thread Programming, SAMS, 2001.

[4] Max Planck Institute for Mathematics in the Sciences, Scientific Com-
puting, Internet-address: http://www.mis.mpg.de/scicomp/

