Max-Planck-Institut
fiir Mathematik
in den Naturwissenschaften
Leipzig

HLIBpro C Language Interface
(revised version: February 2008)
by
Ronald Kriemann

Technical Report no.: 10 2008

H-Lib"

v0.13.2

C Language Interface

by

Ronald Kriemann

ii

5 Vectors and
5.1 Vectors

Matrices

Contents
1 Preface
2 Introductory Examples
2.1 Imtegral Equation
2.2 Sparse Linear Equation System o oL
3 General Functions and Data types
3.1 Initialisation and Finalisation
3.2 Error Handling
3.3 Datatypes e
3.4 Reference Counting L L
3.5 Parallel Computing
4 Coordinates and Cluster Trees
4.1 Coordinates e e
4.1.1 Coordinate Management Functions
4.1.2 Coordinate I/O
4.2 Cluster Trees e e
4.2.1 Cluster Tree Management Functions
4.2.2 Cluster Tree Construction
423 Cluster Tree I/O o
4.3 Block Cluster Trees e e e e e e e e
4.3.1 Block Cluster Construction
4.3.2 Block Cluster Tree Management Functions
4.3.3 Block Cluster Tree I/O o o

5.1.1 Creating and Accessing Vectors
5.1.2 Vector Management Functions
5.1.3 Algebraic Vector Functions
5.1.4 Vector I/O
5.2 Matrices e
5.2.1 Importing Matrices from Data structures
5.2.2 Building H-Matriceso
5.2.3 Matrix Management Lo oo
5.24 Matrix Norms Lo
525 Matrix I/O
6 Algebra

w

13
13
13
16
17
17

19
19
20
21
21
21
22
25
26
26
27
27

29
29
29
31
32
33
34
34
37
42
44
45

49

iii

Contents iv
6.1 Matrix Vector Multiplication oo 49
6.2 Matrix Addition 50
6.3 Matrix Multiplication Lo L 50
6.4 Matrix Inversion e e 51
6.5 Solving Linear Systems. oo 52
6.6 Changing Algebra behaviour L. 55

7 Miscellaneous Functions 57
7.1 Measuring Time e 57
7.2 Progress Meter L e 57
7.3 Quadrature Rules 58

7.3.1 Gaussian Quadrature 58
7.3.2 Quadrature Rules for Triangles 58

Bibliography 61

1 Preface

H-LiB"™ is a software library implementing hierarchical matrices or H-matrices for short. This
type of matrices, first introduced in [Hac99], provides a technique to represent various full
matrices in a data-sparse format and furthermore, allows standard matrix arithmetic, e.g.
matrix-vector multiplication, matrix multiplication and inversion, with almost linear complex-
ity. Examples of matrices which can be represented by H-matrices come from the area of
partial differential or integral equations.

Beside the standard arithmetic mentioned above, H-Li'* also provides additional algorithms
for decomposing matrices, e.g. LU-factorisation and for solving linear equation systems with
various direct or iterative methods. Furthermore, it contains methods for directly converting
a dense operator into an H-matrix without constructing the corresponding dense matrix.

This document describes the C language interface to the H-Li"~ library. Since H-LiB" is
programmed in C++, the internal functions and classes have to be mapped to C data structures.
Furthermore, the functionality of the C interface is limited compared to the C++ interface, but
nevertheless provides most techniques used for standard problem solving. Furthermore, due
to this simplification, the C interface involves a less steep learning curve to get familiar with
H-matrices and H-LiB"™.

For an introduction into H-matrices, please refer to the H-Li" user manual ([Kri]). This
also applies to the documentation of the installation process.

Content

The documentation of the interface to the C programming language begins with two typical
examples in Chapter 2. General functions and data types are described in Chapter 3. Coordi-
nates, cluster trees and block cluster trees as the basic building blocks for H-matrices are the
topic of Chapter 4, whereas vectors and matrices will be discussed in Chapter 5. Functions for
the H-matrix algebra are introduced in Chapter 6. Finally, descriptions of auxiliary functions
can be found in Chapter 7.

Conventions

The following typographic conventions are used in this documentation:

CODE For functions and other forms of source code appearing in the document.
TYPES For data types, e.g. structures, pointers and classes.
FILES For files, programs and command line arguments.

Furthermore, several boxes signal different kind of information. A remark to the correspond-
ing subject is indicated by

This is a remark

Preface

Important information regarding crucial aspects of the topic are displayed as

‘ This is important.

Examples for a specific function or algorithm are enclosed by

void example ();

1

2

3

2 Introductory Examples

Before the individual functions are described in detail, two typical examples of their usage are
used for an introduction into the C interface to H-LiB".

2.1 Integral Equation

In this example an integral equation is to be solved by using H-matrices. For this, the system
matrix has to be represented in the H-format and a preconditioner shall be computed in with
the H-arithmetics. Since the matrices in question are dense, the following procedures apply
also to this type of matrices in general.

Source code for the complete example with additional output statements and timing of each
function can be found in examples/bemld.c.

Problem Definition
The following integral equation is considered:

1
Amm—ww@:mmxemu

Here, the function u : [0,1] — R is sought for a given right hand side f : [0,1] — R. The
Galerkin discretisation uses constant ansatz functions ¢;,0 <7 <n

1 zeli il
ila) =]
0 otherwise
This leads to a linear equations system with the matrix A defined by

1 1
0 = /0 /0 pil@)log [z — yl; (v)dyde (2.1)
1 Jj+1

itl
n

Initialisation

Before we can call any H-LiB" functions, the library is initialised with h1ib_init in line 6. To
increase the output of H-LiB", the default verbosity is increased to level 2 in line 7.

‘ ! log |z — y|dydz
J

#include "hlib-c.h"

int

Introductory Examples 4

main (int argc, char ** argv) {
int info;

hlib_init(& argc, & argv, & info); CHECK_INFO;
hlib_set_verbosity(2);

Error checking is performed by the macro CHECK_INFO, which looks at the value of the
variable info after each function call to H-Li™ and tests whether an error occured. The
definition of CHECK_INFO is as follows:

#define CHECK_INFO { if (info != HLIB_NO_ERROR) \
{ char buf[1024]; hlib_error_desc(buf, 1024); \
printf("\n%s\n\n", buf); exit(1); } }

There, the complete error message is copied into the string buf by the function hlib_error_desc
and printed to the standard output. Afterwards, the program is aborted.

Coordinates and Cluster Trees

In order to represent the system matrix in the H-matrix format, one has to create a cluster
tree and a block cluster tree. For the cluster tree, coordinate informations are necessary for
each index.

The dimension of the problem is defined by the n, which also defines the stepsize h of the
discretisation. The coordinates for the indices are chosen as the midpoints of the ¢’th interval
[%, %] After allocating and initialising the data for the index positions, it is imported into
H-LiB"™ by hlib_coord_import at line 18. Using the coordinate data, the cluster tree can
be created with hlib_ct_build bsp as it is done at line 20. The resulting tree is afterwards
printed to the file ct.ps in PostScript format. Finally, one can construct the block cluster tree

using hlib_bct_build.

int n = 1024;
double h=1.0/ ((double) n);
double ** vertices = (double**) malloc(n * sizeof (doublex));

for (int i = 0; i < nj; i++) {
vertices[i] = (doublex) malloc(sizeof (double));
vertices[i] [0] h * ((double) i) + (h / 2.0);

}
hlib_coord_t coo = hlib_coord_import(n, 1, vertices,

NULL, & info); CHECK_INFO;
hlib_cluster_t ct = hlib_ct_build_bsp(coord, & info); CHECK_INFO;
hlib_ct_print_ps(ct, "ct.ps", & info); CHECK_INFO;

hlib_blockcluster_t bct = hlib_bct_build(ct, ct, & info); CHECK_INFO;
hlib_bct_print_ps(bct, "bct.ps", & info); CHECK_INFO;

Matrix Construction

After the partitioning of the block indexset in the form of the block cluster tree is computed,
the actual H-matrix can be build. For this, adaptive cross approximation (or ACA, see Sec-
tion 5.2.2) is used in this example. ACA needs a matrix coefficient function, which computes

) 2.1 Integral Equation

the matrix entries a;; for given index pairs (4, j) € I x I. In our case, this function is given by
(2.1), which, after evaluating the integral, translates into the following code:

void coeff_fn (const int n, const int * rowidx,
const int m, const int * colidx,
double * matrix, void * arg) {
int rowi, colj;
double h = *x((doublex*) arg);

for (colj = 0; colj < m; colj++) {
const int idxl = colidx[colj]l;

for (rowi = 0; rowi < n; rowi++) {
const int idx0 = rowidx[rowil;
double value;

if (idx0 == idx1)
value = -1.5%hxh + hxh*log(h);
else {
const double dist
const double t1
const double t2

h * (fabs((double) (idx0O-idx1)) - 1.0);
dist+1.0%*h;
dist+2.0%*h;

value = (- 1.5%hxh + 0.5*t2*xt2*log(t2) - tilxtlxlog(tl));

if (fabs(dist) > 1e-8)
value += 0.5*dist*distxlog(dist);
}

matrix[(colj*n) + rowi] = -value;

11}

The arguments n, rowidx, m and colc define a submatrix of dimension nxm with row and
column indices stored in rowidx and colidx. The coefficients must be stored in column wise
ordering as in Fortran instead of row wise ordering as in C in the array matrix. The additional
argument arg points to user supplied data and contains the h stepwidth in our example (see
below).

Equipped with the coefficient function, the code for constructing an H-matrix looks like:

25

26

27

28

30

31

32

33

34

35

36

hlib_matrix_t A = NULL;
A = hlib_matrix_build_coeff(bct, coeff_fn, & h, HLIB_LRAPX_ACAPLUS,

le-4, 1, & info); CHECK_INFO;
hlib_matrix_print_ps(A, "A.ps", HLIB_MATIO_SVD, & info); CHECK_INFO;
long bytesize = hlib_matrix_bytesize(A, & info); CHECK_INFO;

printf(" compression ratio = %.2f%) (%.2f MB compared to %.2f MB)\n",
100.0 * ((double) bytesize) /
(((double) n) * ((double) n) * ((double) sizeof (double))),
((double) bytesize) / (1024.0 * 1024.0),

37

38

39

40

41

42

43

44

45

46

47

Introductory Examples 6

(((double) n) * ((double) n) * ((double) sizeof(double))) /
(1024.0 * 1024.0));

Here, ACA is chosen by the option HLIB_LRAPX_ACAPLUS, which defines the advanced and
preferable version of ACA. The coefficient function together with the stepsize h form the
second and third parameter to hlib matrix build_coeff, whereby h is the user supplied data
of arbitrary format.

Since the H-matrix usually does not represent the exact dense matrix but only an approx-
imation, the accuracy of this approximation is defined by the fifth parameter to the function
hlibmatrix build_coeff and is set to 10™% in this example. The accuracy applies per ma-
trix block, e.g. for each matrix block the approximation is performed with an error of 107%.
Unfortunately, the error for the whole matrix can not be controlled that easily.

Finally, the second last parameter indicates the symmetry of the matrix.

The matrix is afterwards printed in PostScript format to a file with h1ib matrix print_psin
line 29. For each matrix block of the H-matrix, a singular value decomposition is computed and
the singular values are printed in a logarithmic scale. This allows a control of the approximation
properties for the H-matrix, e.g. if the singular values decrease rapidly in a block, this part of
the matrix can be approximated well (see also Section 5.2.5.5).

To determine the efficiency of the H-matrix approximation in terms of memory usage, the
consumption of the matrix is calculated at line 31 and compared to a dense matrix at line 33.

One can also compare the quality of the approximation due to ACA and the coarse ap-
proximation by eps = 10~* with the best approximation of the given matrix with respect to
machine precision. For the best approximation, the singular value decomposition is the method
of choice. Unfortunately, it has a complexity of O (n3) and is therefore only practical for small
problem sizes. The machine precision is assumed to be 10716, which is roughly valid for most
systems and the double precision floating point format.

if (n < 2000) {

hlib_matrix_t B = NULL;
B = hlib_matrix_build_coeff(bct, coeff_fn, & h, HLIB_LRAPX_SVD,

le-16, 1, & info); CHECK_INFO;
hlib_matrix_print_ps(B, "A_svd.ps", HLIB_MATIO_SVD, & info);CHECK_INFO;
printf(" |A-"A|_F/|A|_F = %.4e\n" ,
hlib_matrix_norm_spectral_diff(A, B, & info)); CHECK_INFO;
hlib_matrix_free(B, & info); CHECK_INFO;

}

Using hlib matrix norm spectral diff, the relative difference with respect to the spectral
norm is computed and printed at line 44. Since it is no longer used, matrix B is released at
line 46 with hlib matrix free.

Instead of comparing A with another H-matrix, one could also compute the exact matrix
Aczact and determine ||A — Aezact||F (see 777). But remember, that this requires O (n2)
memory whereas the above procedure usually consumes O (nlogn) memory, albeit with a
large constant.

Before the equation system can be solved, the right hand side also has to be discretised
and represented by a corresponding vector. The above described ansatz leads to the following

48

49

50

51

52

53

54

55

56

57

58

60

61

62

7 2.1 Integral Equation

function for the right hand side b; = fol wi(x) f(x)dx, where f is chosen such that for the
solution u = 1 holds:

double rhs (const int i, const int n) {

const double a = ((double)i) / ((double) n);
const double b = ((double)i+1.0) / ((double) n);
double value = -1.5 * (b - a);

if (fabs(b)
if (fabs(a)
if (fabs(1.0 - b)
if (fabs(1.0 - a)

le-8) value += 0.5*b*b*xlog(b);
1e-8) value -= 0.5*axaxlog(a);
1e-8) value -= 0.5%(1.0-b)*(1.0-b)*1log(1.0-b);
le-8) value 0.5%(1.0-a)*(1.0-a)*1log(1.0-a);

vV V V V

+
I

return value;

¥

The actual vectors for b and the solution, stored in x, are constructed out of C arrays of length
n:

double * x_arr = (double *) malloc(n * sizeof (double));
double * b_arr (double *) malloc(n * sizeof (double));

hlib_vector_t x
hlib_vector_t b

hlib_vector_import_array(x_arr, n, & info);CHECK_INFO;
hlib_vector_import_array(b_arr, n, & info);CHECK_INFO;

for (i =0; 1 < n; i++) b_arr[i] = rhs(i, n);

Please note, that the access to the elements of the vector b at line 54 is done via the ar-
ray b_arr, which is faster then the equivilant call to the corresponding H-LiB™ function
hlib_vector_entry_set.

Solving the System
The solution x is computed using:

hlib_solve(A, x, b, NULL, & info); CHECK_INFO;

Since the solution is known, one can compute the error ||z — 1||2:

hlib_vector_t one = hlib_vector_copy(x, & info); CHECK_INFO;
hlib_vector_fill(one, 1.0, & info); CHECK_INFO;
hlib_vector_axpy(x, 1.0, one, & info); CHECK_INFO;
double error = hlib_vector_norm2(x, & info); CHECK_INFO;
printf(" error of solution = \%.4e\n", error);

Here, the linear algebra functions for vectors in H-Lif™ are used. The vector one contains the
exact solution.

The unpreconditioned iteration is usually inefficient. Therefore, matrix inversion is used to
speed up the process. Since only matrix-vector multiplications with the inverse are needed for
all implemented iteration techniques, LU factorisation is the method of choice.

To obtain a LU decomposition, the matrix A is copied into LU using hlib matrix_copy_eps.
Since only a preconditioner is needed, this copy is not exact but with a reduced blockwise

Introductory Examples 8

accuracy of 1072, The same accuracy is then used for the LU factorisation performed by
hlibmatrix_inv_1lu at line 64. This function overwrites the given matrix by its LU factors.
The quality of the resulting preconditioner is tested at line 68. There, the largest eigenvalue of
|I — A(LU)7!|| is computed. Solving the preconditioned system and computing the resulting
error is analogous to the unpreconditioned case.

63 hlib_matrix_t LU = hlib_matrix_copy_eps(A, le-2, & info); CHECK_INFO;
64 hlib_matrix_inv_lu(LU, 1le-2, & info); CHECK_INFO;
65

66 hlib_matrix_print_ps(LU, "LU.ps", HLIB_MATIO_SVD, & info); CHECK_INFO;

67

68 printf(" inversion error = \%.4e\n",

69 hlib_matrix_norm_inv_approx(A, LU, & info)); CHECK_INFO;
70

71 hlib_solve_precond(A, LU, x, b, NULL, & info); CHECK_INFO;
72

73 hlib_vector_axpy(x, 1.0, one, & info); CHECK_INFO;
74 error = hlib_vector_norm2(x, & info); CHECK_INFO;
75

76 printf(" error of solution = \J.4e\n", error);

77

78 hlib_matrix_free(LU, & info); CHECK_INFO;

In example/bemld.c, a preconditioner based on Gaussian elimination is computed in addi-
tion to the one due to LU factorisation presented here.

Finalisation
Finally, one has to release all resources allocated in the example and finish H-LiB":

79 hlib_vector_free(x, & info); CHECK_INFO;
80 hlib_vector_free(b, & info); CHECK_INFO;
81 hlib_vector_free(one, & info); CHECK_INFO;
82 hlib_matrix_free(A, & info); CHECK_INFO;
83 hlib_bct_free(bct, & info); CHECK_INFO;
84 hlib_ct_free(ct, & info); CHECK_INFO;
85

86 free(x_arr); free(b_arr);

87

88 for (i =0; 1 < n; i++) free(vertices[i]);

89 free(vertices);

90

91 hlib_done(& info); CHECK_INFO;

Please note the manual freeing of the C arrays x_arr and b_arr which are associated with the
vectors x and b. This has to be done by the user, since H-Li"~ will not release user allocated
memory.

© o N o 0 A~ W N R

9 2.2 Sparse Linear Equation System

2.2 Sparse Linear Equation System
In this example, a linear equation system
Sr=0b

with a sparse matrix S and a right hand side b is considered. Such a system usually occures
in the context of finite difference or finite element discretisations. The linear system itself is
provided in the form of a SAMG dataset with the basename “samg_matrix” (see Section 5.1.4.2
and Section 5.2.5.2). For this specific example, we assume that no geometrical information
about the position of the degrees of freedom is available.

The complete example with additional output statements and timing of each function is
available in examples/crsalg.c. A similar example with geometrical clustering can be
found in examples/crsgeom.c.

Initialisation and Data Import
Again, before any H-LiB" function can be used, the library has to be initialised. Afterwards,
the data from the files containing the matrix and the right-hand side is imported to H-Lit"~
using the functions hlib_load matrix and hlib_load_vector respectively. Here, the 1/O
functions are used, which automatically detect the format of the corresponding files. After the
import, the matrix is printed to the file S.ps in PostScript format (see Section 5.2.5.5). As
the option HLIB_MATIO PATTERN is supplied, only the pattern of non-zero matrix elements is
printed.

The vector for the unknown « is constructed via hlib matrix_col_vector such that it is
compatible for a right multiplication with the matrix S (see Section 5.2.3).

Evaluating the content of info is again done by the macro CHECK_INFO which is defined as
in the previous section.

#include "hlib-c.h"

int

main (int argc, char ** argv) {
hlib_matrix_t S;
hlib_vector_t b, x;
int n, info;
char mtx_file[] = "samg_matrix.amg";
char rhs_file[] = "samg_matrix.rhs";
hlib_init(& argc, & argv, & info); CHECK_INFO;
S = hlib_load_matrix(mtx_file, & info); CHECK_INFO;
hlib_matrix_print_ps(S, "S.ps", HLIB_MATIO_PATTERN, & info);CHECK_INFO;
b = hlib_load_vector(rhs_file, & info); CHECK_INFO;
x = hlib_matrix_col_vector(S, & info); CHECK_INFO;

Since the complete data for the equation system is now available, one can solve it via
hlib_solve and the default solver of H-LiB":

Introductory Examples 10

hlib_solve(S, x, b, NULL, & info); CHECK_INFO;

In this particular case, no object for obtaining information about the solution process was
supplied.

LU Factorisation for Preconditioning

As in the previous example, the standard iteration process is usually far to costly. Therefore, a
suitable preconditioner based on the H-matrix technique shall be constructed to speed up the
iteration. At first, this is accomplished by using LU factorisation in combination with nested
dissection (see Section 4.2.2 and Section 6.4).

But before the matrix can be factorised, it has to be converted to an H-matrix. For this,
one needs a cluster tree and a block cluster tree. Since no geometrical data is available in this
example, both objects are constructed algebraically with the functions hlib_ct_build alg nd
and hlib_bct_build:

hlib_cluster_t ct = hlib_ct_build_alg nd(S, & info); CHECK_INFO;
hlib_ct_print_ps(ct, "ct_nd.ps", & info); CHECK_INFO;

hlib_blockcluster_t bct = hlib_bct_build(ct, ct, & info); CHECK_INFO;
hlib_bct_print_ps(bct, "bct_nd.ps", & info); CHECK_INFO;

At line numbers 19 and 22, the two trees are printed to the files ct_nd.ps and bct_nd.ps,
respectively.

Now the sparse matrix S can be converted to an H-matrix, which then is factorised into LU
factors with a blockwise precision of 1074

Usually, when converting a sparse matrix, the precision parameter does not apply since
the admissibility condition ensures that admissible matrix blocks do not contain non-zero
matrix coefficients. Albeit, in some cases it is still possible that these matrix blocks are
non-empty and a low-rank approximation will be computed.

The matrix A is overwritten with its LU factorisation, or, to be precise, with the inverse of
its LU factorisation, although the inverse itself is not computed. Both matrices are printed
in PostScript format at the lines 24 and 28. In the case of the factorised matrix, the singular
value decomposition of the matrix is printed as chosen by the parameter HLIB_MATIO_SVD. The
size of the LU factors is determined by hlib matrix bytesize and printed at line 30.

hlib_matrix_t A = hlib_matrix_build_sparse(bct, S, & info); CHECK_INFO;
hlib_matrix_print_ps(A, "A_nd.ps", HLIB_MATIO_PATTERN,
& info); CHECK_INFO;

hlib_matrix_inv_lu(A, 1le-4, & info); CHECK_INFO;
hlib_matrix_print_ps(A, "LU_nd.ps", HLIB_MATIO_SVD, & info);CHECK_INFO;

printf(" size of LU factor = \%.2f MB\n",
((double) hlib_matrix_bytesize(A, & info)) / (1024.0 *1024.0));

The above equation system can now be solved with the inverse of the LU factorisation of A
as a preconditioner:

32

33

34

35

11 2.2 Sparse Linear Equation System

hlib_solve_precond(S, A, x, b, NULL, & info); CHECK_INFO;

Again, no object for returning informations about the solution process was supplied.

Finally, the locally created objects, e.g. the cluster tree, the block cluster tree and the

H-matrix can be deleted:

hlib_matrix_free(A, & info); CHECK_INFO;
hlib_bct_free(bct, & info); CHECK_INFO;
hlib_ct_free(ct, & info); CHECK_INFO;

Matrix Inversion for Preconditioning

An alternative procedure for the fast solution of the above system is by using matrix inversion
Again, before the matrix can be inverted, a cluster tree and a block cluster tree have to

be constructed. Nested dissection, as it was used for LU decomposition, is not a suitable

technique for matrix inversion (see Section 4.2.2). Hence, standard algebraic partitioning

36

38

39

40

41

43

44

45

46

a7

functions employing bisection techniques are used with the function hlib_ct_build alg:
hlib_cluster_t ct = hlib_ct_build_alg(S, & info); CHECK_INFO;
hlib_ct_print_ps(ct, "ct.ps", & info); CHECK_INFO;

hlib_blockcluster_t bct = hlib_bct_build(ct, ct, & info); CHECK_INFO;
hlib_bct_print_ps(bct, "bct.ps", & info); CHECK_INFO;

Converting the sparse matrix into an H-matrix is done by the same function as before. Only

the matrix inversion is now performed by hlib matrix_inv:
hlib_matrix_t A = hlib_matrix_build_sparse(bct, S, & info); CHECK_INFO;
hlib_matrix_print_ps(A, "A.ps", HLIB_MATIO_PATTERN, & info);CHECK_INFO;

hlib_matrix_inv(A, 1le-4, & info); CHECK_INFO;
hlib_matrix_print_ps(A, "I.ps", HLIB_MATIO_SVD, & info); CHECK_INFO;

printf(" size of Inverse = \%.2f MB\n",
((double) hlib_matrix_bytesize(A, & info)) / (1024.0 *1024.0));

Again, A is overwritten by its inverse matrix. Both matrices are also printed in PostScript
format, whereby for the inverse matrix the singular value decomposition of each matrix block

is written.
The linear equation system is then solved as in the previous case:

hlib_solve_precond(S, A, x, b, NULL, & info); CHECK_INFO;

Again, all locally created objects are released when they are no longer needed:

hlib_matrix_free(A, & info); CHECK_INFO;

hlib_bct_free(bct, & info); CHECK_INFO;

hlib_ct_free(ct, & info); CHECK_INFO;
Finalisation

Finally, all global objects which where created at the beginning should be freed. Furthermore,

H-LiB™ is finished.

53

54

55

56

Introductory Examples

12

hlib_vector_free(x, & info);
hlib_vector_free(b, & info);
hlib_matrix_free(S, & info);

hlib_done(& info);

CHECK_INFO;
CHECK_INFO;
CHECK_INFO;

CHECK_INFO;

3 General Functions and Data types

3.1 Initialisation and Finalisation

Before using any functions, H-LiB'~ has to be initialised to set up internal data. In the same
way, when H-Li8"° is no longer needed, it should be finished. Both is done by the following
functions:

Syntax

void hlib_init (int * argc, char **x argv, int * info);
void hlib_done (int * info);

Arguments
argc
Number of command line arguments.
argv
array of strings containing the command line arguments.
info
to return error status

The function hlib_init expects the command line parameters argc and argv for the pro-
gram as arguments and initialises H-Li" . The values of argc and argv might be modified by
hlib_init. Accordingly, hlib_done finishes H-LiB"°. The meaning of the argument info will
be discussed in the next section.

The license management is also performed by hlib_init and hlib_done, e.g. a license is
acquired during initialisation and released during finalisation. Without this, most functions
in H-LiB"™ will not work.

Normally, H-LiB" does not produce any output at the console. This behaviour can be
changed with

Syntax
void hlib_set_verbosity (const unsigned int verb);

Here, larger values correspond to more output, e.g. error messages, timing information, algo-
rithmic details.

3.2 Error Handling

Almost all functions in the C interface of H-LiB"~ expect a pointer to an integer, usually named
info, which is used to indicate the status of the function, i.e. whether an error occurred and

13

General Functions and Data types 14

what kind of error this was. If info points to NULL, it will not be accessed and no information
about errors will be delivered to the user.

Alternatively, the user can specify an error function which will be called. See below on how
to use this feature.

The following lists contain all error codes of H-LiB":

General Errors

HLIB_NO_ERROR no error occured

HLIB_ERR_INIT not initialised

HLIB_ERR_LICENSE invalid license

HLIB_ERR_NOT_IMPL functionality not implemented
HLIB_ERR_CONSISTENCY general consistency error
HLIB_ERR_COMM communication error
HLIB_ERR_PERM permission denied

Numerical Errors

HLIB_ERR_REAL data is real valued
HLIB_ERR_NREAL data is not real valued
HLIB_ERR_COMPLEX data is complex valued
HLIB_ERR_NCOMPLEX data is not complex valued
HLIB_ERR_DIV_ZERO division by zero
HLIB_ERR_NEG_SQRT sqrt of negative number
HLIB_ERR_INF infinity occured

HLIB_ERR_NAN not-a-number occured
HLIB_ERR_NCONVERGED iteration did not converge
Memory, Datasize and Argument Errors

HLIB_ERR_ARG error with argument
HLIB_ERR_MEM insufficient memory available
HLIB_ERR_NULL unexpected null pointer encountered
HLIB_ERR_SIZE size of data incorrect
HLIB_ERR_DIM invalid or incompatible dimension
HLIB_ERR_ARR_BOUND out-of-bound error in array
HLIB_ERR DIAG_ENTRY entry is not on diagonal
Coordinate Errors

HLIB_ERR_COORD_INVALID invalid coordinates

Cluster Tree Errors

HLIB_ERR_CT_INVALID invalid cluster tree
HLIB_ERR_CT_TYPE wrong type of cluster tree
HLIB_ERR_CT_STRUCT invalid structure of cluster tree
HLIB_ERR_CT_INCOMP given cluster trees are incompatible
HLIB_ERR_CT_SPARSE missing sparse matrix for given cluster tree
Block Cluster Tree Errors

HLIB_ERR_BCT_INVALID invalid block cluster tree
HLIB_ERR_BCT_STRUCT invalid block cluster tree structure
Vector Errors

HLIB_ERR_VEC_INVALID invalid vector

HLIB_ERR_VEC_TYPE wrong vector type
HLIB_ERR_VEC_STRUCT invalid vector structure
HLIB_ERR_VEC_SIZE invalid size of vector
HLIB_ERR_VEC_INCOMP vector with incompatible dimension
HLIB_ERR_VEC_NSCALAR vector is not a scalar vector
Matrix Errors

15

3.2 Error Handling

HLIB_ERR_MAT_TYPE
HLIB_ERR_MAT_STRUCT
HLIB_ERR_MAT_SIZE
HLIB_ERR_MAT_SINGULAR
HLIB_ERR_MAT_NSPARSE
HLIB_ERR_MAT_NDENSE
HLIB_ERR_MAT_NHMAT
HLIB_ERR_MAT_INCOMP_TYPE
HLIB_ERR_MAT_INCOMP_CT
HLIB_ERR_MAT_INVALID
HLIB_ERR_MAT_NSYM,
HLIB_ERR_MAT_NHERM,
HLIB_ERR_MAT_NPOSDEF,

invalid matrix type

invalid structure of matrix
invalid size of matrix

singular matrix detected

matrix not a sparse matrix
matrix not a dense matrix
matrix not an H-matrix
matrices with incompatible type
matrices with incompatible cluster tree
invalid matrix

matrix not symmetric

matrix not hermitian

matrix not positiv definite

File Format Errors

HLIB_ERR_FMT_UNKNOWN
HLIB_ERR_FMT_HFORMAT
HLIB_ERR_FMT_SAMG
HLIB_ERR_FMT_MATLAB
HLIB_ERR_FMT_PLTMG
HLIB_ERR_FMT_HB
HLIB_ERR_FMT_MTX
HLIB_ERR_FMT_PLY

detected unkown file format

error while parsing HLIBpro format

error while parsing SAMG format

error while parsing Matlab format

error while parsing PLTMG format

error while parsing Harwell Boeing format
error while parsing MatrixMarket format
error while parsing Ply format

HLIB_ERR_GRID_FORMAT
HLIB_ERR_GRID_DATA

invalid format of grid file
invalid data in grid file

File 1/0O Errors

HLIB_ERR_FOPEN
HLIB_ERR_FCLOSE
HLIB_ERR_FWRITE
HLIB_ERR_FREAD
HLIB_ERR_FSEEK
HLIB_ERR_FNEXISTS

could not open file
could not close file
could not write to file
could not read from file
could not seek in file
file does not exists

Bytestream Errors

HLIB_ERR_BS_SIZE
HLIB_ERR_BS_WRITE

size of bytestream too small
error while writing to bytestream

HLIB_ERR_BS_READ error while reading from bytestream
HLIB_ERR BS_TYPE type error in bytestream
HLIB_ERR_BS_DATA general data error in bytestream
Library Support Errors

HLIB_ERR_NOZLIB no zlib support compiled in
HLIB_ERR_ZLIB_UNZIP error during zlib uncompression
HLIB_ERR_NOMETIS no METIS support compiled in
HLIB_ERR_NOSCOTCH no Scotch support compiled in
HLIB_ERR_SCOTCH error in call to Scotch function
HLIB_ERR_NOCHACO no Chaco support compiled in
HLIB_ERR_NOFFTW3 no FFTW3 support compiled in

Data Errors

HLIB_ERR_SOLVER_INVALID
HLIB_ERR_LRAPX_INVALID
HLIB_ERR_GRID_INVALID
HLIB_ERR_FNSPACE_INVALID

invalid solver

invalid low-rank approximation type
invalid grid

invalid function space

General Functions and Data types 16

To get detailed information about the error, e.g. where it occurred inside H-LiB", you can
use the following function:

Syntax
void hlib_error_desc (char * desc, const unsigned int size);
Arguments

desc

Character array to copy description to
size

Size of character array desc in bytes.

which returns a corresponding string.

By default, only the error codes will be returned by functions in H-Li". To also produce
a corresponding message at the current terminal, the verbosity level has to be increased to at
least 2.

Instead of supplying an integer, the user can also define an error function of type

typedef void * hlib_errorfn_t (const int errcode,
const char * errmsg);

The arguments errcode contains the corresponding code of the error as defined above, whereas
errmsg is a string with the complete error message. The user supplied error function is defined
by

Syntax

void hlib_set_error_fn (const hlib_errorfn_t errorfn);

The user can also define an error function and supply an info pointer to each function.

3.3 Data types

Most data types in H-LiB"™ are defined as handles, implemented by pointers, to the actual
data. This applies to cluster trees (Section 4.2), block cluster trees (Section 4.3), matrices
(Section 5.2). Although they are pointers, a user must not use standard C functions like
malloc or free to allocate or deallocate the associated memory (see also Section 3.4).

H-LiB™ supports single and double precision in the H-arithmetics, albeit not both at the
same time. The choice between these has to be done during configuration (see [Kri, Section
2]). All functions in the C interface requiring real valued data are defined using

typedef double hlib_real_t;

as the corresponding data type. Exceptions to this rule are for instance doordinate informations
which are always supplied by double precision data.
Furthermore, since H-LiB™ is also capable of handling complex arithmetic, a special data

type

typedef struct { hlib_real_t re, im; } hlib_complex_t;

is introduced to allow the exchange of information between an application and H-LiB . Here,
re represents the real part of a complex number whereas im corresponds to the imaginary part.

17 3.4 Reference Counting

3.4 Reference Counting

Most objects in H-LiB™, e.g. cluster trees, block cluster trees and matrices, might be referenced
by more than one variable. As an example, a block cluster tree always stores the defining row
and column cluster trees (see Section 4.3).

To efficiently handle these references, inside H-LiB'~ reference counting is used, i.e. each
object stores the number of references to it. Due to this, a copy operation is done by just
increasing this reference counter without any further overhead. This also means, that you
must use the functions provided by H-LiB™ to free objects.

To repeat it again: never directly release an object, e.g. via free(void *), since it might
be shared by other objects leading to an undefined behaviour of the program.

The usage of the H-LiB *-routines also has the advantage, that some further checks are
performed to test whether an object was already released or not. This means that instead of
an undefined program behaviour an error is generated if you want to access an object previously
freed.

3.5 Parallel Computing

H-LiB"™ supports parallel computing on shared memory systems with multiple threads'. For
this, H-LiB" creates a pool of threads during initialisation which are later used for concurrent
tasks, e.g. matrix multiplication or inversion. The user can define the number of threads to
use by setting the environment variable HLIB_NTHREADS or by the function

Syntax
void hlib_set_nthreads (const unsigned int p);
Arguments

p
Number of threads to use during H-matrix arithmetics.

The value supplied by hlib_set nthreads overrides the value defined by HLIB_NTHREADS.

!Distributed memory computations via MPI are not yet available for the C interface.

General Functions and Data types

18

4 Coordinates and Cluster Trees

‘H-matrices are based on two basic building blocks: cluster trees and block cluster trees. A
cluster tree defines a hierarchical decomposition of an indexset, whereas a block cluster tree
represents a decomposition of a block indexset. Both objects have to be created before building
an H-matrix.

Although not necessary, the typical way to construct cluster trees and block cluster trees
involves geometrical information about indices which are stored in coordinates.

4.1 Coordinates

Most applications using H-matrices will have geometrical data associated with unknowns. This
data forms the basis for the clustering routines described in Section 4.2. To let H-LiB" know
about the coordinates, they have to be imported into an internal data type:

typedef struct hlib_coord_s * hlib_coord_t;

The fundamental import function is hlib_coord_import :

Syntax

hlib_coord_t
hlib_coord_import (const unsigned int n,
const unsigned int dim,

double *x* coord,
const double * period,
int * info);
Arguments
n

Number of coordinates.
dim
Spatial dimension each coordinate.
coord
Array of size n pointers to coordinates of dimension dim. Coordinate i, e.g. coord[i] has to
correspond to the 7’th unknown.
period
Vector of dimension dim defining the periodicity of the coordinates, or NULL.

In the following example, four coordinates for a 2-dimensional problem with indices at the
corners of the unit square are imported to H-Li5" :

double pos[4][2] ={ {0, 02}, {1,02}, {1,132} {0, 11} 3

double * coord[4] { pos[0], pos[1], pos[2], pos[3] };
hlib_coord_t hcoord NULL;

hcoord = hlib_coord_import(4, 2, coord, NULL, & info);

19

Coordinates and Cluster Trees 20

The data in the coordinate array is not copied by H-LiB"~. Therefore, any changes to this
array will also affect the behaviour of the corresponding H-LiB"~ functions.

One can also specify a periodicity for the coordinates. By supplying a non-NULL array
period, the coordinates are assumed to repeat every period[i] step in the i’th spatial direction.
If period[i] = 0, no periodicity is given. The above example can be modified to have z-
periodicity by

double period[2] = { 1, 0 };

hcoord = hlib_coord_import(4, 2, coord, & period, & info);

To access a specific coordinate in a H-Lil" coordinate variable the following functions is
available:

Syntax

double * hlib_coord_get (const hlib_coord_t coord,
const unsigned int 1,
int * info);

Furthermore, the two functions below return the number of coordinates and their spatial
dimension

Syntax

unsigned int hlib_coord_size (const hlib_coord_t coord, int * info);
unsigned int hlib_coord_dim (const hlib_coord_t coord, int * info);

4.1.1 Coordinate Management Functions

Releasing coordinate variables is done via hlib_coord free.

Syntax
void hlib_coord_free (hlib_coord_t coord, int * info);

If the coordinate data was provided by the user, these arrays are not freed from memory.
Only if H-LiB" has created the coordinates, e.g. via I/O (see below), memory deallocation is
performed.

The memory consumption of a coordinate field is obtained by

Syntax
unsigned long hlib_coord_bytesize (const hlib_coord_t coord, int * info);

21 4.2 Cluster Trees

4.1.2 Coordinate 1/0

Coordinates can be read and written in the H-LiB" -format by using

Syntax

hlib_coord_t

hlib_hformat_load_coord (const char * filename,
int * info);

void

hlib_hformat_save_coord (const hlib_coord_t coord,
const char * filename,
int * info);

Furthermore, coordinates stored in the SAMG format can be imported to H-LiB™. The
corresponding function is

Syntax

hlib_coord_t hlib_samg_load_coord (const char * filename, int * info);

Also, a general function is provided which tries to autodetect the file format used to hold
the coordinates:

Syntax
hlib_coord_t hlib_load_coord (const char * filename, int * info);

4.2 Cluster Trees

Inside H-LiB"™ cluster trees are represented by objects of type

typedef struct hlib_cluster_s * hlib_cluster_t;

and can be created in various ways according to the type of data supplied to H-LiB".

4.2.1 Cluster Tree Management Functions

To safely free all resources coupled with a cluster tree the following function can be used.

Syntax
void hlib_ct_free (hlib_cluster_t ct, int * info);

The object ct and all coupled resources are freed from memory unless the cluster tree is used
by another object.

Of interest is also the amount of memory used by the cluster tree. This information can be
obtained by the function

Syntax

unsigned long hlib_ct_bytesize (const hlib_cluster_t ct, int * info);

This function returns the size of the memory footprint in bytes.

Coordinates and Cluster Trees 22

4.2.2 Cluster Tree Construction

Two different methods are available to build a cluster tree. The first algorithm is based on
geometrical data associated with each index, e.g. the position of the unknown, and uses binary
space partitioning to decompose the indexset. If no geometry information is available, the
connectivity information between indices defined by a sparse matrix can be used in a purely
algebraic method. Furthermore, both algorithms can be combined with nested dissection,
which introduces another level of separation between neighbouring indexsets and is especially
suited for LU decomposition methods (see Section 6.4).

Functions for Geometrical Clustering

Geometrical clustering is based on binary space partitioning which is either performed with
respect to the cardinality or the geometrical size of the resulting sub-clusters. The detection of
a separating interface between two neighbouring indexsets by the nested dissection technique
is accomplished by the connectivity information defined by a sparse matrix and therefore does
not need geometrical information.

For the geometrical clustering, only the positions of the indices are needed, e.g. no grid or
other management data.

The following two functions perform the geometrical clustering with or without nested dis-
section:

Syntax

hlib_cluster_t hlib_ct_build_bsp (const hlib_coord_t coord,
int * info);

hlib_cluster_t hlib_ct_build_bsp_nd (const hlib_coord_t coord,
const hlib_matrix_t S,
int * info);

Arguments

coord
Coordinates for each index in the indexset.

Sparse matrix defining connectivity of the indices.

The type of binary space partitioning can be changed by

Syntax
void hlib_set_bsp_type (const hlib_bsp_t bsp);
Arguments
bsp
Defines the strategy used by the binary space partitioning algorithm and can be one of:
HLIB_BSP_AUTO Automatically decide suitable strategy. This is the default.
HLIB_.BSP_GEOM Partition such that sub clusters have an equal geometrical size.
HLIB.BSP_REGULAR Use geometrical partitioning with periodically changed splitting axis
instead of longest axis.
HLIB_.BSP_CARD Partition such that sub clusters have an (almost) equally sized in-
dexset.

23 4.2 Cluster Trees

Consider the following example of a 1d problem over the interval [0, 1] with 8 vertices:

1 2 3 4 5 6

]]]]
T T T T

]
T

0 7
0 1
The cluster tree for this example is now build using standard binary space partitioning. For
this, the coordinates of the indices have to be defined, before the corresponding function is

called:

double pos[81[1] ={ {o./7. ¥, {1./7. }, {2./7. }, {3./7. },
IRV A N PR SNCRY I P SRV I PEE VA
double * coord[8] = { pos[0], pos[1], pos[2], posl[3],

pos[4], pos[5], pos[6], pos[7] };
hlib_coord_import(8, 1, coord, NULL, & info);
hlib_ct_build_bsp(hcoord, & info);

hlib_coord_t hcoord
hlib_cluster_t ctl

The resulting tree would then look as follows:

(0,1,2,3,4,5,6,7)
[

W 0L 0D OO O

Now the cluster tree shall be computed with binary space partitioning and nested dissection.
Here, beside the coordinates, the connectivity of the indices is also needed. For this, we assume
that geometrically neighboured indices are also algebraically connected, which would result in
the following sparsity pattern of a corresponding matrix:

*

For the definition of such a matrix please refer to Section 5.2.1. The corresponding source for

this example is:

double post8l[1l ={ {o./7. }, {1./7. ¥, {2./7. %, {3./7. },
{a./7. 3}, {56./7. 3, {e6./7. }, {7./7. } };
double * coord[8] = { pos[0], pos[1], pos[2], pos[3],

pos[4], pos[5], pos[6], posl7] };
hlib_coord_import(8, 1, coord, NULL, & info);

hlib_coord_t hcoord

hlib_matrix_t S = /* see chapters below */;
hlib_cluster_t ct2 hlib_ct_build_bsp_nd(coord, S, & info);

Coordinates and Cluster Trees 24

Due to the interface nodes chosen by the nested dissection part of the algorithm, the result-
ing cluster tree has (mostly) a ternary structure. In the following tree, the coloured nodes
correspond to the interface vertices.

(0,1,2,3,4,5,6,7)
I

© ©® @ @ ©® @67

Functions for Algebraic Clustering

If no geometrical data is available, an algebraic algorithm can be used, which is based only on
the connectivity described by a sparse matrix as it results from finite difference or finite element
methods. Since this does not always reflect the real data dependency in a grid, the resulting
clustering usually leads to a less efficient matrix arithmetic than the geometrical approach. As
in the previous case, the algebraic method can be combined with nested dissection.

Syntax
hlib_cluster_t hlib_ct_build_alg (const hlib_matrix_t S, int * info);
hlib_cluster_t hlib_ct_build_alg_nd (const hlib_matrix_t S, int * info);
Arguments

S
Sparse matrix defining connectivity between indices.

Due to the simple structure of the previous examples the resulting cluster trees using alge-
braic clustering would be identical.

Userdefined Partitions

In some applications some particular connection exists between special indices, e.g. in coupled
systems or when adding special conditions to a matrix, and these indices have to be treated
separately. Since H-LiB" is in general not capable of detecting this kind of grouping between
indices, the user is able to give this information when building cluster trees.

For this, the user has to sort the corresponding indices into separate groups by building an
array holding the indices for the groups for each index. This array is afterwards supplied to
one of the cluster tree functions

25 4.2 Cluster Trees

Syntax
hlib_cluster_t
hlib_ct_build_bsp_part (const hlib_coord_t coord,
const unsigned int * partition,
int * info);

hlib_cluster_t
hlib_ct_build_alg_part (const hlib_matrix_t S,
const unsigned int * partition,
int * info);
Arguments

coord, S
Coordinates or sparse matrix used for standard geometrical or algebraical clustering.
partition
Array of length n, where n corresponds to the number of coordinates in coord or the dimension
of the matrix S, with partition[i] holding the group of index i. The groups have to be
numbered consecutively starting from 0.

Both functions first sort the indices according to the group information stored in partition
and will create the first level of the cluster tree by constructing a son node for each group.
Afterwards, the indices are further clustered by the standard clustering algorithms, e.g. BSP
or algebraically.

As an example, for the index set I = {0,...,7} with corresponding coordinates i/7 for
index ¢ € I, the indices shall first be separated into odd and even indices before standard BSP
clustering is applied.

double pos [8] [1] ={{o/7. ¥ {r./7. 3, {2/7. % {3./7. },
{4./7. ¥y, {56./7. 3, {6./7. }, {7./7. } };
double * coord[8] = { pos[0], pos[1l], pos[2], posl[3],

pos[4], pos[5], pos[6], posl[7] };
hlib_coord_import(8, 1, coord, NULL, & info);

hlib_coord_t hcoord

{0,1,0,1,0,1,0, 1}
hlib_ct_build_bsp_part(coord, partition,
& info);

unsigned int partition[8]
hlib_cluster_t ct

The resulting cluster tree ct then is:

(0,1,2,3,4,5,6,7)
[

0O ©0 0 O

4.2.3 Cluster Tree 1/0

The tree structure of cluster trees can be exported in the PostScript format to a file by

Coordinates and Cluster Trees 26

Syntax
void hlib_ct_print_ps (const hlib_cluster_t ct,
const char * filename,
int * info);
Arguments
ct

Cluster tree to be printed.

filename
Name of the PostScript file to which ct shall be printed to.

4.3 Block Cluster Trees

The next building block for H-matrices are block cluster trees which represent a hierarchical
partitioning of the block indexset over which matrices are defined. They are constructed by
multiplying two cluster trees and choosing admissible nodes, e.g. nodes where the associated
block indexset allows a low-rank approximation in the matrix.

Block cluster trees are represented in H-LiB™ by objects of type

typedef hlib_blockcluster_s * hlib_blockcluster_t;

4.3.1 Block Cluster Construction

Due to the definition of a block cluster tree two cluster trees are needed for the construction.
The actual building is performed by the routine

Syntax

hlib_blockcluster_t hlib_bct_build (const hlib_cluster_t rowct,
const hlib_cluster_t colct,
int * info);

Arguments

rowct
Cluster tree representing the row indexset of the block cluster tree.

colct
Cluster tree representing the column indexset of the block cluster tree.

The cluster trees given to hlib_bct_build can be identical.

Usually, the admissibility condition responsible for detecting admissible nodes in the block
cluster tree is chosen automatically based on the given cluster trees. The strategy can be
changed by the user with the function

27 4.3 Block Cluster Trees

Syntax
void hlib_set_admissibility (const hlib_adm_t adm, const hlib_real_t eta);

Arguments

adm
Define admissibility condition to be either:
HLIB_.ADM_AUTO automatic choice,
HLIB_.ADM_STD_MIN standard admissibility with minimal cluster diameter,
HLIB_.ADM_STD_MAX standard admissibility with maximal cluster diameter or
HLIB_.ADM_WEAK weak admissibility.
eta

Scaling parameter for the distance between clusters in the admissibility condition.

Attention

Since changes to the admissibility condition can lead to a failure of the H-matrix approx-
imation or to a reduced computational efficiency of the H-matrix arithmetic, only change
the default behaviour if you really know what you are doing.

To access the row and column cluster trees of a given block cluster tree, one can use the
functions

Syntax

hlib_cluster_t hlib_bct_row_ct (const hlib_blockcluster_t bct, int * info);
hlib_cluster_t hlib_bct_column_ct (const hlib_blockcluster_t bct, int * info);

which will return a copy of the corresponding cluster tree objects.

4.3.2 Block Cluster Tree Management Functions

A block cluster tree object is released by the function

Syntax
void hlib_bct_free (hlib_blockcluster_t bct, int * info);

which frees all resources associated with it. This includes the row and column cluster trees if
no other object uses them.
The memory footprint of an object of type block cluster tree can be determined by

Syntax
unsigned long hlib_bct_bytesize (const hlib_blockcluster_t bct, int * info);

which returns the size in bytes.

4.3.3 Block Cluster Tree 1/0

The partitioning of the block index set over which a block cluster tree lives can be written in
PostScript format by

Coordinates and Cluster Trees

28

Syntax
void hlib_bct_print_ps (const hlib_blockcluster_t bct,
const char * filename,
int * info);
Arguments
bct

Block cluster tree to be printed.

filename
Name of the PostScript file bct will be printed to.

5 Vectors and Matrices

5.1 Vectors

Instead of representing vectors by standard C arrays, H-LiB'® uses a special data type

typedef struct hlib_vector_s * hlib_vector_t;

One reason for this is the usage of special vector types in parallel environments. Furthermore,
this data type gives H-LiB"* additional information to check the correctness of vectors, e.g. the
size.

5.1.1 Creating and Accessing Vectors

Although vectors in H-LiB"™° are not equal to arrays, they can be defined by such data:

Syntax
hlib_vector_t hlib_vector_import_array (const hlib_real_t * arr,
const unsigned int size,
int * info);
hlib_vector_t hlib_vector_import_carray (const hlib_complex_t * arr,
const unsigned int size,
int * info);
Arguments
arr

Array of size size.
size
Size of the array.

The arrays are directly used by the vector data type, i.e. changing the content of the arrays
also changes the content of the vector. This gives the possibility to efficiently access the vector
coefficients as it is shown in the following example:

unsigned int n = 1024;
hlib_real_t * arr (hlib_real_t *) malloc(sizeof(hlib_real_t) * n);
hlib_vector_t x hlib_vector_import_array(arr, n, & info);

for (i =0; i < n; i++)
arr[i] = i+1;

The coefficient ¢ of the vector x would also equal 7 4+ 1 as does the array element arr[i+1].
Such kind of vectors, e.g. scalar vectors, can also be created directly by H-LiB":

29

Vectors and Matrices 30

Syntax

hlib_vector_t hlib_vector_alloc_scalar (const unsigned int size, int * info);
hlib_vector_t hlib_vector_alloc_cscalar (const unsigned int size, int * info)
Arguments
size
Size of the scalar vector.

Since no external C array is available to access the elements of the vectors, this is accom-
plished by H-LiB" functions. To get a specific element of a vector, the following two functions
can be used:

Syntax
hlib_real_t hlib_vector_entry_get (const hlib_vector_t x,
const unsigned int i,
int * info);
hlib_complex_t hlib_vector_centry_get (const hlib_vector_t x,
const unsigned int i,
int * info);
Arguments
X
Vector to get element from.

Position of the element in the vector.

Similarly, the setting of a vector element is defined:

Syntax
void hlib_vector_entry_set (const hlib_vector_t x,
unsigned int i,
const hlib_real_t f,
int * info);
void hlib_vector_centry_set (const hlib_vector_t X,
unsigned int i,
const hlib_complex_t £,
int * info);
Arguments
X

Vector to modify element in.
Position of the element to modify.

New value of the i’th element in x.

Two more functions are available to change a complete vector. First, all elements can be set
to a given constant value with

31 5.1 Vectors

Syntax

void hlib_vector_fill (hlib_vector_t x, const hlib_real_t f, int * info);
void hlib_vector_cfill (hlib_vector_t x, const hlib_complex_t f, int * info);

Arguments

x
Vector to be filled with constant value.

Value to be assigned to all elements of the vector.

Furthermore, the vector can be initialised to random values with

Syntax
void hlib_vector_fill_rand (hlib_vector_t x, int * info);

5.1.2 Vector Management Functions

A copy of a vector is constructed by using the function

Syntax

hlib_vector_t hlib_vector_copy (const hlib_vector_t x, int * info);

which returns a new vector object with it’s own data. If the original vector v corresponds to
a C array, the newly created vector does not represent this array but uses a new array.

The size of a vector can be determined by the function

Syntax
unsigned int hlib_vector_size (const hlib_vector_t x, int * info);

Similarly, the memory size of a vector in bytes is obtained by

Syntax
unsigned long hlib_vector_bytesize (const hlib_vector_t x, int * info);

Finally, vectors are released by using

Syntax
void hlib_vector_free (hlib_vector_t x, int * info);

which frees all local memory of a vector. This does not apply to associated C arrays, e.g. if the
vector was constructed with hlib_vector_import_array. There, the array has to be deleted
by the user.

Vectors and Matrices 32

5.1.3 Algebraic Vector Functions

A complete set of function for standard algebraic vector operations is available in H-Li".
In contrast to the vector copy function above, the following routine does not create a new

vector but copies the content of x to the vector y. For this, both vectors have to be of the
same type.

Syntax
void hlib_vector_assign (hlib_vector_t y, const hlib_vector_t x, int * info);

Arguments

y
Destination vector of the assignment.

Source vector of the assignment.

Scaling a vector, e.g. the multiplication of each element with a constant is performed by

Syntax

void hlib_vector_scale (hlib_vector_t x, const hlib_real_t f, int * info);
void hlib_vector_cscale (hlib_vector_t x, const hlib_complex_t f, int * info);

Summing up to vectors is implemented in the more general form
Yy:=y+oar

with vectors x and y and the constant «. This operation is performed by the functions

Syntax

void hlib_vector_axpy (hlib_vector_t v,
const hlib_real_t alpha,
const hlib_vector_t x,
int * info);

void hlib_vector_caxpy (hlib_vector_t v,
const hlib_complex_t alpha,
const hlib_vector_t x,
int * info);

Real and complex valued dot-products can be computed with

Syntax

hlib_complex_t hlib_vector_dot (const hlib_vector_t x,
const hlib_vector_t vy,
int * info);

And the euclidean and the infinity norm of a vector are returned by the functions

Syntax

hlib_real_t hlib_vector_norm2 (const hlib_vector_t x, int * info);
hlib_real_t hlib_vector_norm_inf (const hlib_vector_t x, int * info);

33 5.1 Vectors

If support for FFTW3 was compiled in H-LiB"", forward and backward FFT for vectors is
available with the functions

Syntax

void hlib_vector_fft (const hlib_vector_t v, int * info);
void hlib_vector_ifft (const hlib_vector_t v, int * info);

5.1.4 Vector I/O

In this section, functions for reading and saving vectors from/to files are discussed. Beside it’s
own format, H-LiB"® supports several other vector formats.

5.1.4.1 H-LiB™

Vectors can be saved and reloaded in a special H-LiB™ format. There, the specific type of
vector, e.g. whether it is distributed among processors, is correctly handled by H-LiB".

Syntax
hlib_vector_t hlib_hformat_load_vector (const char * filename,
int * info);
void hlib_hformat_save_vector (const hlib_vector_t v,
const char * filename,
int * info);
Arguments
v
Vector to be saved in H-Li"™ format.
filename
Name of the file containing a vector or where the vector shall be written to.

For storing vectors, H-Li"~ uses a binary format but takes care of different computer archi-
tectures, e.g. little and big endianess.

5.1.4.2 SAMG

Vectors stored in the SAMG format (see [Fra]) are also supported by H-LiB™. Since the
SAMG format distributes the description of data to several files, beside the actual file, the
corresponding format file also has to be present in the same directory and with the same
basename, e.g. without the suffix, as the vector file. Otherwise, the I/O will fail.

To read and store vectors in the SAMG format, the following functions are available:

Syntax
hlib_vector_t hlib_samg_load_vector (const char * filename, int * info);

void hlib_samg_save_vector (const hlib_vector_t X,
const char * filename,
int * info);

Due to the restrictions of the SAMG format, the vectors have to be of a scalar type.

http://www.fftw.org

Vectors and Matrices 34

5.1.4.3 Matlab

H-LiB"™ supports the Matlab V7 file format (see [Mat]) for dense and sparse vectors. The
corresponding vectors can be part of a Matlab structure. All other Matlab data types, e.g.
cells, are not supported. If zlib support was enabled during H-LiB" compilation (see [Kri,
Section 2]), compressed fields in Matlab files are also supported.

All types of vectors will be converted to scalar vector types upon reading, e.g. sparse vectors
become dense. Conversely, only scalar vectors can be saved in the Matlab format.

Since a vector in the Matlab file format is associated with a name, this name has to be
supplied to the corresponding I/O functions.

Syntax
hlib_vector_t hlib_matlab_load_vector (const char * filename,
const char * vecname,
int * info);
void hlib_matlab_save_vector (const hlib_vector_t v,
const char * filename,
const char * vecname,
int * info);
Arguments
v

Scalar vector to be saved in Matlab format.
filename
Name of Matlab file containing the vector.

vecname
Name of the vector in the Matlab file.

5.2 Matrices

All matrices in H-LiB" are represented by the type

typedef struct hlib_matrix_s * hlib_matrix_t;

No difference is made between special matrix types, e.g. sparse matrices, dense matrices or
H-matrices. Of course, inside H-LiB"* this distinction is done and the appropriate or expected
type is checked in each function.

To use matrices in H-Li"~ three different ways are possible: import a matrix given by some
data structures, build a matrix or load a matrix from a file. The first method usually applies to
sparse and dense matrices whereas H-matrices are normally build by H-Li8"". These different
methods will be discussed in the following sections.

5.2.1 Importing Matrices from Data structures

Sparse Matrices

Before using sparse matrices in H-LiB", they have to be imported to the internal representation.

For this, the sparse matrix is expected to be stored in compressed row storage or CRS format.
The CRS format consists of three arrays: colind, coeffs and rowptr. The array colind

holds the column indices of each entry in the sparse matrix ordered according to the row, e.g.

at first all indices for the first row, then all indices for the second row and so forth. Here the

35 5.2 Matrices

indices itself are numbered beginning from 0. In the same way, the array coeffs holds the
coefficients of the corresponding entries in the same order. Both array have dimension nnz,
i.e. the number of non-zero entries in the matrix. The last array, rowptr, has dimension n+ 1,
where n is the dimension of the matrix. It stores at position ¢ — 1 the index to the colind
and coeffs array for the ¢’th row, e.g. the entries for the ¢’th row have the column indices
colind[i—1] ... colind[i]-1 and the coefficients coeffs[i— 1] ... coeffs[i]-1. The value
rowptr [n] holds the number of non-zero entries.
As an example, the matrix

of dimension 4 x 4 with 10 non-zero entries would result in the following arrays

int rowptr[5] = {0, 2, 5, 8, 10 };
int colind[10] {0, 1, o, 1, 2, 1, 2, 3, 2, 3 };
hlib_real_t coeff[10] {2, -1, -1,2, -1, -1, 2, -1, -1, }

b

To import a sparse matrix in CRS format into H-LiB"°, the following two functions can be
used:

Syntax
hlib_matrix_t hlib_matrix_import_crs (const int rows,
const int cols,
const int nnz,
const int * rowptr,
const int * colind,
const hlib_real_t * coeffs,
const int sym,
int * info);
hlib_matrix_t hlib_matrix_import_ccrs (const int rows,
const int cols,
const int nnz,
const int * rowptr,
const int * colind,
const hlib_complex_t * coeffs,
const int sym,
int * info);
Arguments

rows,cols
Number of rows and columns of the sparse matrix.
nnz
Number of non-zero entries in the sparse matrix.
rowptr, colind, coeffs
Arrays containing the sparse matrix in CRS format.
sym
If sym is non-zero, the sparse matrix is assumed to be symmetric.

The two routines only differ by the coefficient type of the sparse matrix which can either be
real or complex valued.

Vectors and Matrices 36

To finish the above described example by creating a matrix object from the constructed
arrays, one has to add a call to the corresponding function:

int rowptr[5] = {0, 2, 5, 8, 10 };
int colind[10] = { 0, 1, o, 1, 2, 1, 2, 3, 2, 3 };
hlib_real_t coeff[10] ={2, -1, -1, 2, -1, -1, 2, -1, -1, 2 };

hlib_matrix_t S;

S = hlib_import_crs(4, 10, rowptr, colind, coeffs);

Dense Matrices

Although, due to their high memory and computational overhead, dense matrices do not
represent the preferred format for matrix storage. Nevertheless, H-LiB'~ is also capable of
handling dense matrices. As for sparse matrices, they have to be imported for further usage.

When using dense matrices, the user has to keep in mind a very important aspect of their
storage:

In contrast to the standard way in which C addresses dense matrices, H-LiB"™ expects them
to be in column magor format, e.g. stored column wise. The matrix coefficient a;; of a n xm
matrix A is therefore at position j - n + i of a corresponding array containing A.

For example, the matrix

has to be stored in an array as follows:

hlib_real_t D[4] = { 1, 3, 2, 4 };

The reason for this is the usage of LAPACK in H-LiB"°. LAPACK is originally written in
Fortran and therefore uses column major format for all matrices.

To import a dense matrix into H-LiB", the following two functions for real and complex
valued matrices are available:

37 5.2 Matrices

Syntax
hlib_matrix_t hlib_matrix_import_dense (const int rows,
const int cols,
const hlib_real_t * D,
const int sym,
int * info);
hlib_matrix_t hlib_matrix_import_cdense (const int rows,
const int cols,
const hlib_complex_t * D,
const int sym,
int * info);
Arguments

rows, cols
The number of rows and columns of the dense matrix.

Array of dimension rows-cols in column major format containing the matrix coefficients.
sym
If sym is non-zero, the matrix is assumed to be symmetric.

Importing the above defined matrix D is accomplished by

hlib_real_t D[4]
hlib_matrix_t M

{ 1’ 3’ 2, 4 };
hlib_matrix_import_dense(2, 2, D, 0, & info);

5.2.2 Building H-Matrices

Before any H-matrix can be built, a corresponding block cluster tree has to be available, which
describes the partitioning of the block indexset of the matrix and defines admissible matrix
blocks. Please refer to Section 4.3 on how to get a suitable block cluster tree object.

5.2.2.1 Sparse Matrices

Sparse matrices are converted into H-matrices by using

Syntax
hlib_matrix_t hlib_matrix_build_sparse (const hlib_blockcluster_t bct,
const hlib_matrix_t S,
const hlib_real_t eps,
int * info);
Arguments
bct
Block cluster tree defining partitioning of the block indexset of the sparse matrix.
S
Sparse matrix to be converted to an H-matrix.
eps

Block-wise approximation accuracy of the H-matrix w.r.t. the given sparse matrix.

Usually, the resulting H-matrix is an exact copy of the given sparse matrix and therefore,
the parameter eps is not used. This usually holds, if the discretisation of the underlying
operator of the sparse matrix maintains strong locality conditions, e.g. basis functions with

Vectors and Matrices 38

small support. If this does not the case, e.g. global connectivity between indices, the sparse
matrix is approrimated by the H-matrix. The accuracy of this approximation for each subblock
is specified by eps (see also next section).

5.2.2.2 Dense Matrices

Since dense matrices involve an unacceptable memory overhead, an H-matrix approximation
should not be built out of a given dense matrix but by constructing the data sparse approxi-
mation directly. This is accomplished by various algorithms.

Attention

The algorithms for computing a H-matrix approximation of a given dense matrix only work
for certain classes of matrices, e.g. coming from integral equations with specific smoothness
properties (see 777). They might not work for general matrices. Be sure to check the appli-
cability of the algorithms before using a certain routine. Otherwise quadratic complexity
for the storage and cubic complexity for the computation might occur.

Adaptive Cross Approximation

Adaptive cross approximation or ACA (see [Beb00]) is a technique which constructs an approx-
imation to a dense matrix by successively adding rank-1 matrices to the final approximation.
For this, only the matrix coefficients of the dense matrix are needed. These coefficients are
given by the user in terms of a coefficient function which evaluates certain parts of the global
dense matrix. The definition of these functions is as follows:

Syntax
typedef void (* hlib_coeff_fn_t) (int n, int * rowidx, int m, int * colidx,
hlib_real_t * matrix, void * arg);
typedef void (* hlib_ccoeff_fn_t) (int n, int * rowidx, int m, int * colidx,
hlib_complex_t * matrix, void * arg);
Arguments
n, rowidx
Number of row indices and an array containing the row indices at which the matrix shall be
evaluated.
m, colidx
Number of column indices and an array containing the column indices at which the matrix shall
be evaluated.

matrix
Array of dimension n'm at which the computed coefficients at the positions defined by rowidx
and colidx shall be stored in column major format, e.g. coefficient (rowidxli],colidx[j]) at
position matrix[j*n + i].

arg
Optional argument to the coefficient function (see below).

Instead of block coefficient functions of type hlib_coeff fn t or hlib_ccoeff fn t, one
could also implement a function returning the single matrix coefficient A;;:

hlib_real_t coeff (int i, int j, void * arg) {
/* implement computation of A_ij */

39 5.2 Matrices

}

void bcoeff (int n, int * rowidx, int m, int * colidx,
hlib_real_t * matrix, void * arg) {
int 1, j;
for (j =0; j <m; j++)
for (i =0; i< n; i++)
matrix[j*n + i] = coeff(rowidx[i], colidx[j], arg);

The block variant was chosen in H-Li", to allow certain optimisations, e.g. reusage of auxiliary
data for the computation of matrix coefficients.

The given coefliecient array matrix is by default initialised to 0. If additional checks shall be
performed, matrix is initialised with NaN and checked after calling the callback function,
whether all entries have been set (see 777).

Different variants of ACA are available in H-Li"°, each of them with it’s own advantages and
disadvantages. Interesting, from a computational point of view, are the original formulation
and advanced ACA (see [BGO05]), ACA+ for short. These two have a linear complexity in
the dimension of the matrix and a quadratic complexity in the rank of the approximation.
This reduced complexity is possible since only a minor part of all coefficients is used inside
the algorithms. Unfortunately, this sometimes leads to errors in the approximation and hence,
both methods represent a heuristic approach. In practise however, at least ACA+ works quite
well.

To guarantee a certain approximation, one has to look at all coefficients of the matrix, which
then leads to a quadratic complexity in the size of the matrix block. This algorithm is called
ACAFull (see [BGHO03]). Although the approximation can be guaranteed, the resulting rank
due to ACAFull might not be minimal, leading to an increase in the memory usage of the
resulting H-matrix.

Since an non-optimal rank might also happen with ACA or ACA+, each approximation is
truncated afterwards to ensure minimal memory overhead. This truncation procedure has a
computational complexity linear in the size of the matrix block and quadratic in the rank.

An optimal rank right from the beginning can be achieved with singular value decomposition
or SVD. Although this algorithm is not directly related to adaptive cross approximation, it
is included in H-LiB™. Unfortunately, SVD has a cubic complexity in the size of the matrix
block and is therefore only applicable for small matrices.

After defining a coefficient function, the following two routines can be used to construct a
‘H-matrix approximation to the corresponding dense matrix:

Vectors and Matrices 40

Syntax

hlib_matrix_t hlib_matrix_build_coeff (const hlib_blockcluster_t bct,
const hlib_coeff_fn_t f,
void * arg,
const hlib_lrapx_t lrapx,
const hlib_real_t eps,
const int sym,
int * info);

hlib_matrix_t hlib_matrix_build_ccoeff (const hlib_blockcluster_t bct,
const hlib_ccoeff_fn_t f,

void * arg,
const hlib_lrapx_t lrapx,
const hlib_real_t eps,
const int sym,
int * info);
Arguments
bct
Block cluster tree over which the H-matrix shall be built.
f
Coeflicient function defining dense matrix.
arg
Optional argument which will be passed to the coefficient function.
lrapx
Defines the type of low-rank approximation used in each admissible matrix block and can be
one of
HLIB_LRAPX_SVD use singular value decomposition
HLIB_.LRAPX_ACA use adaptive cross approximation
HLIB_.LRAPX_ACAPLUS use advanced adaptive cross approximation
HLIB_LRAPX_ACAFULL use adaptive cross approximation with full pivot search
HLIB_LRAPX_ZERO approximate low-rank blocks by zero
eps

Block-wise approximation accuracy of the H-matrix w.r.t. the given dense matrix.

HLIB_LRAPX_ZERO can be used to build only the nearfield part of the matrix, since all farfield
blocks are left empty.

Since an H-matrix is usually not an exact representation of the dense matrix but only an
approximation, the accuracy for this approximation has to be specified. In H-LiB™, this is
always done in a block-wise fashion. That means, that for a given dense matrix D and the
corresponding H-matrix A build out of D with an accuracy of € > 0 this accuracy only holds
for all block indexsets defined by leaves ¢t X s in the block cluster tree:

[Dlexs — Alexsll <€

but not necessarily for the matrices itself. This is a general property for all matrix operations
in the context of H-matrices.

41 5.2 Matrices

As an example for building an H-matrix with adaptive cross approximation, we consider the
integral equation

1
/0 log |z — ylu(y)dy = f(z), =€ 0,1

with a suitable right hand side f : [0,1] — R. We are looking for the solution « : [0,1] — R.
A standard Galerkin discretisation with constant ansatz functions ¢;,0 < i < n,

p e [i itl
@Z(m) — {1 € [n’ n }

0 otherwise

leads to a linear equation system with the matrix coefficients

1 1
am'::jg jﬁ pi(z)loglz — ylo;(y)dyds
41 g4l
= / / log |x — y|dydx
2 J

=: integrate_ a(i, j,n),

where integrate_a denotes a function which evaluates the integral.

All of this is put together in the following example. There the coordinates of the indices
are set at the centre of the support of each basis function. The function coeff _fn evaluates
integrate_a at the given indices and writes the result into the given dense matrix. Please
note the access to D in column major form. The actual H-matrix is built using ACA+, which
is the recommended variant of adaptive cross approximation.

void coeff_fn (int n, int * rowidx, int m, int * colidx,
hlib_real_t * D, void * arg) {
int ahy)5
int * n = (int *) arg;

for (i =0; i < n; i++)
for (j =0; j <m; j++)

D[j*n + i] = integrate_a(rowidx[i], colidx[j], *n);
}
void build_matrix () {
int i, info;
int n = 1024,
double *x pos = (double**) malloc(sizeof(doublex) * n);
hlib_coord_t coord;
hlib_cluster_t ct;
hlib_blockcluster_t Dbct;
hlib_matrix_t A;

for (i =0; i <mn; i++) {
pos[i] = (double*) malloc(sizeof (double));
pos[i] [0] (((double) i) + 0.5) / ((double) n);

}

Vectors and Matrices 42

coord = hlib_coord_import(n, 1, pos, NULL, & info);

ct = hlib_ct_build_bsp(coord, & info);
bct = hlib_bct_build(ct, ct, & info);
A = hlib_matrix_build_coeff(bct, coeff_fn, & n, HLIB_LRAPX_ACAPLUS,

le-4, 1, & info);

The above example is also implemented in the file examples/bemld.c. There, also source
code for the function integrate_a is available.

Hybrid Cross Approximation
To be done.

5.2.2.3 Matrix Coarsening

By default, H-matrix will be coarsend during construction, i.e. submatrices of a decomposed
matrix block will be agglomerated either in a low-rank or a dense matrix. The goal of this
technique is the reduction of the memory usage since the newly created matrix block will be
deleted if it consumes more memory than the sum of the submatrices and vice versa.

This coarsening strategy involves conversion and truncation and is therefore time consuming.
Depending on the restrictions (memory or time) on the problem to compute, the user can either
enable or disable this feature by

Syntax
void hlib_set_coarsening (const int build, const int arith);
Arguments
build
Activate coarsening during H-matrix construction if build is non-zero and deactivate otherwise.

arith

Activate coarsening during H-matrix algebra if arith is non-zero and deactivate otherwise (see
Section 6.6).

5.2.3 Matrix Management

Using the following two function one can get the number of rows and columns of a specific
matrix.

Syntax

unsigned int hlib_matrix_rows (const hlib_matrix_t A, int * info);
unsigned int hlib_matrix_cols (const hlib_matrix_t A, int * info);

The number of rows and columns can be used to constructs vectors of the right dimension
for matrix computations, e.g. matrix vector multiplication. An easier and also safer way, since
vector do not have to be of scalar type in H-LiB", is the usage of the following two functions,
which return a vector of compatible format and size either for the row or the column cluster
tree of the given matrix A:

43 5.2 Matrices

Syntax

hlib_vector_t hlib_matrix_row_vector (const hlib_matrix_t A, int * info);
hlib_vector_t hlib_matrix_col_vector (const hlib_matrix_t A, int * info);

To obtain a copy of a block cluster tree associated with a matrix, the function

Syntax
hlib_blockcluster_t hlib_matrix_bct (const hlib_matrix_t A, int * info);

is available.

In contrast to the copy operations so far, e.g. for cluster trees and block cluster trees, copying
a matrix always creates a new matrix. The copy can be either exact or up to a given accuracy.
Both operations are done with the functions:

Syntax

hlib_matrix_t hlib_matrix_copy (const hlib_matrix_t A, int * info);
hlib_matrix_t hlib_matrix_copy_eps (const hlib_matrix_t A, hlib_real_t eps,
int * info);

Arguments
eps
Block-wise accuracy of the copy compared to A.

Alternatively, the copy operation can be restricted to the blockdiagonal part of the matrix,
e.g. all off-diagonal blocks are omitted. This form of a matrix copy is particularly interesting
for preconditioning, if the preconditioner itself has to be only a rough approximation of the
inverse but needs to be computed very fast (see also Section 6.4). To control the size of the
remaining diagonal blocks, only off-diagonal blocks on the first 1v1 levels are omitted, where
1vl is defined by the user. The corresponding functions are:

Syntax
hlib_matrix_t hlib_matrix_copy_blockdiag (const hlib_matrix_t A,
const unsigned int 1vl,
int * info);

hlib_matrix_t hlib_matrix_copy_blockdiag_eps (const hlib_matrix_t A,
const unsigned int 1vl,
const hlib_real_t eps,
int * info);

Arguments

1vl
Number of levels on which off-diagonal blocks shall be omitted from the copy operation.

The methods above will produce new matrix objects. If the content of a matrix shall be
copied to an existing matrix, one of the two following functions can be used:

Vectors and Matrices 44

Syntax

void hlib_matrix_copyto (const hlib_matrix_t A, hlib_matrix_t B, int * info);
void hlib_matrix_copyto_eps (const hlib_matrix_t A, hlib_matrix_t B,
const hlib_real_t eps, int * info);

Arguments
A,B
Source and destination matrix for the copy operation.
eps
Block-wise accuracy of the copy compared to A.

In order for the copy operation to be successfull, the format of the matrices A and B has to be
compatible, e.g. H-matrices over the same block cluster tree. An example of an illegal copy
would be a dense A and a sparse B.

Deallocating a matrix is accomplished with

Syntax

void hlib_matrix_free (hlib_matrix_t A, int * info);

Again, please remember to only use this function and not free to prevent undefined behaviour.
The memory usage of a specific function can be obtained by

Syntax

unsigned long hlib_matrix_bytesize (const hlib_matrix_t A, int * info);

In some situations it might be necessary to access single matrix coefficients. For this the
following functions are available to return the entry A;;:

Syntax

hlib_real_t hlib_matrix_entry_get (const hlib_matrix_t A,
const unsigned int i,
const unsigned int J
int * info);
hlib_complex_t hlib_matrix_centry_get (const hlib_matrix_t A,
const unsigned int i,
const unsigned int Js
int * info);

For H-matrices obtaining a single coefficient has the complexity O (klogn), where k is the
maximal rank in the matrix and n the number of rows/columns of A. It should therefore
only be used when absolutely necessary.

5.2.4 Matrix Norms

H-LiB"™ supports two basic norms for matrices: the Frobenius and the spectral norm. The
Frobenius norm plays a crucial role in the approximation of each matrix block, where the local
accuracy is always meant with respect to the Frobenius norm of the local matrix. The spectral

45 5.2 Matrices

norm, e.g. the largest eigenvalue, gives a better overview of the global approximation, e.g. how
good the computed, approximate inverse compares to the exact inverse.

In the case of the spectral norm, the largest eigenvalue is computed by using the Power
iteration (see [GL96]). Since this is also only an approximate method and due to efficiency
the computational effort for computing the norm is restricted in H-LiB"", the result of this
procedure does not necessarily represent the exact spectral norm of the matrix. Although in
practise, the convergence behaviour for most matrices is quite well.

Computing the Frobenius and the spectral norm for a single matrix is done by the following
two functions:

Syntax

hlib_real_t hlib_matrix_norm_frobenius (const hlib_matrix_t A, int * info);
hlib_real_t hlib_matrix_norm_spectral (const hlib_matrix_t A, int * info);

Furthermore, if the matrix A is not ill-conditioned the spectral norm of A~! can be obtained
with

Syntax
hlib_real_t hlib_matrix_norm_spectral_inv (const hlib_matrix_t A, int * info);

To compute the norm of the difference ||A — B|| between two matrices A and B in the
Frobenius or the spectral norm, the functions

Syntax

hlib_real_t hlib_matrix_norm_frobenius_diff (const hlib_matrix_t A,
const hlib_matrix_t B,
int * info);
hlib_real_t hlib_matrix_norm_spectral_diff (const hlib_matrix_t A,
const hlib_matrix_t B,
int * info);

are available. Here, in the case of the Frobenius norm, both matrices have to be of the same
type and, if they are H-matrices, defined over the same block cluster tree. This does not apply
to the spectral norm since it only relies on matrix vector multiplication.

Finally, the approximation of the inverse of a matrix A by another matrix B, e.g. the norm

|1 — AB||2

can be computed by the function

Syntax
hlib_real_t hlib_matrix_norm_inv_approx (const hlib_matrix_t A,
const hlib_matrix_t B,
int * info);

5.2.5 Matrix 1/0

Various matrix file formats are supported by H-LiB" which will be discussed in this section.

Vectors and Matrices 46

5.2.5.1 H-LiB"™

Since H-matrices can not be stored in an efficient way in previously described matrix formats,
H-LiB"™ defines it’s own file format for matrices. This format also supports sparse and dense
matrices.

The corresponding functions to load and save matrices from/to files are:

Syntax
hlib_matrix_t hlib_hformat_load_matrix (const char * filename,
int * info);
void hlib_hformat_save_matrix (const hlib_matrix_t A,
const char * filename,
int * info);
Arguments
A
Matrix to save to filename
filename
Name of file to load/save matrix from/to.

5.2.5.2 SAMG

The SAMG package (see [Fra]) defines a matrix file format for sparse matrices and vectors in a
linear equations system, namely the solution and the right-hand-side. Im- and exporting these
. . - pro
objects is supported by H-LiB"".
The SAMG defines several files together describing the format and data of matrices. The
SAMG 1I/0 functions in H-LiB™ only expect the actual data files but presume the format file
with the same basename, e.g. the filename without a suffix, to be present in the same directory.

Syntax
hlib_matrix_t hlib_samg_load_matrix (const char * filename,
int * info);
void hlib_samg_save_matrix (const hlib_matrix_t S,
const char * filenamename,
int * info);
Arguments
S
Sparse matrix to store in SAMG format.
filename
Name of the matrix file.

5.2.5.3 Matlab

The same restriction, which apply to reading vectors from Matlab files are also valid for
matrices, i.e. only dense and sparse matrices either as a single data element or as part of
a structure are supported. Compressed fields can only be read, when zlib support was chosen
during compilation (see [Kri, Section 2]). Other data types, e.g. cells, are not supported and
will be skipped. Furthermore, due to the different storage format, H-matrices can not be saved
in the Matlab format.

47 5.2 Matrices

Since a matrix in the Matlab file format is associated with a name, this name has to be
supplied to the corresponding I/O functions.

Syntax
hlib_matrix_t hlib_matlab_load_matrix (const char * filename,
const char * matname,
int * info);
void hlib_matlab_save_matrix (const hlib_matrix_t M,
const char * filename,
const char * matname,
int * info);
Arguments
M

Sparse or dense matrix to save to filename

filename
Name of Matlab file to load/save matrix from/to.

matname
Name of the matrix in the Matlab file.

5.2.5.4 Harwell-Boeing/Harwell-Rutherford

The Harwell-Boeing matrix format defines a file format to store sparse matrices and vectors.
With the extended version, Harwell-Rutherford, a variety of other data can also be stored,
e.g. coordinates. H-LiB" supports reading and writing matrices in this format, although the
special storage by elementary matrices is not yet supported.

The corresponding function to load matrices from files is:

Syntax
hlib_matrix_t hlib_hb_load_matrix (const char * filename,
int * info);
hlib_matrix_t hlib_hb_save_matrix (const hlib_matrix_t A,
const char * filename,
int * info);
Arguments
A

Matrix to save to filename

filename
Name of file to load matrix from.

5.2.5.5 PostScript

Matrices in H-LiB" can also be printed in PostScript format. Here various options are available
to define the kind of data in the resulting image:

HLIB_.MATIO_SVD print singular values of matrix in logarithmic scale
HLIB_.MATIO_ENTRY print each entry of matrix
HLIB_.MATIO_PATTERN print sparsity pattern (non-zero entries)

Vectors and Matrices 48

These options can also be combined by boolean “or”; e.g. to print the SVD and the sparsity
pattern the combination HLIB_ MATIO_SVD || HLIB_MATIO_PATTERN is used. By default, only
the structure of the matrix is printed. There, different kind of blocks are marked by different
colours:

dense matrix blocks

low-rank matrix blocks

non-admissible low-rank matrix blocks (see 777)
sparse matrix blocks

OO

no matrix block exists, e.g. for symmetric matrices

In addition, special information about each block is printed. For dense and sparse blocks the
dimension is shown in the lower left corner. For low-rank blocks, there the rank of the matrix is
printed. If SVD is chosen to be printed for each block the actual rank of the matrix is printed
at the centre of each block. For low-rank matrices this is only shown, if the SVD-rank differs
from the rank of the matrix. An example for a sparse matrix and a dense matrix (with and
without SVD) looks like:

225

The actual PostScript image is finally produced by the function

Syntax
void hlib_matrix_print_ps (const hlib_matrix_t A,
const char * filename,
const int options,
int * info);
Arguments
A
Matrix to be printed.
filename
Name of the PostScript file A shall be printed to.
options

Combination of MATIO options or 0.

6 Algebra

6.1 Matrix Vector Multiplication

The multiplication of a matrix A with a vector z is implemented in H-LiB"~ as the update of
the destination vector y as:

y = By + aAx.
The special cases with 3 = 0 or @ = 0 are also handled efficiently. Furthermore, the multipli-
cation with the adjoint matrix A¥ is supported by H-LiB". The type of operation is chosen
by a parameter of type

typedef enum { HLIB_MATOP_NORM,
HLIB_MATOP_TRANS,
HLIB_MATOP_ADJ } hlib_matop_t;

where HLIB_MATOP_NORM corresponds to Az, HLIB_MATOP_TRANS to ATz and HLIB_MATOP_ADJ
to A .

The following two functions above computation. Both routines can handle real and complex
valued matrices and vectors. The difference in the name only applies to the type of the constant
factors.

Syntax
void hlib_matrix_mulvec (const hlib_real_t alpha,
const hlib_matrix_t A, const hlib_vector_t x,
const hlib_real_t beta, hlib_vector_t Y,
const hlib_matop_t matop, int * info);

void hlib_matrix_cmulvec (const hlib_complex_t alpha,

const hlib_matrix_t A, const hlib_vector_t x,
const hlib_complex_t beta, hlib_vector_t Y,
const hlib_matop_t matop, int * info);
Arguments
A
Sparse, dense or H-matrix to multiply with.
X
Argument vector of dimension hlibmatrix cols(A) if Az is performed and
hlibmatrix_rows(A) in the case of A7z,
y
Result vector of the multiplication of dimension hlib matrix rows(A) if Ax is performed and
hlibmatrix_cols(A) in the case of A7z,
alpha,beta
Scaling factors for the matrix-vector product and the destination vector.
matop

Defines multiplication with A or adjoint matrix of A.

49

Algebra 50

6.2 Matrix Addition

The sum of two matrices A and B in H-LiB"° is defined as
B:=aA+ (B

with o, 6 € R or «, 8 € C depending on using real or complex arithmetic.

The two matrices for the matrix addition have to be compatible, i.e. of the same format. For
example, it is not possible to add a sparse and a H-matrix. Furthermore, H-matrices have to
be defined over the same block cluster tree.

When summing up H-matrices, this is done up to a given accuracy. As usual, this accuracy
is block-wise. Sparse and dense matrices are always added exactly.

Syntax
void hlib_matrix_add (const hlib_real_t alpha, const hlib_matrix_t A,
const hlib_real_t beta, hlib_matrix_t B,
const hlib_real_t eps, int * info);

void hlib_matrix_cadd (const hlib_complex_t alpha, const hlib_matrix_t A,

const hlib_complex_t beta, hlib_matrix_t B,
const hlib_real_t eps, int * info);
Arguments
A, B
Matrices to be added. The result will be stored in B.
alpha, beta

Additional scaling factors for both matrices.
eps
Block-wise accuracy of the addition in the case of H-matrices.

6.3 Matrix Multiplication

Matrix multiplication can only be performed with dense and H-matrices. Furthermore, if the
arguments are H-matrices, they have to have compatible cluster trees, e.g. for the product

C:=A-B

the column cluster tree of A and the row cluster tree of B must be identical. This also applies to
the row cluster trees of A and C' as well as for the column cluster trees of B and C. Otherwise
the function exits with a corresponding error code.

The multiplication itself is defined as the update to a matrix C' with additional scaling
arguments:

C:=aAB+ 3C.

The matrices A and B can also be transposed or conjugate transposed in the case of complex
valued arithmetic.

o1 6.4 Matrix Inversion

Syntax
void hlib_matrix_mul (const hlib_real_t alpha,
const hlib_matop_t matop_A, const hlib_matrix_t A,
const hlib_matop_t matop_B, const hlib_matrix_t B,
const hlib_real_t beta, hlib_matrix_t C,
const hlib_real_t eps, int * info);

void hlib_matrix_cmul (const hlib_complex_t alpha,
const hlib_matop_t matop_A, const hlib_matrix_t A,
const hlib_matop_t matop_B, const hlib_matrix_t B,
const hlib_complex_t beta, hlib_matrix_t C,
const hlib_real_t eps, int * info);

Arguments
A, B
Dense or H-matrices used as factors for the matrix multiplication.

matop_A, matop._B
Defines multiplication with A, B or the corresponding adjoint matrices A” and B,

Dense or H-matrix containing the result of the matrix multiplication.
alpha, beta

Additional scaling arguments for the product and the destination matrix.
eps

Block-wise accuracy of the H-arithmetic during the matrix multiplication.

6.4 Matrix Inversion

In H-LiB"™, the inverse of a matrix is computed using Gaussian elimination. This method is
implemented for dense and H-matrices, e.g. sparse matrices can not be inverted.

The following functions computes the corresponding inverse to the given matrix A, which
will be overwritten by the result.

Syntax
void hlib_matrix_inv (hlib_matrix_t A,
const hlib_real_t eps,
int * info);
Arguments
A

Dense or ‘H-matrix to be inverted. A will be overwritten by the result.
eps
Block-wise accuracy of the H-arithmetic during the inversion.

The quality of the computation can be checked by computing the spectral norm of || —AB||,
with B being the approximate inverse of A, by using function hlib matrix inv_approx (see
Section 5.2.4).

If only the diagonal of the inverse of a given matrix A is of interest, a special function is
available in H-LiB"®, which computes this in shorter time and returns the result in the form of
a vector:

Algebra 52

Syntax
hlib_vector_t hlib_matrix_inv_diag (hlib_matrix_t A,
const hlib_real_t eps,
int * info);
Arguments
A

Dense or H-matrix for which the diagonal of the inverse shall be returned. A will be overwritten
during the computation.

eps
Block-wise accuracy of the H-arithmetic during computation.

The time for the computation of the diagonal of the inverse can be significantly decreased

for H-matrices built upon sparse matrices by using nested dissection (see Section 4.2.2) in
the definition of the H-matrix.

An alternative algorithm is the LU decomposition of a matrix, which allows the fast evalu-
ation of the inverse operator. Since not the real inverse is computed, the decomposition can
not be used for matrix arithmetic, e.g. matrix multiplication.

Function hlib matrix inv_1u computes the LU decomposition and overwrites A with a

matrix representing the inverse of the factors, e.g. (LU)~!. Therefore, evaluating A afterwards
corresponds to A™! and not A.

Syntax
void hlib_matrix_inv_lu (hlib_matrix_t A,
const hlib_real_t eps,
int * info);
Arguments
A

Dense or H-matrix to be decomposed using LU factorisation. A will be overwritten with the
inverse of the factorisation result.

eps
Block-wise accuracy of the H-arithmetic during the LU decomposition.

Again, if the H-matrix is defined by a sparse matrix, nested dissection (see Section 4.2.2)
can be used to accelerate the computation of the LU factorisation.

6.5 Solving Linear Systems

Solving the linear system
Az =b

with the matrix A and the right hand side b is accomplished by the H-Li"™ function

93 6.5 Solving Linear Systems

Syntax
void hlib_solve (const hlib_matrix_t A,
hlib_vector_t X,
const hlib_vector_t b,
hlib_solve_info_t solve_info,
int * info);
Arguments
A, x, b

Define linear equation system.

solve_info
If not NULL, used to return information about solution process.

By default, the exact type of solution technique used to solve the system is chosen by
H-LiB™ depending on the characteristics of the matrix A, e.g. whether it is symmetric or
positiv definite. In some cases, the user might want to change this default behaviour and
explicitly define the solution algorithm. For this, H-Li"~ implements various iterative methods:
Richardson, CG, BiCG-Stab, MINRES and GMRES iteration (see [Hac93], [vdV92], [PS75]
and [SS86]). To modify the iteration algorithm, the following functions are available which
make use of the Richardson, the the CG, BiCG-Stab and the MINRES iteration:

Syntax
void hlib_solver_richardson (int * info);
void hlib_solver_cg (int * info);
void hlib_solver_bicgstab (int * info);
void hlib_solver_minres (int * info);

In the case of the GMRES-Iteration an additional parameter is expected which describes the
dimension of the local Krylov subspace, e.g. when to restart.

Syntax

void hlib_solver_gmres (const int restart, int * info);
Arguments

restart

Defines the number of iteration steps after which a restart is performed during the GMRES-
iteration, e.g. the dimension of the constructed Krylov subspace.

To return to the default solver, e.g. automatic choice, one uses

Syntax
void hlib_solver_auto (int * info);

The stopping criterion for the iterative solvers in H-LiB'® is defined with the function
hlib_solver_stopcrit:

Algebra 54

Syntax
void hlib_solver_stopcrit (const int maxit,
const hlib_real_t abs_red,
const hlib_real_t rel_red,
int * info);
Arguments
maxit
Maximal number of iterations.
abs_red
Absolute reduction of the ly-norm of the residual or negative, if this reduction shall not be
checked.
rel red
Relative reduction of the ls-norm of the residual compared to the initial norm of the residual
or negative, if this reduction shall not be checked.

The addition argument solve_info to hlib_solve can be used to get information about the
solution process. The definition of the corresponding type is

typedef struct {
unsigned int converged;
unsigned int steps;
hlib_real_t res_norm;
hlib_real_t conv_rate;
} hlib_solve_info_t;

Here, the field converged is 1, if the iteration converged and 0 otherwise. The number of
iteration steps is stored in steps. Similar, the norm of the final residual and the average
convergence rate are put into res_norm and conv_rate respectively.
Usually, solving a linear systems involves preconditioning , e.g. solving the transformed
system.
WAz = Wb,

This is also possible in H-LiB" and implemented in the function

Syntax
void hlib_solve_precond (const hlib_matrix_t A, const hlib_matrix_t W,
hlib_vector_t x, const hlib_vector_t b,
solve_info_t solve_info,
int * info);
Arguments
W

Preconditioner to the linear equation system.

When solving a preconditioned system, the residual is defined as

r=W(Az —b),

e.g. is also preconditioned. This also applies to the corresponding norms supplied by the
solve_info variable.

55 6.6 Changing Algebra behaviour

6.6 Changing Algebra behaviour

Two aspects of the H-arithmetics can be influenced by the user: the absolute truncation error
and the coarsening of matrix blocks.

The absolute truncation error defines the lower bound of the absolute value of the singular
values taken into account during the truncation of low-rank blocks, i.e. all singular values and
corresponding singular vectors which are smaller than the error bound are omitted. By default,
this limit is 0, e.g. no limit is set. In some applications increasing this limit significantly reduces
the runtime of H-arithmetics, e.g. inversion or LU factorisation, since the rank of low-rank
blocks is reduced without affecting the accuracy. Unfortunately, this is not valid for general
problems, especially, if the entries in the matrix vary by a large magnitude.

The absolute truncation error is set for all subsequent H-arithmetic functions by

Syntax
void hlib_set_abs_eps (const hlib_real_t eps);

Coarsening of matrix blocks is the technique of replacing subblocks in a matrix by a new
low-rank or dense matrix of corresponding size to reduce the memory consumption without
affecting the per block approximation properties. This was already applied during matrix
construction (see Section 5.2.2) and leads to a significant reduction in memory costs. A similar
reduction can also be observed during H-matrix arithmetics. Unfortunately, the coarsening
process does not come for free, the agglomeration of matrix blocks involves the trunction of low-
rank matrices which, depending on the rank, can be time consuming. Therefore, coarsening is
deactivated during H-algebra by default. To activate this feature, one has to call the following
function:

Syntax
void hlib_set_coarsening (const int build, const int arith);
Arguments
build
Activate coarsening during H-matrix construction if build is non-zero and deactivate otherwise.

arith
Activate coarsening during H-matrix algebra if arith is non-zero and deactivate otherwise.

Algebra

56

7 Miscellaneous Functions

The following functions are mostly included in H-Li"~ for convenience and are usually available
by other libraries or even the operating system itself.

7.1 Measuring Time

Two types of time can be measured by H-Li8": the CPU time and the wall clock time. The
first corresponds to the time spent by the program actually computing things. This type of
time has the advantage, that the load on the machine does not have any influence on the value
of the time. In contrast to this, the wall clock time is the actual time as measured by a real
clock. This type of time is dependent on the load on the computer system and therefore might
be different between two runs of the program.

The actual functions to obtain both types are:

Syntax

double hlib_walltime ();
double hlib_cputime ();

The absolute value of these functions is normally not usable. Only the difference between two
measurements returns the passed time.

7.2 Progress Meter

Depending on the verbosity level chosen by the user, H-LiB"™ will print the progress of the
computation to the screen. The corresponding information can also be requested by the user
to implement a different display of the progress. For this, a callback function has to be provided
of type

typedef void (* hlib_progressfn_t) (const double * values,
int * cancel,
void * arg);

The parameter value stores the minimal, the maximal and the current value of the progress,
which can be accessed by the constants

enum { HLIB_PROGRESS_MIN, HLIB_PROGRESS_MAX, HLIB_PROGRESS_VAL };

The second argument allows the user to interrupt the current execution, e.g. matrix construc-
tion or LU factorisation, by setting the value of cancel to anything different from 0.

o7

Miscellaneous Functions 58

By interrupting a H-LiB'~ computation, the state of the result is not defined, e.g. matrices
do not contain meaningfull data.

Finally, the fourth argument arg is an optional argument by the user supplied to the function

Syntax
void hlib_set_progress_cb (hlib_progressfn_t fn,
void * arg);
Arguments
fn

Callback function to be called upon change in the progress of any computation or NULL to revert
to the default behaviour.

arg
Optional argument passed through to the callback function.

which will set £n as the new progress function.

7.3 Quadrature Rules

Since H-LiB™ is capable of discretising integral equations, different quadrature rules are imple-
mented as part of the computations. These rules are also exported so that external routines
can benefit from them.

7.3.1 Gaussian Quadrature

Quadrature rules for Gaussian quadrature of order n over the interval [0, 1] are constructed by
the function

Syntax
void
hlib_gauss_quadrature_1d (const unsigned int order,
double * points, double * weights,
int * info);

Arguments

n

Order of the quadrature.
points

Array of size order where the quadrature points will be stored.
weights

Array of size order where the quadrature weights will be stored.

7.3.2 Quadrature Rules for Triangles

H-LiB™ also provides quadrature rules for the integration over a pair of triangles, e.g. when
computing integral equations on a surface grid. These rules were developed by Stefan Sauter
(see [SS04]). There different rules apply to different cases of triangle interaction:

59 7.3 Quadrature Rules

L L7 DY

same triangle common edge common vertex separated triangles

The quadrature points are build for each triangle individually, where the triangle itself is
the standard 2d simplex

(0,1)

(0,0) (1,0)

Therefore, you have to transform the computed coordinates to your triangles.
Computing the quadrature rules for equal triangles in done with

Syntax
void
hlib_sauter_quadrature_eq (const unsigned int order,
double * tril_pts[2],
double * tri2_pts[2],
double * weights,
int * info);
Arguments
order

Order of the quadrature.

tril pts, tri2_pts
Array where the 2d quadrature coordinates for both triangles are stored. The array have to be
of size 6 - order?.

weights
Array of size 6 - order* holding the quadrature weights.

Similar defined are the functions for triangles with a common edge, a common vertex or
separated triangles:

Syntax
void
hlib_sauter_quadrature_edge (const unsigned int order,
double * tril_pts[2],
double * tri2_pts[2],
double * weights,
int * info);
Arguments
tril_pts, tri2_pts, weights
Arrays of size 5 - order?.

Miscellaneous Functions

60

Syntax
void
hlib_sauter_quadrature_vtx

Arguments

tril pts, tri2_pts, weights
Arrays of size 2 - order?.

(const unsigned int
double
double
double
int

* X ¥ ¥

order,
tril_pts[2],
tri2_pts[2],
weights,
info);

Syntax
void
hlib_sauter_quadrature_sep

Arguments

tril pts, tri2_pts, weights
Arrays of size order?.

(const unsigned int

double *
double *
double *
int *

order,
tril_pts[2],
tri2_pts[2],
weights,
info);

Bibliography

[Beb00)]

[BGO5]

[BGHO3]

[Fra]

[GLO6]

[Hac93|

[Hac99]

[Kri]

[Mat]

[PS75]

[SS86]

[SS04]

[vdV92]

M. Bebendorf. Approximation of boundary element matrices. Numerische Mathe-
matik, 86:565-589, 2000.

S. Borm and L. Grasedyck. Hybrid cross approximation of integral operators. Nu-
merische Mathematik, 2:221 — 249, 2005.

S. Borm, L. Grasedyck, and W. Hackbusch. Hierarchical Matrices. Technical report,
Lecture note 21, MPI Leipzig, 2003.

Fraunhofer SCAI, http://www.scai.fraunhofer.de/. SAMG file format specification.

G.H. Golub and C.F. Van Loan. Matrixz Computations. The Johns Hopkins University
Press, 3rd edition, 1996.

W. Hackbusch. Iterative Losung grofier schwachbesetzter Gleichungssysteme. B.G.
Teubner, Stuttgart, 1993.

W. Hackbusch. A sparse matrix arithmetic based on H-matrices. 1. Introduction to
‘H-matrices. Computing, 62(2):89-108, 1999.

Ronald Kriemann. HLIBpro User manual. Max-Planck-Institute for Mathematics in
the Sciences, Leipzig.

The MathWorks, http://www.mathworks.com/. MAT-File Format Version 7.

C.C. Paige and M.A. Saunders. Solution of sparse indefinite systems of linear equa-
tions. SIAM J. Numer. Anal., 12(4):617-629, September 1975.

Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Comput., 7(3):856-869, 1986.

S. Sauter and C. Schwab. Randelementmethoden: Analysen, Numerik und Imple-
mentierung schneller Algorithmen. Teubner, Stuttgart, 2004.

H. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bicg for the
solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13:631-644,
1992.

61

A
ACA 4, 38
ACA+ 39
ACAFull ... 39
adaptive cross approximation 4, 38
addition 50
algebral 49
B
BiCG-Stab 53
binary space partitioning 22
C
CG o 53
cluster tree il 21
construction 22
management 21
COATSENING .. .ovvviiieeenn.. 42, 55
coordinateoiiiiiiii.. 19
I/O o 21
management 20
periodicityot 20
D
data types ... 16
dot productl 32
E
error
function 16
error handling oL 13
F
FFET oo 33
finalisation 13
Frobeniusnorm, 44
G
Gaussian quadrature 58
GMRES ... 53
H

62

HLIB.NTHREADS 17

1

initialisation oL 13

inversion 11, 51

L

LU factorisation 7, 10, 51

M

matrixooii 34
additionl 50
coarseningoa... 42
INVersioncooouunin. 11, 51
LU decomposition 51
multiplication 50
1010 1 ' O 44

MINRES ... 53

multiplication 50

N

nested dissection 10, 22, 52

norm
Frobeniusl 44
matrix ... 44
spectrall 44
VECtOr ...t 32

P

parallel i 17

preconditioning 54

progress meteroi ... 57

Q

quadrature, 58
Gaussian ..o, 58
triangles o oot 58

R

reference counting 17

Richardson 53

S

63

Index

singular value decomposition 6, 39
spectral norm 44
SVD o 39
T
threads L. 17
time
CPU .. 57
wall clockl 57
timing ... o 57
triangle quadrature 58
Vv
VECHOT oot 29
dot product 32

570} 1 1 0 N 32

Function and Datatype Index

A

hlib.adm_t 26
B

hlib_bet_build 4,10, 11, 26
hlib_bet_bytesize 27
hlib_bect_column ct 27
hlib_bct_free 8, 11, 27
hlib_bet_print ps 4,10, 11, 27
hlib_bct_ row_ct 27
hlib_blockcluster t 26
hlib bspt ...oovvei 22
C

hlib_ccoeff fnt 38
hlib_cluster_t 21
hlib_coeff fn_t 38
hlib_complex_t 16
hlib_coord_free 20
hlib_coord_import 4,19
hlib_cputime Y
hlib_ct_build_alg 11, 24
hlib_ct_build_alg nd 10, 24
hlib_ct_build_alg part 24
hlib_ct_build_bsp 4, 22
hlib_ct_build_bsp.nd 22
hlib_ct_build_bsp_part 24
hlib_ct_bytesize 21
hlibct free 8, 11, 21
hlib_ct print ps 4, 10, 11, 25
D

hlib.done 8,11, 13
E

hlib_error_desc 4, 16
hlib_errorfn_t 16
G

hlib_gauss_quadrature_1d 58
H

64

hlib_hb_load_matrix 47
hlib_hformat_load_matrix 46
hlib_hformat_load_vector 33
hlib_hformat_save_matrix 46
hlib_hformat_save_vector 33
I

hlibdnit 3,9, 13
L

hlib_load_coord 21
hlib_load_matrix 9
hlib_load_vector 9
HLIB_.LRAPX_ACAPLUS 5
hliblrapx_t oL, 39
M

HLIB_MATIO_PATTERN 9
HLIB.MATIOSVD 6
hlib_matlab_load_matrix 47
hlib_matlab_load_vector 34
hlib_matlab_save_matrix 47
hlib_matlab_save_vector 34
hlibmatop_t L 49
hlib_matrix_.add 50
hlib_matrix_build_ccoeff 39
hlib_matrix_build_coeff 5, 39
hlib_matrix_build_sparse 10, 11, 37
hlib_matrix_bytesize 5, 10, 44
hlib_matrix_cadd 50
hlib_matrix_centry_get 44
hlib_matrix_.cmul 50
hlib_matrix_cmulvec 49
hlib_matrix_col_vector 9, 42
hlib_matrix_cols 42
hlib_matrix_copycoL 43
hlib_matrix_copy_blockdiag 43
hlib_matrix_copy_blockdiag eps 43
hlib_matrix_copy_eps 8, 43
hlib_matrix_copyto 43
hlib_matrix_copyto_eps 43

65

Function and Datatype Index

hlib_matrix_entry_get 44
hlib_matrix_free 6, 8, 11, 44
hlib_matrix_import_ccrs 35
hlib_matrix_import_cdense 36
hlib_matrix_import_crs 35
hlib_matrix_import_dense 36
hlib_matrix_inv 11, 51
hlib_matrix_inv_diag 51
hlib_matrix_invlu 8, 10, 52
hlib_matrix mul 50
hlib_matrix mulvec 49
hlib_matrix_norm_frobenius 45
hlib_matrix_norm_frobenius_diff 45
hlib_matrix_norm_inv_approx 8, 45
hlib_matrix_norm_spectral 45
hlib_matrix_norm_spectral diff 6, 45
hlib_matrix_norm_spectral_inv 45
hlib_matrix_print_ps 5, 8-11, 48
hlib_matrix_row_vector 42
hlib_matrix_ rows 42
hlibmatrix t, 34
P

hlib_progressfn_t 57
S

hlib_samg load_coord 21
hlib_samg_load_matrix 46
hlib_samg_load_vector 33
hlib_samg_save_matrix 46
hlib_samg_save_vector 33
hlib_sauter_quadrature_edge 59
hlib_sauter_quadratureeq 59
hlib_sauter_quadraturesep 60
hlib_sauter_quadrature_vtx 60
hlib_set_abs_epso .. 55
hlib_set_admissibility 26
hlib_set_bsp_typecooiilL. 22
hlib_set_coarsening 42, 55
hlib_set_error fn 16
hlib_set_nthreads 17
hlib_set_progress_cb 58
hlib_set_verbosity 3,13
hlibsolve il 7,9, 52
hlib_solve_info t 54
hlib_solve_precond 8, 10, 11, 54

hlib_solver_auto 53

hlib_solver_bicgstab 53
hlib_solver_cgt 53
hlib_solver_gmres 53
hlib_solver_minres 53
hlib_solver_richardson 53
hlib_solver_stoperit 53
Vv

hlib_vector_alloc_cscalar 29
hlib_vector_alloc_scalar 29
hlib_vector_assign 32
hlib_vector_axpyccooinan. 32
hlib_vector_bytesize 31
hlib_vector_caxpy 32
hlib_vector_cfill 30
hlib_vector_copy 31
hlib_vector_cscale 32
hlib_vector_.dot 32
hlib_vector_entry_cget 30
hlib_vector_entry_cset 30
hlib_vector_entry_get 30
hlib_vector_entry_set 30
hlib_vector_fft 33
hlib_vector fill 30
hlib_vector_fillrand 31
hlib_vector_free 8, 11, 31
hlib_vector_ifft 33
hlib_vector_import_array 7, 29
hlib_vector_import_carray 29
hlib_vector norm2 32
hlib_vector_norm_inf 32
hlib_vector_scale 32
hlib_vector_size 31
hlib_vector_t, 29
hlib_vector_axpyc.c.oiiiee... 7
hlib_vector_copycoiiiaL. 7
hlib_vector_fill 7
hlib_vector norm2 7
W

hlib_walltime Y

	Preface
	Introductory Examples
	Integral Equation
	Sparse Linear Equation System

	General Functions and Data types
	Initialisation and Finalisation
	Error Handling
	Data types
	Reference Counting
	Parallel Computing

	Coordinates and Cluster Trees
	Coordinates
	Coordinate Management Functions
	Coordinate I/O

	Cluster Trees
	Cluster Tree Management Functions
	Cluster Tree Construction
	Cluster Tree I/O

	Block Cluster Trees
	Block Cluster Construction
	Block Cluster Tree Management Functions
	Block Cluster Tree I/O

	Vectors and Matrices
	Vectors
	Creating and Accessing Vectors
	Vector Management Functions
	Algebraic Vector Functions
	Vector I/O

	Matrices
	Importing Matrices from Data structures
	Building H-Matrices
	Matrix Management
	Matrix Norms
	Matrix I/O

	Algebra
	Matrix Vector Multiplication
	Matrix Addition
	Matrix Multiplication
	Matrix Inversion
	Solving Linear Systems
	Changing Algebra behaviour

	Miscellaneous Functions
	Measuring Time
	Progress Meter
	Quadrature Rules
	Gaussian Quadrature
	Quadrature Rules for Triangles

	Bibliography

