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1 Preface

H-Lib
pro

is a software library implementing hierarchical matrices or H-matrices for short. This
type of matrices, first introduced in [Hac99], provides a technique to represent various full
matrices in a data-sparse format and furthermore, allows usual matrix arithmetic, e.g. matrix-
vector multiplication, matrix multiplication and inversion, with almost linear complexity. Ex-
amples of matrices, which can be represented by H-matrices stem from the area of partial
differential or integral equations.

Beside the standard arithmetic mentioned above, H-Lib
pro

also provides additional algorithms
for decomposing matrices, e.g. LU-factorisation and for solving linear equation systems with
various direct or iterative methods. Furthermore, it contains methods for directly converting
a dense operator into an H-matrix without constructing the corresponding dense matrix. See
Section 2.3 for a detailed list of the functionality of H-Lib

pro
.

Content

Chapter 2 contains an introduction to H-matrices in which basic concepts needed to understand
the H-Lib

pro
functions are explained. In particular, it describes the path from a given matrix or

equation system to a H-matrix representing the corresponding data. Experienced users might
want to skip this chapter.

In Chapter 3 the configuration and installation process of H-Lib
pro

is discussed.

The description of the functions and classes in H-Lib
pro

starts with two tutorials describing
typical usage scenarios in Chapter 4.

Conventions

The following typographic conventions are used in this documentation:

CODE For functions and other forms of source code appearing in the document.
TYPES For data types, e.g. structures, pointers and classes.
FILES For files, programs and command line arguments.

Furthermore, several boxes signal different kind of information. A remark to the correspond-
ing subject is indicated by

Remark

This is a remark

Important information regarding crucial aspects of the topic are displayed as

Attention

This is important.

1
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Examples for a specific function or algorithm are enclosed by

void example ();



2 Introduction

In this chapter, the basic concepts in the context of H-matrices are introduced as it is needed
to understand the functions discussed later. It shall not give a complete overview over the field
of hierarchical matrices. For this, please refer to [Hac99], [Gra01] and [GH03].

H-matrices are a special data-sparse storage format for dense matrices, e.g. each coefficient
of the matrix can be different from zero. Even so, for a dense n × n matrix the total storage
complexity is of order n log n. Due to the special structure of H-matrices, one is also capable
of doing matrix arithmetic, e.g. matrix multiplication and inversion, with a similar complexity
of n log2 n. This allows an efficient handling of many problems in mathematics, physics or
engineering.

As an example consider the linear equation system

Ax = y

with the n × n matrix A, which can be solved directly by computing

x = A−1y

in almost linear time.
Unfortunately, this is not possible for all types of matrices and the computed vector x is

only an approximation of the true solution of the above equation. But, since most numer-
ical algorithms involve some kind of approximation, e.g. the transition from continuous to
discrete models, the additional error due to the solution phase does not change the overall
approximation quality.

The question, whether a given problem can be handled by H-matrices usually comes down to
the question, whether parts of a matrix can be approximated by low-rank matrices. Consider
for example the n × m matrix M . If the actual rank of M is k ≪ min{n, m}, it is possible to
represent M as the product

M = A · BT

with the n × k matrix A and the m × k matrix B. The storage required to store M is now

k · (n + m) instead of n · m

which is significantly smaller and of order max{n, m}.
If M is not of rank k but a rank k matrix M̃ = A′B′T exists, which approximates M up to

a given accuracy ε ≥ 0, e.g.
‖M − M̃‖ ≤ ε

in some norm ‖ · ‖, one could again replace M by a low-rank matrix if ε is small enough and
reduce the storage requirements.

Now we come back to our linear equation system Ax = y. Usually it is not possible to
represent or approximate A directly by a low-rank matrix. But if parts of A, e.g. matrix blocks,
can be represented, this would also reduces the needed memory to store A (see Figure 2.1).

3
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Figure 2.1: Parts of a Matrix represented by low-rank Matrices

The question is, which blocks of the matrices can be approximated? Here one has to take a
closer look at the considered problem, e.g. the partial differential or the integral equation. A
sub block M of the matrix A corresponds to two indexsets I, J where I and J are associated
with the rows and the columns of M , e.g. M ∈ RI×J . Furthermore, I and J usually also
correspond to parts of the geometry associated with the given problem (see Figure 2.2). This
leads us to the following informal rule for many differential and integral operators:

If the parts of the geometry associated with I and J are well separated, e.g. have
a positive distance, then the matrix block M ∈ RI×J can be approximated by a
low-rank matrix.

We will come back to the exact mathematical definition of this rule in the next section.

Geometry

I

J

A

I

J

M

Figure 2.2: Correspondence of Geometry with Indexsets

Unfortunately, this rule only tells us, that these sub blocks in the matrix exists. We still
have to choose them by our own and since one has 22n different possibilities, the right strategy
is crucial for efficient algorithms. This brings us to cluster trees and block cluster trees.

2.1 Cluster Trees and Block Cluster Trees

A cluster is a subset of the indexset, e.g. the set I, whereas a block cluster is the product of two
clusters, e.g. I × J , and therefore corresponds to matrix blocks. To restrict the choice of sub
matrices, where a low-rank approximation can be constructed, one introduces a hierarchical
decomposition of a clusters.
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The main idea is to decompose the indexset I into two (or more) disjoint subsets I1, I2

which are again subdivided until only a single index per set remains. If one identifies each
of the constructed sets by a node and introduces edges between indexsets according to the
decomposition hierarchy, e.g. between an indexset and it’s direct subsets, one ends up with a
cluster tree (see Figure 2.3).

I

I1 I2

I11 I12

Figure 2.3: Cluster tree construction

Several algorithms are available for subdividing a cluster depending on the specific problem,
e.g.

� cardinality balanced : decompose each indexset into two sub clusters with an equal number
of indices or

� geometrically balanced : decompose each indexset into two sub clusters of equal volume.

It is also possible to decompose a cluster without geometrical information for sparse matrices
by examining the connectivity defined by the matrix structure (see [GKB05]).

We now restrict our search for matrix blocks, which we want to approximate by low-rank
matrices, to products of clusters in a given cluster tree. Furthermore, the products shall contain
only clusters of equal depth in the tree. The possible set of such block clusters is defined by
the product of two cluster trees: the block cluster tree . In Figure 2.4 the first three levels of
the product of the above cluster tree for I is shown.

I × I

I2 × I1 I2 × I2

I1 × I1 I1 × I2

Figure 2.4: Product of two Cluster trees

Unfortunately, multiplying two cluster trees completely results in #I2 leafs in the block
cluster tree. Therefore, one has to apply further restrictions on the set of nodes in such a
tree. Here, the above mentioned rule comes into play and is now called admissibility condition
defined by:

A block cluster t×s with clusters t, s is called admissible, if the following condition
holds:

max{diam(t), diam(s)} ≤ η dist(t, s)
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with diam(t) being the diameter of the cluster t, dist(t, s) the distance between the
cluster t and s and η ≥ 0.

Just like the previous informal description, the admissibility condition is true if two clusters are
small compared to their distance. The distance is scaled by the parameter η which is problem
dependent.

All admissible blocks in the block cluster tree will not be further refined, e.g. the multipli-
cation of the two cluster trees stops at such a node.

Let us examine this condition on a simple example in R1, namely the interval [0, 1] with
equally distant indices and a cardinality balanced subdivision:

0 1 2 3 4 5 6 7

0 1

0, 1, 2, 3, 4, 5, 6, 7

0, 1, 2, 3

0, 1

0 1

2, 3

2 3

4, 5, 6, 7

4, 5

4 5

6, 7

6 7

Starting the construction of the block cluster tree, one notes, that diagonal blocks can never
be admissible. Hence, one level of refinement is always necessary and yields Figure 2.5 (left).
On the next level, for the block cluster {0, 1, 2, 3} × {4, 5, 6, 7} one has to check the following
admissibility condition:

max {diam({0, 1, 2, 3}),diam({4, 5, 6, 7})} = max

{

3

7
,
3

7

}

≤

η dist {{0, 1, 2, 3}),diam({4, 5, 6, 7}} = η
1

7

which requires η ≥ 3 to be true. We now assume η = 0.5 and hence the previous block to be
inadmissible. For the corresponding block cluster tree this means further refinement.

On the next level, we will check the admissibility for all products of the cluster {0, 1}:

� {0, 1} × {2, 3} : max
{

1
7
, 1

7

}

6≤ η 1
7
,

� {0, 1} × {4, 5} : max
{

1
7
, 1

7

}

≤ η 3
7
,

� {0, 1} × {6, 7} : max
{

1
7
, 1

7

}

≤ η 5
7
.

Similar results are obtained for the other clusters. The resulting decomposition of the block
indexset is shown in Figure 2.5 (middle), where all admissible blocks are marked green. The
remaining non-admissible blocks are further refined yielding the final decomposition as can be
seen in Figure 2.5 (right).

Other admissibility condition can be defined, e.g. by using the minimum of the diameter
instead of the maximum. The exact definition of the diameter of a cluster is also dependent
on the problem.

In either case, one now has decomposed the initial block indexset I × I into O (#I) sub sets
and has identified suitable blocks for approximating the original matrix.
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0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

Level 1

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

Level 2

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

Level 3

Figure 2.5: Construction of a block cluster tree

2.2 H-Matrices

Having a block cluster tree and the knowledge, that each matrix block corresponding to an
admissible node (or block cluster) can be approximated by a low-rank matrix, we can build an
H-matrix.

Still open is the method to use for computing the low-rank approximation. This is highly
dependent on the problem under consideration. For partial differential equations, one usually
has the property, that all admissible blocks have rank 0 because matrix entries are non-zero
only for direct neighbours in the grid and since admissible matrix blocks are associated with
well separated areas of the grid, no direct connection exists. Here one should also note, that
the storage requirements of H-matrices are usually higher than for sparse matrix formats and
hence the conversion of such matrices in H-matrices is only advised, if further operations, e.g.
inversion or LU factorisations, are performed.

For integral equations the situation is different and several approximation algorithms exist
which compute a low-rank matrix for a dense block, e.g. adaptive cross approximation (see
[Beb00]) or hybrid cross approximation (see [BG05]).

Examples for real H-matrices are shown in Figure 2.6. There, the green blocks again corre-
spond to admissible blocks whereas red blocks are inadmissible.

Figure 2.6: H-matrix examples

Once a H-matrix is available, one can perform almost all matrix algebra with it. Further-
more, all of these algebra operations are performed in linear-logarithmic time. The following
table lists the basic arithmetic functions available for H-matrices together with their compu-
tations complexity:
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Operation Complexity
Matrix Vector Product O (n log n)
Matrix Addition O (n log n)
Matrix Multiplication O

(

n log2 n
)

Matrix Inversion O
(

n log2 n
)

LU Factorisation O
(

n log2 n
)

Due to the availability of the matrix arithmetic, H-matrices can be used for many more
problems than just linear equations. One example would be matrix Riccati equations (see
[GHK03]). Or the direct treatment of Schur complement systems (see [Hac03]) as the arise in
various problems, e.g. domain decomposition.

2.3 H-Lib
pro

H-Lib
pro

is a software library which implements all of the above described algorithms. Due
to the much more complex data structures and more involved methods in the context of H-
matrices compared to sparse and dense matrices, one major goal for H-Lib

pro
was to simplify

the access to these functions and therefore make hierarchical matrices available to a broader
audience.

The development of H-Lib
pro

started in 1999 and was done in parallel to HLib (see [BG]). Some
algorithms which were first tested in HLib later found their way into H-Lib

pro
. Other techniques,

especially the parallel H-matrix arithmetics is only available in H-Lib
pro

. Furthermore, H-Lib
pro

is also capable of doing complex valued arithmetic for H-matrices. In addition to this, the
implementation of H-Lib

pro
focuses on more robust algorithms in terms of numerics and software

technology, e.g. error handling.
To use H-matrices in H-Lib

pro
, one has to follow the general path which was laid out in this

chapter:

1 decompose the indexset in the form of a cluster tree,

2 identify approximable subsets of the block indexset by building the block cluster tree and

3 build low-rank approximations for admissible blocks and put them together in an H-
matrix.

By default, for each of these steps only minimal information and user interaction is necessary,
while H-Lib

pro
uses parameters best suited for the given problem.

For the last step, the H-matrix construction, H-Lib
pro

implements the following approxima-
tion algorithms:

◮ Singular Value Decomposition,

◮ Adaptive Cross Approximation (classical, advanced and full) and

◮ Hybrid Cross Approximation.

Beside this H-matrix specific functionality, H-Lib
pro

contains many more methods, e.g.

◮ Matrix norm computation (‖A‖, ‖A−1‖, ‖A − B‖) for

Frobenius norm (‖ · ‖F ) and Spectral norm (‖ · ‖2)
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◮ Iterative Solvers for the solution of linear equations:

Richardson iteration, CG iteration, BiCG-Stab iteration, MINRES iteration
and GMRES iteration

◮ Advanced Triangle Quadrature Rules (see [SS04]),

◮ Input/Output in various formats:

SAMG ([Fra]), Matlab ([Mat]), Harwell-Boeing ([Natb]), Matrix-Market ([Nata])
and H-Lib

pro
format

Examples for the usage of the functions in H-Lib
pro

can be found in Chapter 4, in which a
dense and a sparse linear equation system are solved using H-matrices and LU factorisation
as well as inversion.

2.3.1 Revision History

v0.13.2 (2008-02-29)
◮ replaced threads and mutices by OpenMP (thread start only, no scheduling)

◮ included log file support in addition to stdout

◮ added parallel LDLT factorisation (DD and blockdiag only)

◮ added parallel blockdiag LU factorisation

◮ added zero approximation during matrix construction (for nearfield only)

◮ fixed bug in algebraic nested dissection clustering (wrong path length in interface)

v0.13.1 (2008-02-04)
◮ reduced memory consumption/fragmentation in ACA generated matrices with large rank

◮ added Fiduccia/Mattheyses bisection optimisation for BFS clustering

◮ added FFT for vectors by implementing support for FFTW3 (optional)

◮ fixed bug in TBSPPartCTBuilder when using more than two partitions

◮ fixed potential issues in sorting algorithms

◮ fixed type issues with * bytesize functions in C interface

◮ fixed bug in PostScript visualisation of matrices if matrix norm is zero

◮ fixed issues with GCC-4.3

◮ fixed bug in command line parsing of configuration system

◮ minor modifications to SCons system to increase userfriendliness

v0.13 (2007-12-19)
◮ general Algorithmic Changes

� support for single precision arithmetic; has to be decided before compiling H-Lib
pro

� made complete C++ functions and classes visible from outside instead of just C interface
functions

� rewrote complex arithmetic to distinguish between symmetric and hermitian matrices;
added LDLH and LLH factorisations

� inversion now based on LU, thereby reducing memory consumption (roughly halved)
� added computation of the diagonal of the inverse without computing the inverse
� added evaluation of LU, LDLT factorisations (instead of just solving)

http://www.fftw.org/
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� removed point-wise LU and LDLT factorisation (only blocked) to improve robustness with
zeroes on diagonal

� added (optional) check and fix for singular sub matrices during inversion and factorisation
� added complex valued HCA
� new version of ACA+

� multiplication C = A · D · B with diagonal D implemented
� implemented bilinear forms for Helmholtz single and double layer potential
� implemented bilinear form for acoustic scattering
� rewrote algebraic clustering for sparse matrices; added support for Scotch and CHACO
� added support for periodic coordinates in clustering
� added clustering with user defined index partition on first level in cluster tree
� added standard admissibility for algebraic clustering
� added maximal level in clustering to prevent infinite recursion
� modified solvers to handle complex valued data
� added permutation of dense matrices without temporary storage (needed in IO)

◮ parallel Arithmetic

� added thread parallel algorithms for matrix construction, matrix multiplication, inversion
and LU factorisation

� redesigned thread pool, thereby fixing race conditions
� added support for Windows threads
� fixed several issues with thread safety

◮ Input and Output

� added general I/O functions with autodetection of file format
� added output of matrices in Harwell/Boeing format
� added MatrixMarket format
� added support for Ply and surface mesh format (NetGen) for Grid I/O
� fixed format errors in SAMG output
� conversion of arbitrary matrices to sparse format when writing in SAMG or Harwell/Boeing

format
� fixed support for symmetric matrices in Harwell/Boeing format

◮ C interface

� prefixed all functions, types and constants with hlib (or HLIB) to prevent collisions with
other definitions (OS or libraries)

� added support for C99 complex types (if available)
� added hlib set coarsening to activate/deactivate coarsening during matrix construction

(default: on) and matrix arithmetic (default: off)
� added hlib matrix inv diag to return diagonal of inverse
� added hlib matrix is complex to test for real or complex valued matrices
� added hlib set nthreads to set number of threads
� added hlib coord t as special type for coordinates
� separated stop criterion and solver in solver interface

◮ Miscellaneous

� updated CPUflags and Rmalloc
� fixed optimisation issues (leading to infinite loops) in enclosed CLAPACK

v0.12 (2006-11-01)
◮ Algorithmic Changes

http://www.labri.fr/perso/pelegrin/scotch/
http://www.cs.sandia.gov/~bahendr/chaco.html
http://www.hlnum.org/english/projects/tools/cpuflags/
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� added (blocked) LDLT factorisation (now default for symmetric matrices)

� no longer need extra matrix in matrix inversion

� using ACAFull in HCA instead of SVD to reduce runtime

� adaptively choosing quadrature and interpolation order in ACA and HCA

� rewrote matrix addition to support general cases, e.g. low-rank to blocked

� rewrote low-rank truncation handling

� support for METIS in algebraic clustering routines

� added basic support for ”dense” sparse matrices, e.g. with highly coupled indices

� added SSE2 based HCA algorithm

� added infinity norm for vectors

� using norm of preconditioned residual for all solvers if preconditioner is present

� added MINRES iteration

� using ADM AUTO as default admissibility

� finally removed all asserts and replaced by internal error checking

◮ Input and Output

� VRML97 support

� added Matlab compression (Matlab v7) and structs support

� support for Harwell-Boeing matrix format (read-only)

� modified PostScript output of block-wise SVD; now scaled w.r.t. 2-norm of matrix

◮ OS and Library support

� MS Windows support

� shared libraries for Linux and Windows

� added internal xerbla to handle LAPACK errors directly

� changed configure system to better handle MS Windows environment

◮ C interface

� automatic choice of matrix building in hlib matrix build bem grid

� introduced vector t as type to vectors (no more C arrays)

� added Gauss and Sauter triangle quadrature rules

� added functions to access matrix and vector entries

� added copyto and copyto eps functions

� added hlib matrix build dense to build H-matrix from dense matrix

� changed solver management

◮ Miscellaneous

� several improvements and bug fixes

� cleaned up error codes

� updated CPUflags and Rmalloc

http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.hlnum.org/english/projects/tools/cpuflags/
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3 Installation

In this section the installation procedure of H-Lib
pro

is discussed. This includes the various
tools and libraries need for H-Lib

pro
to compile and work, the configuration system of H-Lib

pro

and the usage of the supplied tools for compiling programs with H-Lib
pro

.

3.1 Prerequisites

3.1.1 Operating System and Compiler

H-Lib
pro

was tested on a variety of operating systems and is known to work on the following
environments

Linux, Solaris, AIX, HP-UX, Darwin, Tru64, FreeBSD and Windows

In particular, each POSIX conforming system should be fine. The more crucial part plays
the compiler. H-Lib

pro
demands a C++ compiler which closely follows the C++ standard. The

following compiler versions are known to work

GCC Version 3.4 and above, including 4.x

Intel Compiler Version 5 and above

Portland Compiler Version 2.x

Sun Forte/Studio Version 5.3 and above

IBM VisualAge Version 6

HP C++–Compiler Version 3.31 and above

Compaq C++ Version 6.5 and above

Microsoft VisualC++ Version 8 and above

3.1.2 LAPACK

Internally, H-Lib
pro

uses LAPACK (see [ABB+99]) for most arithmetic operations. Therefore,
an implementation of this library is needed for H-Lib

pro
. Most operating systems provide a

LAPACK library optimised for the corresponding processor, e.g. the Intel Math Kernel Library
or the Sun Performance Library. If no such implementation is available, H-Lib

pro
contains a

modified version of CLAPACK. But it should be noted that this might result in a reduced
performance of H-Lib

pro
.

3.1.3 Misc. Tools

To use the configuration system, a Python interpreter is needed. Furthermore, the build system
of H-Lib

pro
is using SCons, which again is based on Python.

13

http://www.intel.com/cd/software/products/asmo-na/eng/perflib/mkl/index.htm
http://developers.sun.com/prodtech/cc/perflib_index.html
http://www.netlib.org/clapack/
http://www.python.org
http://www.scons.org
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3.2 Configuration

If the right operation mode is chosen, the configuration system of H-Lib
pro

can be used to create
all the neccessary files to construct the package. For this, simply type

./configure

which uses default settings for your operating system and compiler and chooses appropriate
options for the compilation, e.g. include directives, libraries etc..

All available options for the configuration system can be printed by

./configure --help

which will result in the following list:

--prefix=dir

Set the prefix for installing H-Lib
pro

to the directory dir. By default, the local directory is
chosen.

--cc=CC

--cxx=CXX

Use CC and CXX as the C- and C++-compiler. By default appropriate settings for the considered
operating system are used, e.g. gcc and g++ for Linux.

--cflags=FLAGS

--cxxflags=FLAGS

Define the compiler flags for C and C++ files.

--enable-single
--enable-double

Define precision of H-arithmetics. By default double precision is used.

--with-cpuflags[=PATH]
Enable the usage of cpuflags which will determine appropriate compiler flags for the combi-
nation of compiler, operating system and processor. The optional argument PATH defines the
correct path to cpuflags. By default, the supplied copy of cpuflags will be used.

--lapack[=FLAGS]
Defines the linking flags for the LAPACK implementation needed by H-Lib

pro
. By default, a

modified copy of CLAPACK is used, which can also be defined by specifying “CLAPACK”.

--with-threads[=type]
Enable support for multiple threads in H-Lib

pro
, whereby type is one of auto, pthread or

win32.

--with[out]-zlib[=DIR]
--zlib-cflags=FLAGS

--zlib-lflags=FLAGS

Turns on/off zlib support in H-Lib
pro

. The optional argument DIR specifies the location of the
zlib environment, e.g. includes and libraries. Alternatively, you can define the compilation
flags for zlib directly.

--with[out]-metis[=DIR]
--metis-lflags=FLAGS

Turns on/off METIS support in H-Lib
pro

. The optional argument DIR specifies the location
of the METIS library. Alternatively, you can define the linking flags for METIS directly.

--with[out]-scotch[=DIR]
--scotch-cflags=FLAGS

--scotch-lflags=FLAGS

Turns on/off Scotch support in H-Lib
pro

. The optional argument DIR specifies the location
of the Scotch library. Alternatively, you can define the compilation and linking flags for
Scotch directly.

http://www.hlnum.org/english/projects/tools/cpuflags/
http://www.netlib.org/clapack/
http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.labri.fr/perso/pelegrin/scotch/
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--with[out]-chaco[=DIR]
--chaco-lflags=FLAGS

Turns on/off CHACO support in H-Lib
pro

. The optional argument DIR specifies the location
of the CHACO library. Alternatively, you can define the linking flags for CHACO directly.

--with[out]-fftw3]
--fftw3-cflags=FLAGS

--fftw3-lflags=FLAGS

Turns on/off FFTW3 support in H-Lib
pro

. By default, standard flags for compiling and linking
are assumed. Alternatively, you can define the compilation and linking flags for FFTW3
directly.

--with-rmalloc
Enable the Rmalloc memory allocator provided by H-Lib

pro
.

A typical example for the usage of the configuration system might be

./configure --with-cpuflags --with-zlib

which enables the usage of cpuflags to get the correct compiler flags and support for com-
pressed files through the zlib library.

Beside these H-Lib
pro

related options, the following parameters can be used to change the
behaviour of the configuration system itself:

-c, --check
Turns on checking of used tools and libraries, e.g. if the C++ compiler is capable of producing
object files.

-n, --no-check
Turns off tool and library checking.

-h, --help
Prints a detailed description of all options for the configuration system.

-q, --quiet
Do not print any information during configuration.

-s, --show
Just print the current options of the configuration system without creating construction files.

-v, --verbose
Print additional information during configuration.

All settings which where changed by the user will be written to the file config.cache, where
one can optionally edit the parameters with a text-editor.

3.3 Compilation

After H-Lib
pro

was configured, you can compile it by

scons

Parallel compilation, e.g. via -j, is also supported.
By default, a version of H-Lib

pro
with debugging symbols will be created. This can be changed

by arguments to scons:

debug=[0|1]
Turn on/off debugging support during compilation.

optimise=[0|1]
Turn on/off optimisation support during compilation.

http://www.cs.sandia.gov/~bahendr/chaco.html
http://www.fftw.org/
http://www.hlnum.org/english/projects/tools/rmalloc/
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profile=[0|1]
Turn on/off profiling support during compilation.

shared=[0|1]
Enable/disable building of shared libraries.

static=[0|1]
Enable/disable building of static libraries.

fullmsg=[0|1]
Enable/disable printing of complete compilation commandline.

The current status of these options is printed by

scons options

After compilation, a library should reside in the lib/ directory and examples for the usage
of H-Lib

pro
should have been generated in the example/ subdirectory. If CLAPACK was chosen

as the LAPACK implementation, a corresponding library can be found in the lib/ directory.



4 Tutorials

Before all of the functionality of H-Lib
pro

will be discussed in it’s full detail, we will begin with
an introduction based on typical situations in which H-matrices will be used: representing
integral equation operators and working with sparse matrices.

4.1 Integral Equation

4.2 Sparse Matrices

In this example, a linear equation system with a sparse matrix S shall be solved by the use
of H-matrices. For this, we will first convert the sparse matrix into an H-matrix, compute a
H-LU factorisation of the H-matrix and finally use this LU factorisation as a preconditioner
for solving the equation system.

To access H-Lib
pro

functions and classes, we have to include the corresponding header files.
Although each file can be included individually, a general header file is provided:

#include <hlib.hh>

Remark

Since with hlib.hh all header files in H-Lib
pro

are included in the current source, compilation
times can be increased significantly. Therefore, this is only advised for small examples.

But before we can start, H-Lib
pro

has to be initialised:

1 int main ( int argc, char ** argv ) {
2 HLIB::INIT( argc, argv );

Please note the HLIB namespace, which applies to all functions in H-Lib
pro1.

Cluster Tree and Block Cluster Tree
As was discussed in Section 2.1, the index sets over which the matrix S is defined have to
be decomposed into cluster trees before H-arithmetics can be used. For this, two different
methods are available depending on whether or not geometrical information is available for
each index or not. For this example, we will assume the presence of such geometrical data,
which has to be imported into H-Lib

pro
before further usage:

3 HLIB::TAutoCoordIO cooio;
4 HLIB::autoptr< HLIB::TCoordinate > coord;
5

6 coord = cooio.read( "coordfile.coo" );

1Accept functions in the C language interface (see [Kri]).

17
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Here, we have read the coordinate information from the file coordfile.coo by using file format
autodetection implemented in TAutoCoordIO.

The usage of autoptr (see ???) is advised, and extensively used in H-Lib
pro

, since they
decrease the possibility of memory leaks by automatically deleting the objects upon destruction
of the autopointer variable, e.g. when leaving the local block.

Once the coordinates for each index are available, the index set can be clustered. For this,
standard geometrical bissection is used, implemented in TBSPCTBuilder (see ???).

7 HLIB::TBSPCTBuilder ct_builder( HLIB::BSP_AUTO, 20 );
8 HLIB::autoptr< HLIB::TClusterTree > ct;
9

10 ct = ct_builder.build( coord.get() );

The two parameters to the constructor of ct builder define the partitioning technique, which
is automatically chosen, and the upper limit of index sets not decomposed any further (see
???) .

After construction the cluster tree, the block index set has to be partitioned into a block
cluster tree . At this point, blocks in the yet to be constructed H-matrix are identified by
the so-called admissibility condition , which will be represented in low-rank format. Since
geometrical data is used to built the cluster tree, the admissibility condition is also based on
the geometry of clusters and compares diameters with distances (see ???).

11 HLIB::TStdAdmCond adm_cond( 2.0 );
12 HLIB::TBCBuilder bct_builder;
13 HLIB::autoptr< HLIB::TBlockClusterTree > bct;
14

15 bct = bct_builder.build( ct.get(), ct.get(), & adm_cond );
16

17 std::cout << "sparsity constant = " << bct->compute_c_sp() << std::endl;

Since an important characteristic of the block cluster tree and involved in many complexity
estimates in the context of H-matrices, the sparsity constant csp is computed for the constructed
block cluster tree.

H-Matrix Construction

The next step is the construction of the H-matrix itself. But before doing so, the sparse matrix
has to be made available. Again, format autodetection is used to read a file containing the
sparse matrix. For convenience, the general pointer to the matrix is represented as a sparse
matrix of type TSparseMatrix. Note, that this is a standard pointer instead of an autopointer
since the matrix is already managed by the autopointer M.

18 HLIB::TAutoMatrixIO mio;
19 HLIB::autoptr< HLIB::TMatrix > M;
20 HLIB::TSparseMatrix * S = NULL;
21

22 M = mio.read( "matrix.mat" );
23 S = dynamic_cast< HLIB::TSparseMatrix * >( M.get() );
24

25 if ( S == NULL )
26 throw HLIB::Error( HLIB::ERR_MAT_NSPARSE );
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In case that M does not contain a sparse matrix, an exception is thrown with the corresponding
error code (see ???).

Finally, we can build the H-matrix with the help of TSparseMBuilder, which expects the
sparse matrix and permutations of the index set. The latter are a direct result of the clustering
procedure above, since that involves a reordering of the indices. To access to correct coefficients
in S, this ordering has to be reverted.

Since S is sparse, usually all low-rank blocks have rank zero. Therefore, an exact approxi-
mation can be done by setting the relative and the absolute error in acc to 0.

27 HLIB::TSparseMBuilder h_builder( S, ct->perm_i2e(),
28 ct->perm_e2i() );
29 HLIB::TTruncAcc acc( 0.0, 0.0 );
30 HLIB::autoptr< HLIB::TMatrix > A;
31

32 A = h_builder.build( bct.get(), S->form(), acc, progress.get() ) );
33

34 std::cout << "size of H-matrix = "
35 << HLIB::Sys::Mem::to_string( A->byte_size() ) << std::endl;

The size of the created H-matrix is printed in line 34 by making use of the memory format
function in Sys::Mem.

Solving the Linear Equation System
The goal of this example was the solution of a given linear system of equations by the H-
matrix technique. What is still missing to solve Sx = b is a good preconditioner for S. This is
computed by an H-LU factorisation of A, which allows the evaluation of the inverse of A, and
therefore of S.

36 HLIB::TLU lu;
37

38 lu.factorise( 1, A.get(), HLIB::TTruncAcc( 1e-4, 0.0 ) );
39

40 std::cout << "size of LU factor = "
41 << HLIB::Sys::Mem::to_string( A->byte_size() ) << std::endl;

Here, A is factorised with a block-wise accuracy of 10−4, i.e. all low-rank blocks are truncated
to the best approximation w.r.t. the Frobenius norm with an error not larger than 10−4. The
first parameter to the factorise function defines the number of threads to use during LU
factorisation.

Remark

For symmetric matrices, LDLT factorisation is done automatically instead of LU factorisa-
tion.

Unfortunately, the error bound of 10−4 only applys to each block individually. The approx-
imation of the inverse of S by the H-LU factorisation of A usually differs from this value.
Important for solving the equation system is the norm of the iteration matrix in a linear
iteration ‖I − (A)−1S‖2 which can be computed by:

42 HLIB::TSpectralNorm mnorm;
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43 HLIB::TLUInvMatrix A_inv( A.get() );
44

45 std::cout << " inversion error = "
46 << mnorm.inv_approx( S, & A_inv ) << std::endl;

Here, A is wrapped by A inv, which behaves like A−1 = (LU)−1 instead of A = LU and
therefore, allows matrix vector multiplication with the inverse of A.

Equipped with an approximation to the inverse of S and therefore with a reasonable pre-
conditioner, the equation system can be solved:

47 HLIB::TSolver::TInfo solve_info;
48 HLIB::TAutoVectorIO vio;
49 HLIB::autoptr< HLIB::TVector > b, x;
50

51 b = vio.read( "rhs.vec" );
52 x = S->col_vector();
53

54 HLIB::solve( S, x.get(), b.get(), & A_inv, & solve_info );
55

56 if ( solve_info.converged() )
57 std::cout << " converged with " << solve_info.n_iter() << " steps "
58 << " with rate " << solve_info.conv_rate()
59 << ", |r| = " << solve_info.res_norm() << std::endl;

The right-hande side b is read from file rhs.vec, whereas the solution vector x is built by
asking S for a compatible vector w.r.t. to the column index set of S.

In line 54, the system is solved by H-Lib
pro

by automatically choosing a suitable iteration
technique based on S and A inv (see ???). In solve info information about the solution
process, e.g. the number of iterations steps or the convergence rate, is stored.

Finalisation
The final step in this example program is the finalisation of H-Lib

pro
by

60 HLIB::done();
61

62 return 0;
63 }

Please note, that all objects, e.g. matrices, vectors, cluster trees, are automatically freed
since they are managed by autopointers. Therefore, no explicit release of these objects is
performed.
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