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Abstract

The hierarchical domain decomposition method (HDD method) for solving elliptic differential equations,
whose L∞ coefficients may contain a multiscale parameter, was presented in my dissertation work [3].
This technical report describes the main data structures and procedures of the HDD package as well as
some examples. The main idea of the HDD method is to build a large scale solution without computing the
solution on the small scale. The H-matrix technique yields the efficient H-matrix arithmetic. It is shown
that the storage of HDD is O(k

√
nhnH log2 √nhnH) and the complexity O(k2√nhnH log3 √nhnH), where

k is a small rank, nh and nH are the numbers of degrees of freedom on fine and coarse grids respectively.
In the case of homogeneous right-hand side HDD has linear storage and complexity O(k2√nhnH).
The method was tested on the so-called skin problem with jumping coefficients and on problems with
oscillatory coefficients.
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1 Problem Setup

Let Ω ⊂ R
d, d = 2, 3, be a polygonal domain. We consider the elliptic boundary value problem

with oscillatory coefficients with the Dirichlet boundary conditions:{
Lu = f in Ω,
u = g on ∂Ω,

(1)

whose coefficients may contain a non-smooth parameter, e.g.,

L = −
3∑

i,j=1

∂

∂j
αij

∂

∂i
(2)

with αij = αji(x) ∈ L∞(Ω) such that the matrix function A(x) = (αij)i,j=1,2,3 satisfies 0 < λ ≤
λmin(A(x)) ≤ λmax(A(x)) ≤ λ for all x ∈ Ω ⊂ R

3. This setting allows us to treat oscillatory
coefficients as well as jumping ones.
Let h be a step size, associated with the triangulation Th of the domain Ω. We assume Ω =

⋃
t∈Th

t.

For simplicity we consider the P 1-Lagrange finite element discretization of the elliptic problem
(1). The vertices of the triangulation Th form the set {xi : i ∈ I}, indexed by I.

2 Steps of the Implementation

2.1 The idea of HDD

HDD does not compute the direct inversion of the stiffness matrix Lh. HDD performs some
recursive inverting process. This is done step by step by eliminating interior degrees of free-
dom of the discrete problem. HDD represents the inverse of the stiffness matrix as a set of
boundary to interface mappings (Φg

ω, ω ∈ Ω) and domain to interface mappings (Φf
ω, ω ∈ Ω).

The solution can be evaluated in the following way:

uh(fh, gh) := Φf
ωfh + Φg

ωgh, (3)

where uh(fh, gh) ∈ Vh is the FE solution of Lhuh = fh − Lh · uh, uh = gh on ∂Ω, fh is the
discrete right-hand side, gh is the discrete Dirichlet boundary condition, Lh and Lh are discrete
operators on Ω and Ω.
HDD allows the efficient computation of different functionals of the solution. If Λh is such a
functional, HDD evaluates Λh(Φg,Φf , fh, gh). Examples are a) Neumann data ∂un

∂n at the bound-
ary, b) uh at some point, c) a mean value

∫
ω

uhdx for some ω ⊂ Ω. HDD also allows to compute

uh(fh, gh) for fh in a smaller space VH ⊂ Vh.
Due to the oscillatory character of the coefficients we are forced to use a rather small step size
h. Since we make no assumptions about a periodic structure of the problem, analytic homoge-
nization methods do not apply. Instead we want to perform a ”numerical homogenization”.
HDD consists of two algorithms. The first algorithm “Leaves to Root” computes the domain-to-
boundary Ψf

ω and boundary-to-boundary Ψg
ω mappings and after, using the Schur complement,

the domain-to-interface Φf
ω and boundary-to-interface Φg

ω mappings, ω ∈ TTh
. The second al-

gorithm “Root to Leaves” computes the solution consistently applying the mappings Φf
ω, Φg

ω to
the right-hand side and to the Dirichlet data.
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2.2 Notations

The hierarchical decomposition of the domain Ω results in the tree TTh
.

Definition 2.1 The tree TTh
has to satisfy the following properties:

• Ω is the root of the tree,

• TTh
is a binary tree,

• if ω ∈ TTh
has two sons ω1, ω2 ∈ TTh

, then ω = ω1 ∪ ω2 and ω1, ω2 intersect at most by
their boundaries,

• ω ∈ TTh
is a leaf, if and only if ω ∈ Th.

Let {xi : i ∈ I}, be the set of all nodal points in Ω (including nodal points on the boundary).
We define I(ω) = {i ∈ I; xi ∈ ω}. Similarly, we define I(∂ω). The (external) boundary ∂ω of
ω splits into

Γω,1 := ∂ω ∩ ω1, Γω,2 := ∂ω ∩ ω2.

w 1 w 2

w
γω

Γω,1 Γω,2

Γω

Let ω ∈ TTh
be a sub-domain and

dω :=
(
(fi)i∈I′ , (gi)i∈I(∂ω)

)
= (fω, gω) (4)

be the values of the right-hand side f and the boundary values g at xi ∈ ∂ω. Here I ′ := {i :
supp(fi) ∩

◦
ω �= �}. Assuming that the boundary value problem restricted to ω is solvable, we

can define the local FE solution by solving the following discrete problem in the variational
form: {

aω(uh, bj) = (fω, bj)L2(ω) , ∀ j ∈ I(
◦
ω),

uh(xj) = gj , ∀ j ∈ I(∂ω).
(5)

Here,

bj(x, y) =
(x − x′)(y′′ − y′) − (y − y′)(x′′ − x′)

(xj − x′)(y′′ − y′) − (yj − y′)(x′′ − x′)

is the P 1-Lagrange basis function at (xj , yj). (x′, y′), (x′′, y′′), (xj, yj) are vertices of a triangle
T ∈ Th. aω(·, ·) is the bilinear form with integration restricted to ω, aω(bi, bj) =

∫
ω

α(x)∇bi · ∇bj dx

and (fω, bj) =
∫
ω

fω(x) bj(x) dx.
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2.3 Mappings Ψω and Φω

Let us define the linear mapping Ψω which maps the data dω given by (4) to the external
boundary data ∂ω. The result of the mapping Ψω is defined by its components:

Ψω(d) = (Ψω(dω))i∈I(∂ω) with (Ψω(dω))i = aω(uh, bi) − (fω, bi)L2(ω) . (6)

By definition, Ψω is linear in (fω, gω) and can be written as Ψωdω = Ψf
ωfω + Ψg

ωgω.

Let us consider ω ∈ TTh
with two sons ω1, ω2. The internal boundary of ω is denoted by

γω. Consider again the data dω from (4) and define uh by (5). Then, Φω(dω) is defined by the
components

(Φω(dω))i := uh(xi) ∀i ∈ I(γω). (7)

Hence, Φω(dω) is the trace of uh on γω.

2.4 Algorithms “Leaves to Root” and “Root to Leaves”

“Leaves to Root” (see Fig. 1, left)

1. Compute Ψω on all leaves (triangles of Th). Since the leaves are triangles, we have to
compute stiffness matrices from R

3×3.
For triangles we rewrite (5) as a system of linear equations
Au = c − Au|∂Ω, where Aij =

∫
Ω

α(x)〈∇bi∇bj〉dx, cj = (f, bj)L2(ω) =
∫

supp bj

f(x)bj(x)dx

and supp bj = {T : T ∈ Th has xj as a vertex}. To evaluate the integral
∫
T

h(xi)dx we use

the following trapezoidal rule
∫
T

h(x)dx = 1
3 |T |

3∑
i=1

h(xi), where xi, i = 1..3, are vertices of

the triangle T . For a better precision we use also a 12-point quadrature formula (8) on
triangles (see [3]).

2. Recursion from the leaves of TTh
to the root:

(a) Compute and store Φω and Ψω from Ψω1,Ψω2 (see Sections 4.4, 4.5).

(b) Delete Ψω1 ,Ψω2.

The result of this algorithm will be a collection of mappings {Φω : ω ∈ TTh
}. The maps Ψω are

only of auxiliary purpose and need not be stored.

Remark 2.1 To calculate
∫

T
α(x)〈∇bj ,∇bi〉dx and

∫
T

f(x)bj(x)dx numerically we use the basic

3-point quadrature formula on a triangle (see Table 1).
If bi ∈ P 1, then ∇bi = const,∇bj = const and∫

T
α(x)〈∇bj ,∇bi〉dx = 〈∇bj,∇bi〉 ·

∫
T

α(x)dx =
∑

k

a(vk)wk, where

vk = vk(x, y) from (9), wk from Table (1) or (2).
(8)

4



In the case of a higher order of α(x)〈∇bj ,∇bi〉 one can use 12-point quadrature formula on
triangle (see Table (2)). This 12-point rule gives exact values of integrals for a polynomial from
P 6 on a triangle.

i weights wi di1 di2 di3

1 0.33(3) 0.5 0.5 0.0
2 0.33(3) 0.0 0.5 0.5
3 0.33(3) 0.5 0.0 0.5

Table 1: The coefficients of the basic 3-point quadrature rule for a triangle (used in (8) and (9)).
This rule calculates exactly the value of integral for a polynomial from P 2.

Remark 2.2 It makes sense to apply the 12-point rule if the discretisation error is comparable
with the quadrature rule error. If the discretisation error is larger than the quadrature error, it
is reasonable to apply the simple 3-point quadrature rule.

i weights wi di1 di2 di3

1 0.050844906370207 0.873821971016996 0.063089014491502 0.063089014491502
2 0.050844906370207 0.063089014491502 0.873821971016996 0.063089014491502
3 0.050844906370207 0.063089014491502 0.063089014491502 0.873821971016996
4 0.116786275726379 0.501426509658179 0.249826745170910 0.249826745170910
5 0.116786275726379 0.249826745170910 0.501426509658179 0.249826745170910
6 0.116786275726379 0.249826745170910 0.249826745170910 0.501426509658179
7 0.082851075618374 0.636502499121399 0.310352451033785 0.053145049844816
8 0.082851075618374 0.636502499121399 0.053145049844816 0.310352451033785
9 0.082851075618374 0.310352451033785 0.636502499121399 0.053145049844816
10 0.082851075618374 0.310352451033785 0.053145049844816 0.636502499121399
11 0.082851075618374 0.053145049844816 0.310352451033785 0.636502499121399
12 0.082851075618374 0.053145049844816 0.636502499121399 0.310352451033785

Table 2: The coefficients of the basic 12-point quadrature rule for a triangle (used in (8) and
(9) ). This rule calculates exactly the value of integral for a polynomial from P 6.

If (x1, y1), (x2, y2), (x3, y3) are coordinates of the vertices of triangle, then we define the points
by the following formula (the coefficients dij are defined in Table 2):

vi(x, y) = (di1x1 + di2x2 + di3x3, di1y1 + di2y2 + di3y3), i = 1, 2, 3. (9)
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Given {Φω : ω ∈ TTh
}, we can determine the solution uh for the data dΩ = (fΩ, gΩ) by the

following Algorithm:

“Root to Leaves” (see Fig. 1, right)

1. Given dω = (fω, gω), compute the solution uh on the interior boundary γω by Φω(dω).

2. Build the data dω1 = (fω1 , gω1), dω2 = (fω2 , gω2) from dω = (fω, gω) and
gγ := Φω(dω).

The set of the values (gω)ω∈TTh
gives the solution of (5) in all of the domain Ω.

..... .....

..... .....
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Φω11 Φω12

γω1 γω2

Figure 1: (left) Recursive process “Leaves to Root”. The mapping Ψω1 is a linear function of
the mappings Ψω11 , Ψω12 . (right) Algorithm ’Root to Leaves’. Application of Φωi for computing
the solution on the interior boundary γωi .

3 Start of the Program

The result of the implementation is a package of programs which uses the following libraries:
HLIB, LAPACK, BLAS (see [5], [6], [7]). The implementation is done in C language (ANSI/ISO
standard). The hierarchical matrix library HLIB (see [5]) is used for the H-matrix arithmetic.
HLIB uses the linear algebra packages LAPACK (see [6]) and BLAS (see [7]) for the standard
matrix-vector arithmetic. The scheme of the implementation is shown in Fig. 2.

BLAS

LAPACK

HLIB HDD package Triangulation

Figure 2: The libraries needed for the HDD package.
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3.1 Installation

First, one should download and install HLIB (see more [5]). The successful installation of
the HDD package requires the successful installation of HLIB. HLIB requires the presence of
LAPACK and BLAS. After the successful installation of HLIB, one should initialize in makefile
of the HDD directory the following parameters:

prefix =
exec_prefix =
CFLAGS =
LDFLAGS =
LIBS =
CC =

One can find the needed values in HLIB directory in file ../Examples/Makefile.examples.

Remark 3.1 The settings of parameters in the original version of makefile is only an example.

The HDD package was tested in the UNIX family of operating systems. After successful instal-
lation of the LAPACK, BLAS and HLIB in WINDOWS operating systems, the HDD package
will work also.

3.2 Input Parameters and Constants

The input parameters (cf. Table 3) and coefficients can be changed within the C source code.
The right-hand side f(x), the Dirichlet data g(x), the coefficient function a(x), the analytical
solution (for test purposes) are specified in the procedures from Table 3 (see mylib.c).

Function Description
double function f (double x, double y) The right-hand side f(x)
double function g (double x, double y) The Dirichlet data g(x)
double function a (double x, double y, ..) The coefficients a(x)
double function u (double x, double y) The test solution u(x)

Table 3: Input functions.

The main file is main.c. The procedure init() initializes all variables and defines constants.
The procedures read tlist(..), read edges(..) (see laplace.c) read the lists of triangles,
vertices and edges. As an alternative to an external triangulation, one might generate tensor
grids by procedures
grid generation eq() and two scale grid generation eq(). If at the beginning the numbers
of vertices and triangles are unknown, we cannot define the sizes of the arrays for storing vertices
and triangles. This is why, during the reading of input data, we use the dynamical C structure
list. To improve the speed of the HDD method we copy all data from lists to arrays (see
procedures in laplace.c).
The procedure build fine grid(..) divides each triangle into four triangles i times. All input
parameters for the H-matrix arithmetic and their default values are defined in Table 4.
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Constant Description
nmin=32 The maximal size of a fully-populated block.
global k=5 The maximal rank of an admissible block for

the standard admissibility criteria
global 3k=3·global k The maximal rank of an admissible block for

the weak admissibility criteria
eps=1e-5 For the adaptive rank arithmetic, rank k = min{i : σi ≤ εaσ1},

where σ1, .., σn are singular values of a matrix.
cg eps=1e-10 :=Ax-b, residual for the CG method.

Table 4: Input parameters for the H-matrix arithmetic.

3.3 Data Structures

After a triangulation is done we perform the hierarchical domain decomposition of Ω. The set
of boundary vertices with their coordinates is the input data for building a triangulation. The
triangulation includes the following information: the list of internal and boundary vertices, the
list of triangles, the list of edges and for each vertex the list of the adjoint triangles.
Since the HDD method is developed for two and more scales the hierarchy of grids is needed. To
build a new grid we divide each triangle of the coarse grid into four triangles. Then we repeat
such division and stop when the size of finite elements is small enough. This process provides the
hierarchy of grids. Below we describe the data structures which are used in the HDD package.
The Diagram in Fig. 3 shows the connection between these structures.

Program 3.1
typedef struct _edge edge;
typedef _edge* pedge;

struct _edge{
int index; /* Index of the edge *\
int a,b; /* Verticed describing the edge *\
int father; /* Father of the edge *\
int son[2]; /* Two sons of the edge *\
int property; /* =2 if the edge belongs to boundary, =1 otherwise *\

}
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Program 3.2
typedef struct _telement telement;

struct _telement{
int index; /* Index of the triangle *\
int property; /* Attribute (external, internal, etc) *\
struct _vertex **ver; /* Array of pointers to vertices *\
double area; /* Area of the triangle *\
double xmit, ymit; /* Middle of the triangle *\
struct _telement **neigh; /* Array of pointers to the neighbouring triangles *\
struct _telement *father; /* Father of the triangle *\
double* bij; /* Stiffness matrix for the triangle *\
int edges[3]; /* Edges of the triangle *\
int flag; /* Auxiliary parameter *\

}

Program 3.3
typedef struct _vertex vertex;

struct _vertex{
int index, cindex; /* Indices of the node on a fine grid and a coarse grid *\
int coarse; /* =1 belong to the coarse grid, =0 only to the fine grid *\
struct _tlist *list; /* list of adjoining triangles *\
double* koor; /* Coordinates of the vertex *\
struct _telement *tcoarse; /* Father triangle *\
int flag; /* Auxiliary parameter *\
int randattr; /* Attribute (external, internal, etc) *\

}

We combine the lists of vertices and triangles in ω ∈ TTh
to the new structure grid.

Program 3.4
typedef struct _grid grid;
typedef _grid* pgrid;

struct _grid{
int deep;
tlist* tl;
vertexlist* vl;
pedge* edges;
int edgesize;

}
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For describing a subdomain ω ∈ TTh
the structure domain is used.

Program 3.5
typedef struct _domain domain;
typedef _domain* pdomain;

struct _domain{
long index; /* Index of the domain */
tlist* tl; /* List of triangles at the fine scale */
tlist* ctl; /* List of triangles at the coarse scale */
vertexlist* vl; /* List of vertices at the fine grid */
vertexlist* cvl; /* List of vertices at the coarse grid */
double area; /* Area of the domain */
double minx,maxx,miny,maxy; /* Describe the boundary box */

}

For describing the external ∂ω and internal γω boundaries the structure boundary is used.

Program 3.6
typedef struct _boundary boundary;
typedef _boundary* pboundary;

struct _boundary{
vertexlist* vl; /* List of vertices at the fine grid */
vertexlist* cvl; /* List of vertices at the coarse grid */
tlist* tl; /* List of triangles at the fine scale */
psupermatrix frhs; /* To store the corresponding hierarchical matrix */

}

For describing the HDD tree TTh
the structure DDTree is used.

Program 3.7
typedef struct _DDTree DDTree;
typedef _DDTree* pDDTree;

struct _DDTree{
long index; /* Index of the subdomain *\
pDomain clus; /* Pointer to the corresponding domain *\
pDDTree leftTree; /* Pointer to the left son *\
pDDTree rightTree; /* Pointer to the right son *\
pDDTree father; /* Pointer to father *\
pDDTree brother; /* Pointer to brother *\

psupermatrix invA22;
prkmatrix phi_g;
psupermatrix psi;

double *functional_g, *functional_f;
int *father2sonL, *father2sonR;
int ind_removerow[2], ind_insertrow[2];
int *dof2idx;
int compute; /* =1 if for this domain matrices are computed, =0 else *\
int simple; /* strategy of building H-matrix (=1 or =2) *\
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pclustertree interct; /* Cluster tree for the internal boundary (fine grid) */
pclustertree cinterct; /* Cluster tree for the domain (coarse grid)*/
pclustertree ect; /* Cluster tree for the external boundary (fine grid) */
pclustertree cect; /* Cluster tree for the external boundary (coarse grid) */
pclustertree ct; /* Cluster tree for the domain (fine grid) */
pclustertree cct; /* Cluster tree for the domain (coarse grid) */
pclustertree cl_Gamma; /* Auxiliary cluster tree */
pclustertree cl_gamma; /* Auxiliary cluster tree */

pdomain clus; /* Pointer to the domain*/
pboundary eclus; /* Pointer to the external boundary */
pboundary interclus; /* Pointer to the internal boundary */
int *cf_index; /* Auxiliary array. Used for the mesh refinement*/

}

To store the inverse of the mapping Ψg
ω|I(γ) : R

I(γ) → R
I(γ) the field invA22 is used, to

store the mapping Φg
ω : R

I(∂ω) → R
I(γ) the field phi g is used. To store the mapping Ψg

ω :
R

I(∂ω) → R
I(∂ω) the field psi is used. The fields functional g, functional f are needed to

store the functionals λg
ω and λf

ω. The fields father2sonL, father2sonR are used for storing the
mappings I(ω) → I(ω1) and I(ω) → I(ω2). The fields ind removerow[2], ind insertrow[2]
store indices from I(∂ω) and define which rows should be removed from an H-matrix. The field
dof2idx maps the set of degrees of freedom on ∂ω ∪ γ to the set of indices I(∂ω ∪ γ).

vertexlistel

next*

previous*

v*

vertexlist

size

first*

last*
property

vertex

index

tlist*

coordinates[2] 

property

tlistel

next*

previous*

element

tlist

size

first*

last*

telement

index

ver[3]

property

edges[3]

bij[3][3]

DATA BASE

father*
edges

index

vertices[2]

father*

sons*

property

array of edges

GRID

Figure 3: Implementation of the structures for storing vertices, triangles and edges.
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3.4 Compilation and Starting of the Program

The HDD package does not need to be configured. To compile the program one should type:
make
and to start the program:
./elaplace

3.5 Main Steps of the Program

Let ω, ω1, ω2 ∈ TTh
, ω = ω1 ∪ ω2. The main steps of the HDD program are:

1. read the coarse grid TH (procedures read tlist, read edges),

2. refine TH imax times (procedure build fine grid(..)),

3. build the HDD tree TTh
(procedure divide tree(..)),

4. execute “Leaves to Root” (procedure recursive process(..)),

(a) build Ψg
ω and Ψf

ω for all leaves of TTh
(build Psi g full(..)),

(b) build Ψg
ω from Ψg

ω1 and Ψg
ω2 (build Psi g(..) and build Psi g fast(..)),

(c) build Ψf
ω and Φf

ω from Ψf
ω1 and Ψf

ω2 (build Psi f(..) and build Psi f fast(..)),

(d) build Φg
ω, ω ∈ TTh

(Schur complement(..)),

(e) compute the functionals λω := (λg
ω, λf

ω)
(build father functional(..), build father functional after(..)),

(f) repeat steps (a)-(f) for sons ω1 and ω2 of TTh
.

5. execute “Root to Leaves”:

(a) compute uγω := Φg
ω · g|I(∂ω) + Φf

ω · f |I(ω), ω ∈ TTh
, (root to leaves(..)),

(b) compute a functional, e.g., the mean value λω(dω) = (λf
ω, f) + (λg

ω, g), ω ∈ TTh
,

(compute functional(..)),

(c) repeat steps (a)-(c) for sons ω1 and ω2 of TTh
.

6. compute the solution by the CG method and compare it with the solution obtained earlier
by HDD (solve by cg method(..)).
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4 Other Important Algorithms

4.1 Generation of a Hierarchy of Grids

It is not enough to have either one or two scales for solving multiscale problems. Below we
discuss how to implement the hierarchy of grids Th ⊂ Th/2 ⊂ ... ⊂ Th/2q . All grids must be
connected with each other. Each finite element has to know his predecessor and each father has
to know his descendants. We build a grid Th with the step size h, refine it, obtain a grid Th/2,
refine it again and so on.
In the dissertation [3] two grids Th/2i and Th/2j , 0 ≤ i, j ≤ q, are used, but for more difficult
problems more grids (scales) should be used. If we are only interested in two scales with H/h > 2,
we refine the given scale recursively and do not store intermediate grids. After each recursive
step, we reorganize the connections predecessor↔descendant.

List of vertices 1

List of triangles 1

Array of edges 1

grid with the step size H

..... 
List of vertices 2

List of triangles 2

Array of edges 2

grid with the step size H/2

 
List of vertices 

List of triangles

Array of edges 

grid with the step size h

 

Figure 4: Connection of the grids TH , TH/2,..., Th.

The following procedures are used for the grid refinement:

procedure description
build fine grid(..) Refines the given grid
new grid() Allocates memory for a new grid
refine grid(..) Performs one refinement of the given grid
copy links(..) Copies all links predecessor↔descendant

Table 5: The procedures which are applied for the grid refinement.
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4.2 New H-matrix procedures

In the HDD package some useful H-matrix procedures were implemented (see Table 6).

procedure description
extract col() get a column from an H-matrix
extract row() get a row from an H-matrix
remove colrow() remove a row and a column from an H-matrix

and then copy the rest to the new H-matrix
remove col() remove a column from an H-matrix
remove row() remove a row from an H-matrix
add col toHmatrix() Add a rank-1 matrix to a column of an H-matrix
add row toHmatrix() Add a rank-1 matrix to a row of an H-matrix
test permute f() permutation of rows in a dense matrix
test permute rk() permutation of rows in a low-rank matrix
h2r() Conversion an H-matrix to an low-rank matrix
h2r fast() Fast conversion an H-matrix to an low-rank matrix
h2f() Conversion an H-matrix to an dense matrix
h2h() Conversion of an H-matrix to another H-matrix
h2h fast() Fast conversion of an H-matrix to another H-matrix

Table 6: New H-matrix procedures.
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4.3 H-matrix Conversion

Let I, J , I ′, J ′, I ′′ and J ′′ be given index sets such that I ′, I ′′ ⊆ I, J ′, J ′′ ⊆ J , and M ∈
H(TI×J , k). The sum of M1 ∈ H(T ′

I′×J ′ , k1) and M2 ∈ H(T ′′
I′′×J ′′ , k2) with the result matrix M

is defined as follows (see Fig. 5):

M = M ′ ⊕ M ′′, where M ′ := M1|I×J and M ′′ := M2|I×J .

The adding procedure applies the list of procedures from Table 7.

Remark 4.1 Note that M1|I×J and M2|I×J have the same block cluster structures. To compute
M ′ := M1|I×J and M ′′ := M2|I×J we apply the procedure h2h(..).

+ + =

Figure 5: Transformation of H-matrices M1, M2 to H-matrices M1|I×J , M2|I×J and their
addition.

Consider the more difficult case. Suppose

I ⊇ I ′ =
p⋃

i=1

Ii, Ij ∩ Ik = ∅, j �= k, (10)

J ⊇ J ′ =
q⋃

j=1

Jj , Ji ∩ Jk = ∅, i �= k (11)

and n = max{|I|, |J |}, n′ = max{|I ′|, |J ′|}. Let M̃ ∈ H(T ′
I′×J ′ , k), M ∈ H(TI×J , k), R ∈

R(k, I ′, J ′), where I, J , I ′, J ′ are from (10, 11). The problem is to convert M̃ to M . Algorithm
4.1 performs this conversion.
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Algorithm 4.1 (Conversion M ∈ H(TI×J , k) to M ′ := M |I′×J ′ ∈ H(T ′
I′×J ′ , k))

h2h(M , M ′,
⋃p

i=1 Ii,
⋃q

j=1 Jj)
begin

if (M ′ is a dense matrix) then
h2f(M , M ′,

⋃p
i=1 Ii,

⋃q
j=1 Jj);

if (M ′ is a low-rank matrix) then
h2r(M , M ′,

⋃p
i=1 Ii,

⋃q
j=1 Jj);/∗see Algorithm 4.2∗/

if (M ′ is an H-matrix) then
for each subblock b = (t, s) of M ′ do

h2h(M , M ′|b,
⋃p

i=1 Ii ∩ t̂,
⋃q

j=1 Jj ∩ ŝ);
end if;

end;

Algorithm 4.2 (Converting M ∈ H(TI×J , k) to R ∈ R(k, I ′, J ′))
h2r(M , R,

⋃p
i=1 Ii,

⋃q
j=1 Jj)

begin
if (M is a dense matrix)

Create a new dense matrix F ∈ R
I′×J ′

;
for all i,j do

copy M |Ii×Jj to F ;
convert F to R;

end if;
if (M is a low-rank matrix) then

Create a new low-rank matrix R ∈ R(k, I ′, J ′);
for all i,j do

copy M |Ii×Jj to R;
end if;
if (M is an H-matrix) then

for each subblock b = (t, s) of M do
R[l]:=h2r(M |b,

⋃p
i=1 Ii ∩ t̂,

⋃q
j=1 Jj ∩ ŝ);

end for
R:=(R[0] ⊕k (R[1] ⊕k ... ⊕k (R[l − 2] ⊕k R[l − 1])..);

end if;
end;
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procedure description
add fullmatrix(F,F1, F2) Adding two dense matrices
add rkmatrix(R,R1, R2) Adding two low-rank matrices
addfullpart2 rkmatrix(F ,R) Addition of a dense matrix to a low-rank matrix
addrk2 fullmatrix(R,F ) Addition of a low-rank matrix to a dense matrix
addfull2 supermatrix(F,H) Addition of a dense matrix to an H-matrix
addrk2 supermatrix(R,H) Addition of a low-rank matrix to an H-matrix
add supermatrix(H,H1,H2) Adding of H-matrices H := H1 ⊕ H2

h2r(H,R) Conversion an H-matrix to an low-rank matrix
h2r fast(H,R) Fast conversion an H-matrix to an low-rank matrix
h2f(H,F ) Conversion an H-matrix to an dense matrix
h2h(M ∈ H(TI′×J ′ , k),M |I×J ) Conversion of an H-matrix M to the H-matrix M |I×J

h2h fast(M ∈ H(TI′×J ′ , k),M |I×J ) Fast conversion of an H-matrix M to the H-matrix M |I×J

Table 7: The procedures which are applied for adding two H-matrices with different block
structures. H, Hi are H-matrices, R, Ri are low-rank matrices, F , Fi are dense matrices,
i = 1, 2.

4.4 Building of Ψg
ω from Ψg

ω1
and Ψg

ω2

Denote

H1 := (Ψg
ω1

)H ∈ H(TI(∂ω1)×I(∂ω1), k), H2 := (Ψg
ω2

)H ∈ H(TI(∂ω2)×I(∂ω2), k), (12)

H̃ ∈ H(TI(∂ω∪γ)×I(∂ω∪γ), k), H := (Ψg
ω)H ∈ H(TI(∂ω)×I(∂ω), k), (13)

where I(∂ω∪γ) = I(∂ω1 ∪∂ω2) (see Figures 6, 7). We want to construct the matrix H from H1

and H2. First, we build a new cluster tree TI(∂ω∪γ) from the clusters TI(∂ω) and TI(γ). There
are many variants of how to build it, but we want such a cluster tree, which makes it easier to
eliminate the unknowns xi, i ∈ I(γ), i.e, one of the sons of the cluster I(∂ω ∪ γ) should coincide
with the index set I(γ). As soon as the cluster tree TI(∂ω∪γ) is built, we build the block cluster
tree TI(∂ω∪γ)×I(∂ω∪γ). The block cluster tree TI(∂ω∪γ)×I(∂ω∪γ) defines the block structure of H̃.

Further the external boundary of ω we denote by ∂ω and for brevity we write Γi besides
Γω,i. We consider two variants of the block structures:

I(Γi) × I(Γi), I(γ) × I(γ) ∈ TI(∂ωi)×I(∂ωi), i = 1, 2. (14)

I(Γi) × I(Γi) /∈ TI(∂ωi)×I(∂ωi) or I(γ) × I(γ) /∈ TI(∂ωi)×I(∂ωi), i = 1, 2. (15)
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Building algorithm in case (14):
Let H1 and H2 be defined as in (12) and H as in (13).

Algorithm 4.3 Building H := (Ψg
ω)H from H1 := (Ψg

ω1)H and H2 := (Ψg
ω2)H

build Ψg(H1, H2, H)
begin

create H̃;
H̃|I(Γ1)×I(Γ1) := H1|I(Γ1)×I(Γ1);
H̃|I(Γ2)×I(Γ2) := H2|I(Γ2)×I(Γ2);
H̃|I(Γ1)×I(Γ2) := 0;
H̃|I(Γ2)×I(Γ1) := 0;

/∗ in Fig. 6 denoted by d + h ∗/
H̃|I(γ)×I(γ) := H1|I(γ)×I(γ) ⊕ H2|I(γ)×I(γ);
H̃|I(γ)×I(Γ1)∪I(Γ2) := (H1|I(γ)×I(Γ1) ⊕ H2|I(γ)×I(Γ2)); /∗ Sum of two low-rank matrices ∗/

/∗ in Fig. 6 denoted by b + f ∗/
H̃|I(Γ1)∪I(Γ2)×I(γ) := H1|I(Γ1)×I(γ) ⊕ H2|I(Γ2)×I(γ); /∗ Sum of two low-rank matrices ∗/
H̃:=extract rows(H̃ , r1, r2, i1, i2); /∗ The output is r1, r2 ∗/
H̃:=extract columns(H̃ , c1, c2, j1, j2); /∗ The output is c1, c2 ∗/
H̃:=add rows(H̃ , r1, r2, i3, i4);
H̃:=add columns(H̃ , c1, c2, j3, j4);
H:=elimination(H̃ , I(∂ω1 \ ∂ω)); /∗ see Algorithm 4.4∗/
return H;

end;

Here i1, i2, j1, j2 are the positions of two rows and two columns which have to be extracted, i3,
i4 and j3, j4 are positions of two rows and two columns to which the four rank-1 matrices r1,
r2, c1 and c2 have to be added.

The elimination of unknowns xi, i ∈ I, is done by Algorithm 4.4.

Algorithm 4.4 (Elimination of ui, i ∈ I(γ))
elimination( block matrix M , I)
begin

M11 := M [0];
M21 := M [1];
M12 := M [2];
M22 := M [3]; /∗ Corresponds to the set I ∗ /
M̃11 := M11 � M12 � M−1

22 � M21;
return M̃11;

end;
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Figure 6: Building H := (Ψg
ω)H ∈ R

I(∂ω)×I(∂ω) from H1 := (Ψg
ω1)H ∈ R

I(∂ω1)×I(∂ω1) and
H2 := (Ψg

ω2)H ∈ R
I(∂ω2)×I(∂ω2), Γi ∪ γ = ∂ωi, i = 1, 2, ∂ω = Γ1 ∪ Γ2, Γ̂1 = Γ1 \ {x, y}.

The small letters define the corresponding blocks in different matrices. The dotted lines in H̃
present 2 rows and 2 columns.

19



Building algorithm in case (15):
Let H1 and H2 be defined as in (12), H as in (13) and I := I(∂ω).

Algorithm 4.5 Building H := (Ψg
ω)H from H1 := (Ψg

ω1)H and H2 := (Ψg
ω2)H

build Ψg(H1, H2, H)
begin

H ′:=copy block structure(H);
H ′′:=copy block structure(H);
h2h(H1, H ′,...);/∗ Convert H1 to H ′ ∗ /
h2h(H2, H ′′,...);/∗ Convert H2 to H ′′ ∗ /
H̃ := H ′′ ⊕ H ′; /∗ See (13) ∗/
H:=elimination(H̃ , I(∂ω1 \ ∂ω)); /∗ see Algorithm 4.4 ∗/
return H;

end;

20



H H1 2

=:H

H’

conversion

H’+H’’ and Elimination of 

H’’
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I(γ)I(γ)
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I(∂ω1)

I(∂ω2)

I(∂ω2)

I(γ12)

I(γ12)

I(γ12)

I(γ12)

I(γ12)

Figure 7: Building (Ψg
ω)H ∈ R

I(∂ω)×I(∂ω) from (Ψg
ω1)H ∈ R

I(∂ω1)×I(∂ω1) and (Ψg
ω2)H ∈

R
I(∂ω2)×I(∂ω2), Γi ∪ γ12 = ∂ωi, i = 1, 2, ∂ω = Γ ∪ γ. H = H ′ + H ′′, H ′ := H1|I(Γ)∪I(γ)∪I(γ12),

H ′′ := H2|I(Γ)∪I(γ)∪I(γ12), H := H̃11 � H̃12 � H̃−1
22 � H̃21.

21



Example 4.1 In Fig. 8 we show an example of building (Ψg
ω)H ∈ R

512×512 from (Ψg
ω1)H ∈

R
384×384 and (Ψg

ω2)H ∈ R
384×384. The construction is performed in three steps. First, we build

H ′ := (Ψg
ω1)H|I×I and H ′′ := (Ψg

ω2)H|I×I , I := I(∂ω ∪ γ). Second, we sum H ′ and H ′′. Third,
we eliminate xi, i ∈ I(γ). Note that H ′, H ′′, H̃ have the same block structures.
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Figure 8: Building (Ψg
ω)H ∈ R

512×512 from (Ψg
ω1)H and (Ψg

ω2)H from R
384×384. The temporary

matrix is H̃ ∈ R
639×639. The maximal size of the diagonal blocks is 32 × 32. The grey blocks

indicate low-rank matrices. The steps inside the grey blocks show an exponential decay of the
corresponding singular values. The white blocks indicate zero blocks. For the acceleration of
building the symmetry of Ψg

ω is used.
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4.5 Building of Ψf
ω from Ψf

ω1
and Ψf

ω2

Denote

H1 := (Ψf
ω1

)H ∈ H(TI(∂ω1)×I(ω1), k), H2 := (Ψf
ω2

)H ∈ H(TI(∂ω2)×I(ω2), k) (16)

and
H̃ ∈ H(TI(∂ω∪γ)×I(ω), k), H := (Ψf

ω)H ∈ H(TI(∂ω)×I(ω), k). (17)

Let T := TI(∂ω∪γ)×I(ω). We want to construct the matrix H from H1 and H2. Note that
∂ω ∪ γ = ∂ω1 ∪ ∂ω2, I(∂ωi) = I(Γi) ∪ I(γ), Γ1 ∪ Γ2 = ∂ω. To build the matrix H we need two
cluster trees TI(∂ω∪γ) and TI(ω). The first cluster tree was already built for (Ψg

ω)H. There are
many possibilities of how to build TI(ω), but we want a tree which makes a further elimination
of unknowns xi, i ∈ I(γ) easier, i.e., one of the sons of the block cluster tree T has to coincide
with the block I(γ) × I(γ). Therefore we choose the following decomposition:

I(ω) = I(ω1 \ γ) ∪ I(ω2 \ γ) ∪ I(γ).

There are two cases:

I(Γi) × I(ωi \ γ) ∈ TI(∂ωi)×I(ωi) and I(γ) × I(γ) ∈ TI(∂ωi)×I(ωi), i = 1, 2. (18)

I(Γi) × I(ωi \ γ) /∈ TI(∂ωi)×I(ωi) or I(γ) × I(γ) /∈ TI(∂ωi)×I(ωi), i = 1, 2. (19)

Building algorithm in case (18):
Let H1 and H2 be defined as in (16) and H as in (17).

Algorithm 4.6 Build H := (Ψf
ω)H from H1 := (Ψf

ω1)H and H2 := (Ψf
ω2)H

build Ψf(H1, H2, H)
begin

create H̃;
H̃|I(Γ1)×I(ω1\γ) := H1|I(Γ1)×I(ω1\γ);
H̃|I(Γ2)×I(ω2\γ) := H2|I(Γ2)×I(ω2\γ);
H̃|I(Γ1)×I(ω2\γ) := 0;
H̃|I(Γ2)×I(ω1\γ) := 0;

/∗ in Fig. 9 denoted by [cg] ∗/
H̃|I(γ)×I(ω1\γ)∪I(ω1\γ) := H1|I(γ)×I(ω1\γ) ⊕ H2|I(γ)×I(ω2\γ);

/∗ in Fig. 9 denoted by b + f ∗/
H̃|I(Γ1)∪I(Γ2)×I(γ) := H1|I(Γ1)×I(γ) ⊕ H2|I(Γ2)×I(γ); /∗sum of two low-rank matrices∗/
H̃:=extract rows(H̃ , r1, r2, i1, i2);/∗ The output is r1, r2 ∗/
H̃:=extract columns(H̃ , c1, c2, j1, j2);/∗ The output is c1, c2 ∗/
H̃:=add rows(H̃ , r1, r2, i3, i4);
H̃:=add columns(H̃ , c1, j3, c2, j4);
H:=elimination(H̃ , I(∂ω1 \ ∂ω)); /∗ see Algorithm 4.4∗/
return H;

end;

Here i1, i2, j1, j2 are the positions of two rows and two columns which have to be extracted, i3,
i4 and j3, j4 are the positions of two rows and two columns to which the four rank-1 matrices
r1, r2, c1 and c2 have to be added.
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Remark 4.2 Note that if the coefficients α(x) in ω1 and ω2 are equal and triangulations are
the same, then it is possible to get H1|I(γ)×I(γ) = H2|I(γ)×I(γ) and H|I(γ)×I(γ) = 2H1|I(γ)×I(γ).
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Figure 9: Building (Ψf
ω)H ∈ R

I(∂ω)×I(ω) from (Ψf
ω1)H ∈ R

I(∂ω1)×I(ω1) and (Ψf
ω2)H ∈

R
I(∂ω2)×I(ω2), Γi ∪ γ = ∂ωi, i = 1, 2, Γ1 ∩ Γ2 = {x, y}, I(∂ω) = I(Γ1) ∪ I(Γ2)\I({x, y}).

The small letters show the appearance of blocks in different matrices. The dotted lines in H̃
correspond to 2 rows and 2 columns.
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Building algorithm in case (19):
Let I := I(∂ω), J := J(ω) be two index sets. H1 and H2 are defined as in (16) and H as in
(17).

Algorithm 4.7 Build H := (Ψf
ω)H from H1 := (Ψf

ω1)H and H2 := (Ψf
ω2)H

build Ψf(H1, H2, H)
begin

H ′:=copy block structure(H);
H ′′:=copy block structure(H);
h2h(H1, H ′,...); /∗convert H1 to H ′ by Algorithm 4.1∗/
h2h(H2, H ′′,...);
H̃ := H ′′ ⊕ H ′;
H:=elimination(H̃ , I(∂ω1 \ ∂ω)); /∗ see Algorithm 4.4∗/
return H;

end;
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Figure 10: Building H := (Ψf
ω)H ∈ R

I(∂ω)×I(ω) from H1 := (Ψf
ω1)H ∈ R

I(∂ω1)×I(ω1) and H2 :=
(Ψf

ω2)H ∈ R
I(∂ω2)×I(ω2). H̃ = H1|I×J ⊕ H1|I×J , I = I(Γ) ∪ I(γ), J = J(ω \ γ) ∪ J(γ), H :=

H̃1 � A12 � A−1
22 � H̃2.
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Building (Ψf
ω)H from (Ψf

ω1)H and (Ψf
ω2)H for a two-scale problem

The index h indicates the quantities of the fine grid and the index H of the coarse grid.
Denote

H1 := (Ψf
ω1

)H ∈ H(TI(∂ω1,h)×I(ω1,H ), k), (20)

H2 := (Ψf
ω2

)H ∈ H(TI(∂ω2,h)×I(ω2,H ), k). (21)

We want to construct the matrix

H := (Ψf
ω)H ∈ H(TI(∂ωh)×I(ωH), k). (22)

Note that ∂ωh ∪ γh = ∂ω1,h ∪ ∂ω2,h, I(∂ωi,h) = I(Γi,h)∪ I(γh), Γ1,h ∪ Γ2,h = ∂ωh. We construct
the tree TI(ωH) so that the further elimination of the unknowns xi, i ∈ I(γH) becomes easier,
i.e., we want that I(γh) × I(γH) ∈ TI(∂ωh)×I(ωH). We choose the following decomposition

I(ω) = I(ω1,H \ γH) ∪ I(ω2,H \ γH) ∪ I(γH),

I(∂ωh) = I(Γ1,h) ∪ I(Γ2,h).

There are two cases:

I(Γi,h) × I(ωi,H\ωH), I(γh) × I(γH) ∈ TI(∂ωi,h)×I(ωH), i = 1, 2, (23)

I(Γi,h) × I(ωi,H\ωH) /∈ TI(∂ωi,h)×I(ωH) or I(γh) × I(γH) /∈ TI(∂ωi,h)×I(ωH), i = 1, 2. (24)

Algorithms 4.6, 4.7 with small modifications are used for cases (23) and (24) accordingly. The
scheme of building (Ψf

ω)H ∈ R
I(∂ωh)×I(ωH) for case (23) is shown in Fig. 11.
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Figure 11: Building (Ψf
ω)H ∈ R

I(∂ωh)×I(ωH) from (Ψf
ω1)H ∈ R

I(∂ω1,h)×I(ω1,H ) and (Ψf
ω2)H ∈

R
I(∂ω2,h)×I(ω2,H) for two scales H and h. Γ1,h∩Γ2,h = {x, y}, I(∂ωh) = I(Γ1,h)∪I(Γ2,h)\I({x, y}),

I(ωH) = I(ω1,H \γH)∩I(ω2,H \γH)∩I(γH). The dotted lines in H̃ indicate 2 rows and 2 columns.
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4.6 CG method

Often, the exact solution is unknown and to estimate the solution obtained by the HDD method
one may use the procedure solve by cg method(..) (myextlib.c). This procedure builds the
stiffness matrix sp (stored in a sparse matrix format) for the whole domain Ω, converts it to the
H-matrix s, performs the hierarchical Cholesky decomposition of s by
choleskydecomposition supermatrix(..) and then calls the procedure
solve conjgrad supermatrix(..). The last procedure produces the CG solution (’exact’ so-
lution ) which is compared with the solution obtained by the HDD method.

4.7 Test procedures and output procedures

To test different parts of the HDD methods one can use procedures from test.c. There are
procedures which test H-matrix conversion, permutation of rows (columns) in a rank-k and
dense matrices, removing and inserting of rows (columns) etc.
There are following output procedures (see files mylib.c, myextlib.c):

procedure description
print tlist() print out a list of triangles
print vl() print out a list of vertices
print grid2() print out a grid
print matrix() print out a full matrix
print Rkmatrix() print out a low-rank matrix
mywrite supermatrix() print out an H-matrix
print svd() print out the spectrum of A and cond(A)
print cond number()
print solution print out the solution

Table 8: Output procedures.

4.8 3D case

The data structures in HDD package are suitable for the 3D case. For further 3D implementation
one should rewrite the following procedures: division procedure (divide.c) which produces TTh

,
mesh refinement procedures (see laplace.c) and start to use the standard admissibility criteria
besides the weak admissibility criteria. The changes in the third point yield the differences in
building Ψg

ω, Ψf
ω, Φg

ω and Φf
ω.

4.9 Parallel HDD method

To implement the parallel HDD method one should: build the domain decomposition tree TTh

in parallel (see multilevel graph partitioning in [10]) and start to use the parallel H-matrix
library. Note, that the hierarchical base of the HDD method is very suitable for the parallel
implementation (see Parallel Computing Section in [3]). There is possibility to apply large parts
of the sequential code on each processor.
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5 Examples

In Table 9 we give the list of different variations of the HDD method. To recompile and to start
these programs one should type

$ make example_XXX
$ ./example_XXX

example functional Computes the solution on all internal boundaries γω,diam(ω) ≥ H, and
the mean values of the solution inside all domains ω with diam(ω) < H.

example trunc Algorithm “Root to Leaves” works only
for domains diam(ω) ≥ H.

example homogen For problems with the homogeneous right-hand side.
The mapping Ψf

ω and Φf
ω are not computed.

example 2scales For the right-hand side from VH ⊂ Vh.

Table 9: Variations of the HDD method.
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6 Files and Their Contents

file (its header file) description
main.c (.h) Main file
laplace.c (.h) Initialization and start procedures
myextlib.c (.h) Auxiliary procedures (e.g., output)
mylib.c (.h) Auxiliary procedures
vertex.c (.h) All procedures for vertices
telement.c (.h) All procedures for finite elements
divide.c (.h) Procedures for the hierarchical division of Ω
matrix arithmetic.c (.h) Exact matrix arithmetic
aprox arithmetic.c (.h) Approximate matrix arithmetic
matrix operations.c (.h) Operations with columns and rows of an H-matrix
apr arithm fast.c (.h) Approximate matrix arithmetic
h2h.c (.h) Procedures for the H-matrix conversion
mycluster.c (.h) Modified procedures from HLIB/cluster.c
twoscale.c (.h) Procedures for sparse and prolongation matrices
test.c (.h) Different test procedures

makefile Make file

ver tri*.txt Files with the lists of triangles and vertices
edges*.txt Files with the list of edges

Table 10: The list of files in the HDD package.
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