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Abstract

Gradient recovery methods for a posteriori error estimation in the finite el-
ement method are justifiably popular. They are relatively simple to implement,
cheap in terms of storage and computational cost, and generally provide efficient
and reliable global and local error estimates for adaptive algorithms. In this re-
port we highlight two practical difficulties which can arise when such techniques
are used naively, difficulties which can lead to arbitrarily poor performance of
the error estimator both in terms of estimating the true error and in effectively
guiding the adaptive refinement process.
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1 Introduction

A posteriori error estimation via gradient recovery methods is computationally in-
expensive, relatively simple to implement, and generally both efficient and reliable
(often asymptotically exact). It is no surprise then that such methods are popular,
particularly in the engineering community, and many good papers have been writ-
ten on the topic over the past fifteen years or so. We refer the interested reader to
[4,5,6,7,8,9,11,12, 13, 14, 15, 16, 17, 18] as a reasonable sampling of the literature.

The basic principle behind these techniques is to apply some inexpensive post-
processing to the gradient of the computed finite element solution, Vuy, — RVuy, so
that the recovered gradient RVuy provides a better estimate of the true gradient Vu
than Vuy, does. Global and local error estimates [RVuy, — Vup|o.0, [RVur, —Vuplo -
provide the basis for the adaptive algorithm. Such recovery operators R can be either




local or global in nature. Perhaps the most popular recovery technique is the patchwise
discrete least-squares fitting of Zienkiewicz and Zhu [17, 18]. An example of a very
good global recovery technique is that of Bank and Xu [4, 5], in which a componentwise
L?-projection of Vuy, back into the original finite element space is performed, followed
by a few iterations of a multigrid-like smoother. Local L2-projections and weighted
averaging techniques are also popular. Xu and Zhang [13] provide a general framework
for the analysis of several of these approaches. All gradient recovery techniques can
be viewed as performing some sort of componentwise averaging of the gradient Vuy,.

The purpose of this brief technical report is to highlight two areas of difficulty
which can arise when gradient recovery procedures are used without fully appreciat-
ing the principles behind them. We do not claim that most practitioners are currently
unaware of such potential difficulties. We merely point out why they exist, demon-
strate that performance of the estimators can be arbitrarily bad if no care is taken to
avoid these difficulties, and discuss some of the methods to avoid them. For concrete-
ness, we only consider continuous, piecewise linear finite elements in bounded domains
in R?. For the numerical experiments we use the software package PLTMG [2], which
uses the global gradient recovery technique of Bank and Xu as its standard means of
error estimation.

2  Jumps in the Gradient Vu

We first consider problems for which the gradient of the true solution Vu is discontinu-
ous at certain interfaces in the domain. This situation arises quite naturally in elliptic
problems having a discontinuous coefficient a on the diffusion term, —V - (aVu) + etc.
If the finite element solution wuy, is a reasonable approximation of u, we expect there
to be a similar jump in Vuy at such interfaces. Because gradient recovery methods
involve some sort of averaging of the piecewise constant gradient Vuy to obtain the
recovered gradient RVuy, if no care is taken to avoid averaging across such interfaces,
the resulting local error estimates |(R—1)Vuy|o,» near interfaces will almost certainly
over-estimate the actual error |V(u—up)|o,- there. Briefly, if gradient recovery is used
naively in situations such as this, it is likely that large local errors will be indicated
where the errors are actually small, leading to (at best) suboptimal performance of
the adaptive algorithm. We demonstrate explicitly in the following example that the
performance can be arbitrarily poor.

2.1 A Model Problem for Jumping Gradients

Let Q denote the open upper half unit disk - see Figure 1 for a labelling of the two
subdomains, boundary and interface referred to below. We consider the following
model problem:

—aAu =0in Q u=0onIy Vu-n=0onT, (1)

u = by sinaf + ¢y cosaf on I's u = bysinal + cpcosal on T'y (2)
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Figure 1: The domain €2, with labelled subdomains, boundary and interface.

where a = 8 > 0in £, a = 1 in s, and v and aVu - n are continuous on the
interface v between 7 and Q5. The continuity of aVu - n on + is required so that, in
the conversion to weak form, the integrals along - cancel.

We seek a solution of the form

u="bgsinad + cpcosab, k=1, 2. (3)

Clearly, u = 0 satisfies conditions (1-2) trivially with by = by = ¢; = ¢ca = 0. If we
want a nontrivial solution u, we must choose « so that the linear system

0 1 0 0 by
0 0 cosam  —sinamw cr | 0 (4)
sin %+ cos 5° —sin ¢ —cos G bo
am  _ Bgin an an i QT
3 cos G B sin % cos 5 sin % Co

has a nontrivial solution. The first two rows of this system correspond to the boundary
conditions on I'y and I's, and the last two correspond to the continuity conditions on
~. By checking the determinant, it is clear that choosing

arccos };—ﬁ
ac€t+xt——+27 (5)
T

gives us what we need. We will consider the family of solutions u of the form

r%sin o , 0<0< 3
uo= re (—;fl sin af — 7‘/@(5_;1) cos a@) , 5 < 0<m (6)
1-p8
arccos =
a e — 497, (7)
T



The gradient near the interface -y is given by

— VB+1 n N/EST
Vu (r, g > = aro? , Vu (T, g ) =are ! ) (8)

/| _B_ /| _B_
B+1 B+1
It is clear from (8) that Vu has a jump of magnitude /8 + 1 across v. We should
expect a similar jump in Vuy, for any finite element solution u;, which is a moderately
good approximation of u. We therefore expect that averaging across the interface -
to recover the gradient will lead to gross over-estimation of error near v and adaptive
refinement which concentrates heavily near there. It is also clear from this example
that simply recovering the weighted gradient RaVu,, for use in error estimates of the
form |RaVuy, — aVuy|o, or |a='RaVuy, — Vup|o.» will not fix this problem - this
merely shifts the difficulty from the z-component of the gradient to the y-component.
The most obvious solution is to use the recovery technique of choice in both of the
subdomains separately. Bank and Xu note this fix in an example in [5], and many
others probably use it as well whether or not they explicitly say so.
To illustrate just how necessary it can be to treat problems gradient jumps appro-
priately, we consider our model problem with the choice 3 = 10°. To five significant
digits, this gives us

2 -1
a=0.99936 , by = B =2.0000 , c2= 7% = —1000.0 . (9)

g+1 B+1
In Figure 2 and Table 1, we contrast the behavior of the Bank-Xu global recovery
operator R and its variant R in which the recovery technique is applied to both
subdomains separately. The difference is striking. We see in Figure 2 that the R
gradient recovery refinement is concentrated heavily around the interface -, as pre-
dicted, while refinement based on R error estimates seems to correspond more closely
to where the solution itself exhibits more interesting behavior. But the real evidence
of which technique does a better job lies the quantitative data.

In Table 1 we provide the number of triangles N, the global gradient error es-
timates [(R — I)Vup|oq and [(R — I)Vus|oq, the exact global gradient errors
lenl1,0, and the effectivity EFF of the estimators. Standard scientific notation
is abbreviated in the table by giving the base ten exponent as a subscript, e.g.,
5.6166_o = 5.6166 x 1072, It stands out that, in the early stages of its adaptive
refinement, |(R — I)Vup|o,q over-estimates the actual gradient error on the mesh by
a factor of more than 1000 = /B. Although the effectivity seems to be improving
as the mesh is refined, a more careful inspection of the numbers reveals that this is
due to the fact that the true error is no longer being reduced by the refinement! By
contrast, we see that the performance of the R error estimator is near optimal, with
effectivity near 1 and roughly linear convergence in error.

2.2 A More Realistic Example

In this example, we consider orthotropic heat conduction in a thermal battery. The
data for this problem originally come from Leszek Demkowicz. The problem is as



Figure 2: The meshes for the jumping coefficient problem after three stages of adaptive
refinement, using R gradient recovery error estimates (left) and R gradient recovery
error estimates (right). The mesh on the left has 6390 triangles, and the mesh on the
right has 6287 triangles.

Table 1: Estimates, exact values and effectivity in the H L_seminorm for the jumping
coefficient problem - R gradient recovery (top) and R gradient recovery (bottom).

N 66 355 1554 6390 25779 103373
(R —1D)Vupfon | 26412  136.95 72115  37.474  19.197  9.7403
lenl1.0 0.14956 7.4456_5 6.1226_5 5.9943_5 5.9560_5 6.0322_
EFF 1766.0  1839.3  1177.8  625.16  322.31  161.47
N 66 347 1526 6287 25549 102992
(R — I)Vup|on | 0.20885 5.7936_5 2.1005_ 9.3772_3 4.3581_3 2.1143_3
len|1.0 0.14956 4.5009_, 1.8622_5 8.9091_3 4.2268_3 2.0657_3
EFF 1.3964  1.2872  1.1279  1.0525  1.0311  1.0235
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Figure 3: The domain (right) with color-coded regions, and the initial triangulation
for the Thermal Battery Problem.
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The domain, broken into its five regions, together with the initial triangulation com-
puted using an automatic mesh generator based on a skeleton of the domain are given
in Figure 3. A qualitatively accurate approximate solution on a very fine mesh is given
in Figure 4 .

Again we consider the performance of the Bank/Xu global recovery estimator.
Based on the qualitative features of the approximate solution shown in Figure 4,
we might expect a well-adapted mesh to be fine near the interior corners of the five
subregions, but relatively coarse in regions where the solution is roughly linear -
regions 1 and 2, for example, as well as portions of the other regions. In contrast,
we expect the recovery estimates to lead to refinement which is concentrated near
the interfaces between the subregions. This is precisely what we see in Figure 5.
Also in Figure 5 we see the refinement produced using the hierarchical basis error
estimator described in [10]. Such estimators are known to be reliable under quite
general conditions [1, 3] and have been shown to be asymptotically exact [10] in
situations in which gradient recovery methods are asymptotically exact. We will
discuss below why we chose to use this estimator here instead of just doing gradient



Figure 4: A qualitatively accurate approximate solution for the Thermal Battery
Problem.



Figure 5: The triangulation after a couple of stages of adaptive refinement using
global gradient recovery (left) and hierarchical basis error estimation for the Thermal
Battery Problem.

recovery in each subdomain separately, and merely point out that the refinement
pattern produced appears to be well-suited for resolving the features of the solution.

We certainly could have used the Bank/Xu recovery method on each subdomain
separately, but the necessary modifications to the code to perform the recovery in
that way and to accommodate the multiple values of the recovered gradient RVuy
on the interfaces becomes more cumbersome as the number of subdomains increases.
This is primarily why we chose to use a hierarchical basis error estimator for the
comparison - it needs no modification for problems with jumping coefficients. Any
code which can be used for problems having jumping coefficients will also have some
simple way of determining which triangles are in which regions, so using a recovery
method separately in each of these regions is not too difficult in principle - some
recovery methods may be more difficult to modify than others.

Before moving on, we want to point out another feature of this sort of problem
which the aforementioned fix might not adequately address. Recovery methods gen-
erally require at least a patch of triangles around each point or triangle to recover the
gradient at the point or on the triangle - boundary points or triangles are treated in
a “one-sided” fashion. We have seen above that it is necessary to make sure that any
such patch does not contain an interface across which the diffusion coefficient jumps.
What if some subregions are only one triangle wide? Even after any necessary mod-



ifications to the recovery method are made to handle this situation, it still might
not be possible to accurately determine the local error, although the local estimates
could still be adequate for determining if further refinement is necessary or not. We
note that the initial triangulation for the Thermal Battery Problem is precisely of
this sort. Recall that this initial triangulation was produced by an automatic mesh
generator from data describing the five subregions. Apart from the restriction that
no triangle should overlap two subregions, shape-regularity of the triangulation was
the key governing principle. We see in Figure 3 that regions 1 and 4 are largely only
one triangle in width, and in Figure 5 we see that this is actually quite sufficient for
adequate resolution of the solution there.

3 Not Enough Interior Vertices

The discussion at the end of the previous section, concerning recovery over few ele-
ments, is closely related to the topic of this section. We saw in the previous section
a situation in which the triangulation was sufficiently fine in some subdomains for
resolution of the solution (one triangle in width), but perhaps not fine enough to
adequately recover the gradient there. We now look at an example where it truly
is necessary to refine the triangulation, both for resolution of the solution and for
gradient recovery, but where gradient-recovery-based error estimates do not lead to
reasonable refinement. The fault in this problem really lies with the initial mesh and
not with the gradient recovery technique.
The Spiral Domain problem is to find u such that:

—Au=1inQ |, wu=0ondQ, (10)

where () is a narrow spiral-shaped domain. In Figure 6 we see the initial triangula-
tion of the domain, which was generated by an automatic mesh generator from data
describing the boundary. We note that most triangles have all three of their vertices
on the boundary. Of course, this means that the finite element solution on this tri-
angulation will be identically zero for much of the domain. We see this in Figure 6,
together with a qualitatively accurate finite element solution on a much finer mesh
(uniformly refined).

It is clear that the largest error in the approximation on the initial mesh is where
the finite element solution is zero - where there were no interior vertices in the tri-
angulation. The problem is that gradient recovery methods have no choice but to
estimate zero error there. So in the regions where the error is largest, such methods
will estimate small (or no) error, and they will estimate relatively large error where the
error is actually the smallest. This leads to adaptive refinement such as that depicted
in Figure 7, and very little improvement in the quality of the finite element solution
on the refined mesh. We contrast this with the refinement produced by hierarchical
basis error estimates, which yield a much more sensible pattern of refinement and a
marked improvement in the next finite element solution. Actually, any error estima-
tion technique which somehow takes into account the residual of the finite element
solution would yield similar refinement to the hierarchical basis approach.



Figure 6: The initial triangulation (left), initial finite element solution (center), and
an accurate finite element solution on a fine mesh for the Spiral Domain Problem.

As was stated earlier, the fault really lies with the automatic mesh generator.
It should not have produced a mesh in which so many triangles had all of their
vertices on the boundary. This defect is actually quite easy to correct - simply mark
all triangles which have all of their vertices on the boundary, and either refine or
perform edge flips on pairs of adjacent triangles until all of them have at least one
interior vertex. This sort of procedure could also be extended to produce interior
vertices in specified subdomains for problems such as the Thermal Battery Problem.
Some mesh generators may already have this sort of feature built in, but some do not,
and one should make sure before using gradient recovery in conjunction with them.

4 Conclusions

We have pointed out two potential dangers to avoid when using gradient recovery
methods for error estimation and adaptive refinement. One of them is easily dealt
with by ensuring that each triangle in the computational mesh has at least one interior
vertex - where we can interpret interior in the sense of internal interfaces as well as
the domain boundary. The first of the two dangers is more serious, and can only be
addressed by modifying the recovery method directly to handle jumps in the gradient
Vu. In principle the necessary modification is not too difficult, because gradient jumps
are most likely to correspond directly to discontinuities in the differential operator
and can therefore be predicted a priori. In practice, the amount of necessary recoding
could vary quite a bit between the recovery methods. Though many engineers are
no doubt aware of this danger and have corrected it in their codes, we have found
that it has not been sufficiently advertised in the literature for less experienced users,
particularly in light of just how bad the performance can be if insufficient care is
taken.
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Figure 7: The adaptively refined meshes after one stage of refinement using gradient
recovery error estimation (left) and hierarchical basis error estimation for the Spiral
Domain Problem.
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