
Max-Plank-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

HLIBpro C Language Interface

(revised version: February 2008)

by

Ronald Kriemann

Technical Report no.: 10 2008

HHHHHHHHHHHHHHHHHHHHH
Lib

pro
H
Lib

pro

H-Lib
pro

v0.13.2

C Language Interface

by

Ronald Kriemann

ii

Contents

1 Preface 1

2 Introductory Examples 3
2.1 Integral Equation . 3
2.2 Sparse Linear Equation System . 9

3 General Functions and Data types 13
3.1 Initialisation and Finalisation . 13
3.2 Error Handling . 13
3.3 Data types . 16
3.4 Reference Counting . 17
3.5 Parallel Computing . 17

4 Coordinates and Cluster Trees 19
4.1 Coordinates . 19

4.1.1 Coordinate Management Functions . 20
4.1.2 Coordinate I/O . 21

4.2 Cluster Trees . 21
4.2.1 Cluster Tree Management Functions . 21
4.2.2 Cluster Tree Construction . 22
4.2.3 Cluster Tree I/O . 25

4.3 Block Cluster Trees . 26
4.3.1 Block Cluster Construction . 26
4.3.2 Block Cluster Tree Management Functions 27
4.3.3 Block Cluster Tree I/O . 27

5 Vectors and Matrices 29
5.1 Vectors . 29

5.1.1 Creating and Accessing Vectors . 29
5.1.2 Vector Management Functions . 31
5.1.3 Algebraic Vector Functions . 32
5.1.4 Vector I/O . 33

5.2 Matrices . 34
5.2.1 Importing Matrices from Data structures 34
5.2.2 Building H-Matrices . 37
5.2.3 Matrix Management . 42
5.2.4 Matrix Norms . 44
5.2.5 Matrix I/O . 45

6 Algebra 49

iii

Contents iv

6.1 Matrix Vector Multiplication . 49
6.2 Matrix Addition . 50
6.3 Matrix Multiplication . 50
6.4 Matrix Inversion . 51
6.5 Solving Linear Systems . 52
6.6 Changing Algebra behaviour . 55

7 Miscellaneous Functions 57
7.1 Measuring Time . 57
7.2 Progress Meter . 57
7.3 Quadrature Rules . 58

7.3.1 Gaussian Quadrature . 58
7.3.2 Quadrature Rules for Triangles . 58

Bibliography 61

1 Preface

H-Lib
pro

is a software library implementing hierarchical matrices or H-matrices for short. This
type of matrices, first introduced in [Hac99], provides a technique to represent various full
matrices in a data-sparse format and furthermore, allows standard matrix arithmetic, e.g.
matrix-vector multiplication, matrix multiplication and inversion, with almost linear complex-
ity. Examples of matrices which can be represented by H-matrices come from the area of
partial differential or integral equations.

Beside the standard arithmetic mentioned above, H-Lib
pro

also provides additional algorithms
for decomposing matrices, e.g. LU-factorisation and for solving linear equation systems with
various direct or iterative methods. Furthermore, it contains methods for directly converting
a dense operator into an H-matrix without constructing the corresponding dense matrix.

This document describes the C language interface to the H-Lib
pro

library. Since H-Lib
pro

is
programmed in C++, the internal functions and classes have to be mapped to C data structures.
Furthermore, the functionality of the C interface is limited compared to the C++ interface, but
nevertheless provides most techniques used for standard problem solving. Furthermore, due
to this simplification, the C interface involves a less steep learning curve to get familiar with
H-matrices and H-Lib

pro
.

For an introduction into H-matrices, please refer to the H-Lib
pro

user manual ([Kri]). This
also applies to the documentation of the installation process.

Content

The documentation of the interface to the C programming language begins with two typical
examples in Chapter 2. General functions and data types are described in Chapter 3. Coordi-
nates, cluster trees and block cluster trees as the basic building blocks for H-matrices are the
topic of Chapter 4, whereas vectors and matrices will be discussed in Chapter 5. Functions for
the H-matrix algebra are introduced in Chapter 6. Finally, descriptions of auxiliary functions
can be found in Chapter 7.

Conventions

The following typographic conventions are used in this documentation:

CODE For functions and other forms of source code appearing in the document.
TYPES For data types, e.g. structures, pointers and classes.
FILES For files, programs and command line arguments.

Furthermore, several boxes signal different kind of information. A remark to the correspond-
ing subject is indicated by

Remark

This is a remark

1

Preface 2

Important information regarding crucial aspects of the topic are displayed as

Attention

This is important.

Examples for a specific function or algorithm are enclosed by

void example ();

2 Introductory Examples

Before the individual functions are described in detail, two typical examples of their usage are
used for an introduction into the C interface to H-Lib

pro
.

2.1 Integral Equation

In this example an integral equation is to be solved by using H-matrices. For this, the system
matrix has to be represented in the H-format and a preconditioner shall be computed in with
the H-arithmetics. Since the matrices in question are dense, the following procedures apply
also to this type of matrices in general.

Remark

Source code for the complete example with additional output statements and timing of each
function can be found in examples/bem1d.c.

Problem Definition
The following integral equation is considered:

∫

1

0

log |x − y|u(y)dy = f(x), x ∈ [0, 1]

Here, the function u : [0, 1] → R is sought for a given right hand side f : [0, 1] → R. The
Galerkin discretisation uses constant ansatz functions ϕi, 0 ≤ i < n

ϕi(x) =

{

1 x ∈ [i
n
, i+1

n
]

0 otherwise

This leads to a linear equations system with the matrix A defined by

aij =

∫

1

0

∫

1

0

ϕi(x) log |x − y|ϕj(y)dydx (2.1)

=

∫ i+1

n

i
n

∫ j+1

n

j

n

log |x − y|dydx

Initialisation
Before we can call any H-Lib

pro
functions, the library is initialised with hlib init in line 6. To

increase the output of H-Lib
pro

, the default verbosity is increased to level 2 in line 7.

1 #include "hlib-c.h"
2

3 int

3

Introductory Examples 4

4 main (int argc, char ** argv) {
5 int info;
6

7 hlib_init(& argc, & argv, & info); CHECK_INFO;
8 hlib_set_verbosity(2);

Error checking is performed by the macro CHECK INFO, which looks at the value of the
variable info after each function call to H-Lib

pro
and tests whether an error occured. The

definition of CHECK INFO is as follows:

#define CHECK_INFO { if (info != HLIB_NO_ERROR) \
{ char buf[1024]; hlib_error_desc(buf, 1024); \

printf("\n%s\n\n", buf); exit(1); } }

There, the complete error message is copied into the string buf by the function hlib error desc

and printed to the standard output. Afterwards, the program is aborted.

Coordinates and Cluster Trees

In order to represent the system matrix in the H-matrix format, one has to create a cluster
tree and a block cluster tree. For the cluster tree, coordinate informations are necessary for
each index.

The dimension of the problem is defined by the n, which also defines the stepsize h of the
discretisation. The coordinates for the indices are chosen as the midpoints of the i’th interval
[

i
n
, i+1

n

]

. After allocating and initialising the data for the index positions, it is imported into

H-Lib
pro

by hlib coord import at line 18. Using the coordinate data, the cluster tree can
be created with hlib ct build bsp as it is done at line 20. The resulting tree is afterwards
printed to the file ct.ps in PostScript format. Finally, one can construct the block cluster tree
using hlib bct build.

9 int n = 1024;
10 double h = 1.0 / ((double) n);
11 double ** vertices = (double**) malloc(n * sizeof(double*));
12

13 for (int i = 0; i < n; i++) {
14 vertices[i] = (double*) malloc(sizeof(double));
15 vertices[i][0] = h * ((double) i) + (h / 2.0);
16 }
17

18 hlib_coord_t coo = hlib_coord_import(n, 1, vertices,
19 NULL, & info); CHECK_INFO;
20 hlib_cluster_t ct = hlib_ct_build_bsp(coord, & info); CHECK_INFO;
21 hlib_ct_print_ps(ct, "ct.ps", & info); CHECK_INFO;
22

23 hlib_blockcluster_t bct = hlib_bct_build(ct, ct, & info); CHECK_INFO;
24 hlib_bct_print_ps(bct, "bct.ps", & info); CHECK_INFO;

Matrix Construction

After the partitioning of the block indexset in the form of the block cluster tree is computed,
the actual H-matrix can be build. For this, adaptive cross approximation (or ACA, see Sec-
tion 5.2.2) is used in this example. ACA needs a matrix coefficient function, which computes

5 2.1 Integral Equation

the matrix entries aij for given index pairs (i, j) ∈ I × I. In our case, this function is given by
(2.1), which, after evaluating the integral, translates into the following code:

void coeff_fn (const int n, const int * rowidx,
const int m, const int * colidx,
double * matrix, void * arg) {

int rowi, colj;
double h = *((double*) arg);

for (colj = 0; colj < m; colj++) {
const int idx1 = colidx[colj];

for (rowi = 0; rowi < n; rowi++) {
const int idx0 = rowidx[rowi];
double value;

if (idx0 == idx1)
value = -1.5*h*h + h*h*log(h);

else {
const double dist = h * (fabs((double) (idx0-idx1)) - 1.0);
const double t1 = dist+1.0*h;
const double t2 = dist+2.0*h;

value = (- 1.5*h*h + 0.5*t2*t2*log(t2) - t1*t1*log(t1));

if (fabs(dist) > 1e-8)
value += 0.5*dist*dist*log(dist);

}

matrix[(colj*n) + rowi] = -value;
} } }

The arguments n, rowidx, m and colc define a submatrix of dimension n×m with row and
column indices stored in rowidx and colidx. The coefficients must be stored in column wise

ordering as in Fortran instead of row wise ordering as in C in the array matrix. The additional
argument arg points to user supplied data and contains the h stepwidth in our example (see
below).

Equipped with the coefficient function, the code for constructing an H-matrix looks like:

25 hlib_matrix_t A = NULL;
26 A = hlib_matrix_build_coeff(bct, coeff_fn, & h, HLIB_LRAPX_ACAPLUS,
27 1e-4, 1, & info); CHECK_INFO;
28

29 hlib_matrix_print_ps(A, "A.ps", HLIB_MATIO_SVD, & info); CHECK_INFO;
30

31 long bytesize = hlib_matrix_bytesize(A, & info); CHECK_INFO;
32

33 printf(" compression ratio = %.2f%% (%.2f MB compared to %.2f MB)\n",
34 100.0 * ((double) bytesize) /
35 (((double) n) * ((double) n) * ((double) sizeof(double))),
36 ((double) bytesize) / (1024.0 * 1024.0),

Introductory Examples 6

37 (((double) n) * ((double) n) * ((double) sizeof(double))) /
38 (1024.0 * 1024.0));

Here, ACA is chosen by the option HLIB LRAPX ACAPLUS, which defines the advanced and
preferable version of ACA. The coefficient function together with the stepsize h form the
second and third parameter to hlib matrix build coeff, whereby h is the user supplied data
of arbitrary format.

Since the H-matrix usually does not represent the exact dense matrix but only an approx-
imation, the accuracy of this approximation is defined by the fifth parameter to the function
hlib matrix build coeff and is set to 10−4 in this example. The accuracy applies per ma-
trix block, e.g. for each matrix block the approximation is performed with an error of 10−4.
Unfortunately, the error for the whole matrix can not be controlled that easily.

Finally, the second last parameter indicates the symmetry of the matrix.
The matrix is afterwards printed in PostScript format to a file with hlib matrix print ps in

line 29. For each matrix block of the H-matrix, a singular value decomposition is computed and
the singular values are printed in a logarithmic scale. This allows a control of the approximation
properties for the H-matrix, e.g. if the singular values decrease rapidly in a block, this part of
the matrix can be approximated well (see also Section 5.2.5.5).

To determine the efficiency of the H-matrix approximation in terms of memory usage, the
consumption of the matrix is calculated at line 31 and compared to a dense matrix at line 33.

One can also compare the quality of the approximation due to ACA and the coarse ap-
proximation by eps = 10−4 with the best approximation of the given matrix with respect to
machine precision. For the best approximation, the singular value decomposition is the method
of choice. Unfortunately, it has a complexity of O

(

n3
)

and is therefore only practical for small
problem sizes. The machine precision is assumed to be 10−16, which is roughly valid for most
systems and the double precision floating point format.

39 if (n < 2000) {
40 hlib_matrix_t B = NULL;
41 B = hlib_matrix_build_coeff(bct, coeff_fn, & h, HLIB_LRAPX_SVD,
42 1e-16, 1, & info); CHECK_INFO;
43 hlib_matrix_print_ps(B, "A_svd.ps", HLIB_MATIO_SVD, & info);CHECK_INFO;
44 printf(" |A-~A|_F/|A|_F = %.4e\n" ,
45 hlib_matrix_norm_spectral_diff(A, B, & info)); CHECK_INFO;
46 hlib_matrix_free(B, & info); CHECK_INFO;
47 }

Using hlib matrix norm spectral diff, the relative difference with respect to the spectral
norm is computed and printed at line 44. Since it is no longer used, matrix B is released at
line 46 with hlib matrix free.

Remark

Instead of comparing A with another H-matrix, one could also compute the exact matrix
Aexact and determine ‖A − Aexact‖F (see ???). But remember, that this requires O

(

n2
)

memory whereas the above procedure usually consumes O (n log n) memory, albeit with a
large constant.

Before the equation system can be solved, the right hand side also has to be discretised
and represented by a corresponding vector. The above described ansatz leads to the following

7 2.1 Integral Equation

function for the right hand side bi =
∫

1

0
ϕi(x)f(x)dx, where f is chosen such that for the

solution u ≡ 1 holds:

double rhs (const int i, const int n) {
const double a = ((double)i) / ((double) n);
const double b = ((double)i+1.0) / ((double) n);
double value = -1.5 * (b - a);

if (fabs(b) > 1e-8) value += 0.5*b*b*log(b);
if (fabs(a) > 1e-8) value -= 0.5*a*a*log(a);
if (fabs(1.0 - b) > 1e-8) value -= 0.5*(1.0-b)*(1.0-b)*log(1.0-b);
if (fabs(1.0 - a) > 1e-8) value += 0.5*(1.0-a)*(1.0-a)*log(1.0-a);

return value;
}

The actual vectors for b and the solution, stored in x, are constructed out of C arrays of length
n:

48 double * x_arr = (double *) malloc(n * sizeof(double));
49 double * b_arr = (double *) malloc(n * sizeof(double));
50

51 hlib_vector_t x = hlib_vector_import_array(x_arr, n, & info);CHECK_INFO;
52 hlib_vector_t b = hlib_vector_import_array(b_arr, n, & info);CHECK_INFO;
53

54 for (i = 0; i < n; i++) b_arr[i] = rhs(i, n);

Please note, that the access to the elements of the vector b at line 54 is done via the ar-
ray b arr, which is faster then the equivilant call to the corresponding H-Lib

pro
function

hlib vector entry set.

Solving the System
The solution x is computed using:

55 hlib_solve(A, x, b, NULL, & info); CHECK_INFO;

Since the solution is known, one can compute the error ‖x − 1‖2:

56 hlib_vector_t one = hlib_vector_copy(x, & info); CHECK_INFO;
57 hlib_vector_fill(one, 1.0, & info); CHECK_INFO;
58

59 hlib_vector_axpy(x, 1.0, one, & info); CHECK_INFO;
60 double error = hlib_vector_norm2(x, & info); CHECK_INFO;
61

62 printf(" error of solution = \%.4e\n", error);

Here, the linear algebra functions for vectors in H-Lib
pro

are used. The vector one contains the
exact solution.

The unpreconditioned iteration is usually inefficient. Therefore, matrix inversion is used to
speed up the process. Since only matrix-vector multiplications with the inverse are needed for
all implemented iteration techniques, LU factorisation is the method of choice.

To obtain a LU decomposition, the matrix A is copied into LU using hlib matrix copy eps.
Since only a preconditioner is needed, this copy is not exact but with a reduced blockwise

Introductory Examples 8

accuracy of 10−2. The same accuracy is then used for the LU factorisation performed by
hlib matrix inv lu at line 64. This function overwrites the given matrix by its LU factors.
The quality of the resulting preconditioner is tested at line 68. There, the largest eigenvalue of
‖I − A(LU)−1‖ is computed. Solving the preconditioned system and computing the resulting
error is analogous to the unpreconditioned case.

63 hlib_matrix_t LU = hlib_matrix_copy_eps(A, 1e-2, & info); CHECK_INFO;
64 hlib_matrix_inv_lu(LU, 1e-2, & info); CHECK_INFO;
65

66 hlib_matrix_print_ps(LU, "LU.ps", HLIB_MATIO_SVD, & info); CHECK_INFO;
67

68 printf(" inversion error = \%.4e\n",
69 hlib_matrix_norm_inv_approx(A, LU, & info)); CHECK_INFO;
70

71 hlib_solve_precond(A, LU, x, b, NULL, & info); CHECK_INFO;
72

73 hlib_vector_axpy(x, 1.0, one, & info); CHECK_INFO;
74 error = hlib_vector_norm2(x, & info); CHECK_INFO;
75

76 printf(" error of solution = \%.4e\n", error);
77

78 hlib_matrix_free(LU, & info); CHECK_INFO;

Remark

In example/bem1d.c, a preconditioner based on Gaussian elimination is computed in addi-
tion to the one due to LU factorisation presented here.

Finalisation

Finally, one has to release all resources allocated in the example and finish H-Lib
pro

:

79 hlib_vector_free(x, & info); CHECK_INFO;
80 hlib_vector_free(b, & info); CHECK_INFO;
81 hlib_vector_free(one, & info); CHECK_INFO;
82 hlib_matrix_free(A, & info); CHECK_INFO;
83 hlib_bct_free(bct, & info); CHECK_INFO;
84 hlib_ct_free(ct, & info); CHECK_INFO;
85

86 free(x_arr); free(b_arr);
87

88 for (i = 0; i < n; i++) free(vertices[i]);
89 free(vertices);
90

91 hlib_done(& info); CHECK_INFO;

Please note the manual freeing of the C arrays x arr and b arr which are associated with the
vectors x and b. This has to be done by the user, since H-Lib

pro
will not release user allocated

memory.

9 2.2 Sparse Linear Equation System

2.2 Sparse Linear Equation System

In this example, a linear equation system

Sx = b

with a sparse matrix S and a right hand side b is considered. Such a system usually occures
in the context of finite difference or finite element discretisations. The linear system itself is
provided in the form of a SAMG dataset with the basename “samg matrix” (see Section 5.1.4.2
and Section 5.2.5.2). For this specific example, we assume that no geometrical information
about the position of the degrees of freedom is available.

Remark

The complete example with additional output statements and timing of each function is
available in examples/crsalg.c. A similar example with geometrical clustering can be
found in examples/crsgeom.c.

Initialisation and Data Import
Again, before any H-Lib

pro
function can be used, the library has to be initialised. Afterwards,

the data from the files containing the matrix and the right-hand side is imported to H-Lib
pro

using the functions hlib load matrix and hlib load vector respectively. Here, the I/O
functions are used, which automatically detect the format of the corresponding files. After the
import, the matrix is printed to the file S.ps in PostScript format (see Section 5.2.5.5). As
the option HLIB MATIO PATTERN is supplied, only the pattern of non-zero matrix elements is
printed.

The vector for the unknown x is constructed via hlib matrix col vector such that it is
compatible for a right multiplication with the matrix S (see Section 5.2.3).

Evaluating the content of info is again done by the macro CHECK INFO which is defined as
in the previous section.

1 #include "hlib-c.h"
2

3 int
4 main (int argc, char ** argv) {
5 hlib_matrix_t S;
6 hlib_vector_t b, x;
7 int n, info;
8 char mtx_file[] = "samg_matrix.amg";
9 char rhs_file[] = "samg_matrix.rhs";

10

11 hlib_init(& argc, & argv, & info); CHECK_INFO;
12

13 S = hlib_load_matrix(mtx_file, & info); CHECK_INFO;
14 hlib_matrix_print_ps(S, "S.ps", HLIB_MATIO_PATTERN, & info);CHECK_INFO;
15 b = hlib_load_vector(rhs_file, & info); CHECK_INFO;
16 x = hlib_matrix_col_vector(S, & info); CHECK_INFO;

Since the complete data for the equation system is now available, one can solve it via
hlib solve and the default solver of H-Lib

pro
:

Introductory Examples 10

17 hlib_solve(S, x, b, NULL, & info); CHECK_INFO;

In this particular case, no object for obtaining information about the solution process was
supplied.

LU Factorisation for Preconditioning
As in the previous example, the standard iteration process is usually far to costly. Therefore, a
suitable preconditioner based on the H-matrix technique shall be constructed to speed up the
iteration. At first, this is accomplished by using LU factorisation in combination with nested
dissection (see Section 4.2.2 and Section 6.4).

But before the matrix can be factorised, it has to be converted to an H-matrix. For this,
one needs a cluster tree and a block cluster tree. Since no geometrical data is available in this
example, both objects are constructed algebraically with the functions hlib ct build alg nd

and hlib bct build:

18 hlib_cluster_t ct = hlib_ct_build_alg_nd(S, & info); CHECK_INFO;
19 hlib_ct_print_ps(ct, "ct_nd.ps", & info); CHECK_INFO;
20

21 hlib_blockcluster_t bct = hlib_bct_build(ct, ct, & info); CHECK_INFO;
22 hlib_bct_print_ps(bct, "bct_nd.ps", & info); CHECK_INFO;

At line numbers 19 and 22, the two trees are printed to the files ct nd.ps and bct nd.ps,
respectively.

Now the sparse matrix S can be converted to an H-matrix, which then is factorised into LU
factors with a blockwise precision of 10−4.

Remark

Usually, when converting a sparse matrix, the precision parameter does not apply since
the admissibility condition ensures that admissible matrix blocks do not contain non-zero
matrix coefficients. Albeit, in some cases it is still possible that these matrix blocks are
non-empty and a low-rank approximation will be computed.

The matrix A is overwritten with its LU factorisation, or, to be precise, with the inverse of
its LU factorisation, although the inverse itself is not computed. Both matrices are printed
in PostScript format at the lines 24 and 28. In the case of the factorised matrix, the singular
value decomposition of the matrix is printed as chosen by the parameter HLIB MATIO SVD. The
size of the LU factors is determined by hlib matrix bytesize and printed at line 30.

23 hlib_matrix_t A = hlib_matrix_build_sparse(bct, S, & info); CHECK_INFO;
24 hlib_matrix_print_ps(A, "A_nd.ps", HLIB_MATIO_PATTERN,
25 & info); CHECK_INFO;
26

27 hlib_matrix_inv_lu(A, 1e-4, & info); CHECK_INFO;
28 hlib_matrix_print_ps(A, "LU_nd.ps", HLIB_MATIO_SVD, & info);CHECK_INFO;
29

30 printf(" size of LU factor = \%.2f MB\n",
31 ((double) hlib_matrix_bytesize(A, & info)) / (1024.0 *1024.0));

The above equation system can now be solved with the inverse of the LU factorisation of A
as a preconditioner:

11 2.2 Sparse Linear Equation System

32 hlib_solve_precond(S, A, x, b, NULL, & info); CHECK_INFO;

Again, no object for returning informations about the solution process was supplied.
Finally, the locally created objects, e.g. the cluster tree, the block cluster tree and the

H-matrix can be deleted:

33 hlib_matrix_free(A, & info); CHECK_INFO;
34 hlib_bct_free(bct, & info); CHECK_INFO;
35 hlib_ct_free(ct, & info); CHECK_INFO;

Matrix Inversion for Preconditioning
An alternative procedure for the fast solution of the above system is by using matrix inversion
. Again, before the matrix can be inverted, a cluster tree and a block cluster tree have to
be constructed. Nested dissection, as it was used for LU decomposition, is not a suitable
technique for matrix inversion (see Section 4.2.2). Hence, standard algebraic partitioning
functions employing bisection techniques are used with the function hlib ct build alg:

36 hlib_cluster_t ct = hlib_ct_build_alg(S, & info); CHECK_INFO;
37 hlib_ct_print_ps(ct, "ct.ps", & info); CHECK_INFO;
38

39 hlib_blockcluster_t bct = hlib_bct_build(ct, ct, & info); CHECK_INFO;
40 hlib_bct_print_ps(bct, "bct.ps", & info); CHECK_INFO;

Converting the sparse matrix into an H-matrix is done by the same function as before. Only
the matrix inversion is now performed by hlib matrix inv:

41 hlib_matrix_t A = hlib_matrix_build_sparse(bct, S, & info); CHECK_INFO;
42 hlib_matrix_print_ps(A, "A.ps", HLIB_MATIO_PATTERN, & info);CHECK_INFO;
43

44 hlib_matrix_inv(A, 1e-4, & info); CHECK_INFO;
45 hlib_matrix_print_ps(A, "I.ps", HLIB_MATIO_SVD, & info); CHECK_INFO;
46

47 printf(" size of Inverse = \%.2f MB\n",
48 ((double) hlib_matrix_bytesize(A, & info)) / (1024.0 *1024.0));

Again, A is overwritten by its inverse matrix. Both matrices are also printed in PostScript
format, whereby for the inverse matrix the singular value decomposition of each matrix block
is written.

The linear equation system is then solved as in the previous case:

49 hlib_solve_precond(S, A, x, b, NULL, & info); CHECK_INFO;

Again, all locally created objects are released when they are no longer needed:

50 hlib_matrix_free(A, & info); CHECK_INFO;
51 hlib_bct_free(bct, & info); CHECK_INFO;
52 hlib_ct_free(ct, & info); CHECK_INFO;

Finalisation
Finally, all global objects which where created at the beginning should be freed. Furthermore,
H-Lib

pro
is finished.

Introductory Examples 12

53 hlib_vector_free(x, & info); CHECK_INFO;
54 hlib_vector_free(b, & info); CHECK_INFO;
55 hlib_matrix_free(S, & info); CHECK_INFO;
56

57 hlib_done(& info); CHECK_INFO;

3 General Functions and Data types

3.1 Initialisation and Finalisation

Before using any functions, H-Lib
pro

has to be initialised to set up internal data. In the same
way, when H-Lib

pro
is no longer needed, it should be finished. Both is done by the following

functions:

Syntax

void hlib_init (int * argc, char *** argv, int * info);
void hlib_done (int * info);

Arguments

argc

Number of command line arguments.

argv

array of strings containing the command line arguments.

info

to return error status

The function hlib init expects the command line parameters argc and argv for the pro-
gram as arguments and initialises H-Lib

pro
. The values of argc and argv might be modified by

hlib init. Accordingly, hlib done finishes H-Lib
pro

. The meaning of the argument info will
be discussed in the next section.

Remark

The license management is also performed by hlib init and hlib done, e.g. a license is
acquired during initialisation and released during finalisation. Without this, most functions
in H-Lib

pro
will not work.

Normally, H-Lib
pro

does not produce any output at the console. This behaviour can be
changed with

Syntax

void hlib_set_verbosity (const unsigned int verb);

Here, larger values correspond to more output, e.g. error messages, timing information, algo-
rithmic details.

3.2 Error Handling

Almost all functions in the C interface of H-Lib
pro

expect a pointer to an integer, usually named
info, which is used to indicate the status of the function, i.e. whether an error occurred and

13

General Functions and Data types 14

what kind of error this was. If info points to NULL, it will not be accessed and no information
about errors will be delivered to the user.

Alternatively, the user can specify an error function which will be called. See below on how
to use this feature.

The following lists contain all error codes of H-Lib
pro

:

General Errors

HLIB NO ERROR no error occured
HLIB ERR INIT not initialised
HLIB ERR LICENSE invalid license
HLIB ERR NOT IMPL functionality not implemented
HLIB ERR CONSISTENCY general consistency error
HLIB ERR COMM communication error
HLIB ERR PERM permission denied
Numerical Errors

HLIB ERR REAL data is real valued
HLIB ERR NREAL data is not real valued
HLIB ERR COMPLEX data is complex valued
HLIB ERR NCOMPLEX data is not complex valued
HLIB ERR DIV ZERO division by zero
HLIB ERR NEG SQRT sqrt of negative number
HLIB ERR INF infinity occured
HLIB ERR NAN not-a-number occured
HLIB ERR NCONVERGED iteration did not converge
Memory, Datasize and Argument Errors

HLIB ERR ARG error with argument
HLIB ERR MEM insufficient memory available
HLIB ERR NULL unexpected null pointer encountered
HLIB ERR SIZE size of data incorrect
HLIB ERR DIM invalid or incompatible dimension
HLIB ERR ARR BOUND out-of-bound error in array
HLIB ERR DIAG ENTRY entry is not on diagonal
Coordinate Errors

HLIB ERR COORD INVALID invalid coordinates
Cluster Tree Errors
HLIB ERR CT INVALID invalid cluster tree
HLIB ERR CT TYPE wrong type of cluster tree
HLIB ERR CT STRUCT invalid structure of cluster tree
HLIB ERR CT INCOMP given cluster trees are incompatible
HLIB ERR CT SPARSE missing sparse matrix for given cluster tree
Block Cluster Tree Errors
HLIB ERR BCT INVALID invalid block cluster tree
HLIB ERR BCT STRUCT invalid block cluster tree structure
Vector Errors

HLIB ERR VEC INVALID invalid vector
HLIB ERR VEC TYPE wrong vector type
HLIB ERR VEC STRUCT invalid vector structure
HLIB ERR VEC SIZE invalid size of vector
HLIB ERR VEC INCOMP vector with incompatible dimension
HLIB ERR VEC NSCALAR vector is not a scalar vector
Matrix Errors

15 3.2 Error Handling

HLIB ERR MAT TYPE invalid matrix type
HLIB ERR MAT STRUCT invalid structure of matrix
HLIB ERR MAT SIZE invalid size of matrix
HLIB ERR MAT SINGULAR singular matrix detected
HLIB ERR MAT NSPARSE matrix not a sparse matrix
HLIB ERR MAT NDENSE matrix not a dense matrix
HLIB ERR MAT NHMAT matrix not an H-matrix
HLIB ERR MAT INCOMP TYPE matrices with incompatible type
HLIB ERR MAT INCOMP CT matrices with incompatible cluster tree
HLIB ERR MAT INVALID invalid matrix
HLIB ERR MAT NSYM, matrix not symmetric
HLIB ERR MAT NHERM, matrix not hermitian
HLIB ERR MAT NPOSDEF, matrix not positiv definite
File Format Errors

HLIB ERR FMT UNKNOWN detected unkown file format
HLIB ERR FMT HFORMAT error while parsing HLIBpro format
HLIB ERR FMT SAMG error while parsing SAMG format
HLIB ERR FMT MATLAB error while parsing Matlab format
HLIB ERR FMT PLTMG error while parsing PLTMG format
HLIB ERR FMT HB error while parsing Harwell Boeing format
HLIB ERR FMT MTX error while parsing MatrixMarket format
HLIB ERR FMT PLY error while parsing Ply format
HLIB ERR GRID FORMAT invalid format of grid file
HLIB ERR GRID DATA invalid data in grid file
File I/O Errors

HLIB ERR FOPEN could not open file
HLIB ERR FCLOSE could not close file
HLIB ERR FWRITE could not write to file
HLIB ERR FREAD could not read from file
HLIB ERR FSEEK could not seek in file
HLIB ERR FNEXISTS file does not exists
Bytestream Errors
HLIB ERR BS SIZE size of bytestream too small
HLIB ERR BS WRITE error while writing to bytestream
HLIB ERR BS READ error while reading from bytestream
HLIB ERR BS TYPE type error in bytestream
HLIB ERR BS DATA general data error in bytestream
Library Support Errors
HLIB ERR NOZLIB no zlib support compiled in
HLIB ERR ZLIB UNZIP error during zlib uncompression
HLIB ERR NOMETIS no METIS support compiled in
HLIB ERR NOSCOTCH no Scotch support compiled in
HLIB ERR SCOTCH error in call to Scotch function
HLIB ERR NOCHACO no Chaco support compiled in
HLIB ERR NOFFTW3 no FFTW3 support compiled in
Data Errors
HLIB ERR SOLVER INVALID invalid solver
HLIB ERR LRAPX INVALID invalid low-rank approximation type
HLIB ERR GRID INVALID invalid grid
HLIB ERR FNSPACE INVALID invalid function space

General Functions and Data types 16

To get detailed information about the error, e.g. where it occurred inside H-Lib
pro

, you can
use the following function:

Syntax

void hlib_error_desc (char * desc, const unsigned int size);

Arguments

desc

Character array to copy description to

size

Size of character array desc in bytes.

which returns a corresponding string.
By default, only the error codes will be returned by functions in H-Lib

pro
. To also produce

a corresponding message at the current terminal, the verbosity level has to be increased to at
least 2.

Instead of supplying an integer, the user can also define an error function of type

typedef void * hlib_errorfn_t (const int errcode,
const char * errmsg);

The arguments errcode contains the corresponding code of the error as defined above, whereas
errmsg is a string with the complete error message. The user supplied error function is defined
by

Syntax

void hlib_set_error_fn (const hlib_errorfn_t errorfn);

The user can also define an error function and supply an info pointer to each function.

3.3 Data types

Most data types in H-Lib
pro

are defined as handles, implemented by pointers, to the actual
data. This applies to cluster trees (Section 4.2), block cluster trees (Section 4.3), matrices
(Section 5.2). Although they are pointers, a user must not use standard C functions like
malloc or free to allocate or deallocate the associated memory (see also Section 3.4).

H-Lib
pro

supports single and double precision in the H-arithmetics, albeit not both at the
same time. The choice between these has to be done during configuration (see [Kri, Section
2]). All functions in the C interface requiring real valued data are defined using

typedef double hlib_real_t;

as the corresponding data type. Exceptions to this rule are for instance doordinate informations
which are always supplied by double precision data.

Furthermore, since H-Lib
pro

is also capable of handling complex arithmetic, a special data
type

typedef struct { hlib_real_t re, im; } hlib_complex_t;

is introduced to allow the exchange of information between an application and H-Lib
pro

. Here,
re represents the real part of a complex number whereas im corresponds to the imaginary part.

17 3.4 Reference Counting

3.4 Reference Counting

Most objects in H-Lib
pro

, e.g. cluster trees, block cluster trees and matrices, might be referenced
by more than one variable. As an example, a block cluster tree always stores the defining row
and column cluster trees (see Section 4.3).

To efficiently handle these references, inside H-Lib
pro

reference counting is used, i.e. each
object stores the number of references to it. Due to this, a copy operation is done by just
increasing this reference counter without any further overhead. This also means, that you
must use the functions provided by H-Lib

pro
to free objects.

Attention

To repeat it again: never directly release an object, e.g. via free(void *), since it might
be shared by other objects leading to an undefined behaviour of the program.

The usage of the H-Lib
pro

-routines also has the advantage, that some further checks are
performed to test whether an object was already released or not. This means that instead of
an undefined program behaviour an error is generated if you want to access an object previously
freed.

3.5 Parallel Computing

H-Lib
pro

supports parallel computing on shared memory systems with multiple threads1. For
this, H-Lib

pro
creates a pool of threads during initialisation which are later used for concurrent

tasks, e.g. matrix multiplication or inversion. The user can define the number of threads to
use by setting the environment variable HLIB NTHREADS or by the function

Syntax

void hlib_set_nthreads (const unsigned int p);

Arguments

p

Number of threads to use during H-matrix arithmetics.

Remark

The value supplied by hlib set nthreads overrides the value defined by HLIB NTHREADS.

1Distributed memory computations via MPI are not yet available for the C interface.

General Functions and Data types 18

4 Coordinates and Cluster Trees

H-matrices are based on two basic building blocks: cluster trees and block cluster trees. A
cluster tree defines a hierarchical decomposition of an indexset, whereas a block cluster tree
represents a decomposition of a block indexset. Both objects have to be created before building
an H-matrix.

Although not necessary, the typical way to construct cluster trees and block cluster trees
involves geometrical information about indices which are stored in coordinates.

4.1 Coordinates

Most applications using H-matrices will have geometrical data associated with unknowns. This
data forms the basis for the clustering routines described in Section 4.2. To let H-Lib

pro
know

about the coordinates, they have to be imported into an internal data type:

typedef struct hlib_coord_s * hlib_coord_t;

The fundamental import function is hlib coord import :

Syntax

hlib_coord_t
hlib_coord_import (const unsigned int n,

const unsigned int dim,
double ** coord,
const double * period,
int * info);

Arguments

n

Number of coordinates.

dim

Spatial dimension each coordinate.

coord

Array of size n pointers to coordinates of dimension dim. Coordinate i, e.g. coord[i] has to
correspond to the i’th unknown.

period

Vector of dimension dim defining the periodicity of the coordinates, or NULL.

In the following example, four coordinates for a 2-dimensional problem with indices at the
corners of the unit square are imported to H-Lib

pro
:

double pos[4][2] = { { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 } };
double * coord[4] = { pos[0], pos[1], pos[2], pos[3] };
hlib_coord_t hcoord = NULL;

hcoord = hlib_coord_import(4, 2, coord, NULL, & info);

19

Coordinates and Cluster Trees 20

Remark

The data in the coordinate array is not copied by H-Lib
pro

. Therefore, any changes to this
array will also affect the behaviour of the corresponding H-Lib

pro
functions.

One can also specify a periodicity for the coordinates. By supplying a non-NULL array
period, the coordinates are assumed to repeat every period[i] step in the i’th spatial direction.
If period[i] = 0, no periodicity is given. The above example can be modified to have x-
periodicity by

double period[2] = { 1, 0 };

hcoord = hlib_coord_import(4, 2, coord, & period, & info);

To access a specific coordinate in a H-Lib
pro

coordinate variable the following functions is
available:

Syntax

double * hlib_coord_get (const hlib_coord_t coord,
const unsigned int i,
int * info);

Furthermore, the two functions below return the number of coordinates and their spatial
dimension

Syntax

unsigned int hlib_coord_size (const hlib_coord_t coord, int * info);
unsigned int hlib_coord_dim (const hlib_coord_t coord, int * info);

4.1.1 Coordinate Management Functions

Releasing coordinate variables is done via hlib coord free.

Syntax

void hlib_coord_free (hlib_coord_t coord, int * info);

If the coordinate data was provided by the user, these arrays are not freed from memory.
Only if H-Lib

pro
has created the coordinates, e.g. via I/O (see below), memory deallocation is

performed.

The memory consumption of a coordinate field is obtained by

Syntax

unsigned long hlib_coord_bytesize (const hlib_coord_t coord, int * info);

21 4.2 Cluster Trees

4.1.2 Coordinate I/O

Coordinates can be read and written in the H-Lib
pro

-format by using

Syntax

hlib_coord_t
hlib_hformat_load_coord (const char * filename,

int * info);

void
hlib_hformat_save_coord (const hlib_coord_t coord,

const char * filename,
int * info);

Furthermore, coordinates stored in the SAMG format can be imported to H-Lib
pro

. The
corresponding function is

Syntax

hlib_coord_t hlib_samg_load_coord (const char * filename, int * info);

Also, a general function is provided which tries to autodetect the file format used to hold
the coordinates:

Syntax

hlib_coord_t hlib_load_coord (const char * filename, int * info);

4.2 Cluster Trees

Inside H-Lib
pro

cluster trees are represented by objects of type

typedef struct hlib_cluster_s * hlib_cluster_t;

and can be created in various ways according to the type of data supplied to H-Lib
pro

.

4.2.1 Cluster Tree Management Functions

To safely free all resources coupled with a cluster tree the following function can be used.

Syntax

void hlib_ct_free (hlib_cluster_t ct, int * info);

The object ct and all coupled resources are freed from memory unless the cluster tree is used
by another object.

Of interest is also the amount of memory used by the cluster tree. This information can be
obtained by the function

Syntax

unsigned long hlib_ct_bytesize (const hlib_cluster_t ct, int * info);

This function returns the size of the memory footprint in bytes.

Coordinates and Cluster Trees 22

4.2.2 Cluster Tree Construction

Two different methods are available to build a cluster tree. The first algorithm is based on
geometrical data associated with each index, e.g. the position of the unknown, and uses binary

space partitioning to decompose the indexset. If no geometry information is available, the
connectivity information between indices defined by a sparse matrix can be used in a purely
algebraic method. Furthermore, both algorithms can be combined with nested dissection,
which introduces another level of separation between neighbouring indexsets and is especially
suited for LU decomposition methods (see Section 6.4).

Functions for Geometrical Clustering
Geometrical clustering is based on binary space partitioning which is either performed with
respect to the cardinality or the geometrical size of the resulting sub-clusters. The detection of
a separating interface between two neighbouring indexsets by the nested dissection technique
is accomplished by the connectivity information defined by a sparse matrix and therefore does
not need geometrical information.

Remark

For the geometrical clustering, only the positions of the indices are needed, e.g. no grid or
other management data.

The following two functions perform the geometrical clustering with or without nested dis-
section:

Syntax

hlib_cluster_t hlib_ct_build_bsp (const hlib_coord_t coord,
int * info);

hlib_cluster_t hlib_ct_build_bsp_nd (const hlib_coord_t coord,
const hlib_matrix_t S,
int * info);

Arguments

coord

Coordinates for each index in the indexset.

S

Sparse matrix defining connectivity of the indices.

The type of binary space partitioning can be changed by

Syntax

void hlib_set_bsp_type (const hlib_bsp_t bsp);

Arguments

bsp

Defines the strategy used by the binary space partitioning algorithm and can be one of:

HLIB BSP AUTO Automatically decide suitable strategy. This is the default.
HLIB BSP GEOM Partition such that sub clusters have an equal geometrical size.
HLIB BSP REGULAR Use geometrical partitioning with periodically changed splitting axis

instead of longest axis.
HLIB BSP CARD Partition such that sub clusters have an (almost) equally sized in-

dexset.

23 4.2 Cluster Trees

Consider the following example of a 1d problem over the interval [0, 1] with 8 vertices:

0 1 2 3 4 5 6 7

0 1

The cluster tree for this example is now build using standard binary space partitioning. For
this, the coordinates of the indices have to be defined, before the corresponding function is
called:

double pos[8][1] = { { 0./7. }, { 1./7. }, { 2./7. }, { 3./7. },
{ 4./7. }, { 5./7. }, { 6./7. }, { 7./7. } };

double * coord[8] = { pos[0], pos[1], pos[2], pos[3],
pos[4], pos[5], pos[6], pos[7] };

hlib_coord_t hcoord = hlib_coord_import(8, 1, coord, NULL, & info);
hlib_cluster_t ct1 = hlib_ct_build_bsp(hcoord, & info);

The resulting tree would then look as follows:

0, 1, 2, 3, 4, 5, 6, 7

0, 1, 2, 3

0, 1

0 1

2, 3

2 3

4, 5, 6, 7

4, 5

4 5

6, 7

6 7

Now the cluster tree shall be computed with binary space partitioning and nested dissection.
Here, beside the coordinates, the connectivity of the indices is also needed. For this, we assume
that geometrically neighboured indices are also algebraically connected, which would result in
the following sparsity pattern of a corresponding matrix:

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗

For the definition of such a matrix please refer to Section 5.2.1. The corresponding source for
this example is:

double pos[8][1] = { { 0./7. }, { 1./7. }, { 2./7. }, { 3./7. },
{ 4./7. }, { 5./7. }, { 6./7. }, { 7./7. } };

double * coord[8] = { pos[0], pos[1], pos[2], pos[3],
pos[4], pos[5], pos[6], pos[7] };

hlib_coord_t hcoord = hlib_coord_import(8, 1, coord, NULL, & info);

hlib_matrix_t S = /* see chapters below */;
hlib_cluster_t ct2 = hlib_ct_build_bsp_nd(coord, S, & info);

Coordinates and Cluster Trees 24

Due to the interface nodes chosen by the nested dissection part of the algorithm, the result-
ing cluster tree has (mostly) a ternary structure. In the following tree, the coloured nodes
correspond to the interface vertices.

0, 1, 2, 3, 4, 5, 6, 7

0, 1, 2

0 1 2

3 4, 5, 6, 7

4 5 6, 7

6 7

Functions for Algebraic Clustering

If no geometrical data is available, an algebraic algorithm can be used, which is based only on
the connectivity described by a sparse matrix as it results from finite difference or finite element
methods. Since this does not always reflect the real data dependency in a grid, the resulting
clustering usually leads to a less efficient matrix arithmetic than the geometrical approach. As
in the previous case, the algebraic method can be combined with nested dissection.

Syntax

hlib_cluster_t hlib_ct_build_alg (const hlib_matrix_t S, int * info);
hlib_cluster_t hlib_ct_build_alg_nd (const hlib_matrix_t S, int * info);

Arguments

S

Sparse matrix defining connectivity between indices.

Due to the simple structure of the previous examples the resulting cluster trees using alge-
braic clustering would be identical.

Userdefined Partitions

In some applications some particular connection exists between special indices, e.g. in coupled
systems or when adding special conditions to a matrix, and these indices have to be treated
separately. Since H-Lib

pro
is in general not capable of detecting this kind of grouping between

indices, the user is able to give this information when building cluster trees.

For this, the user has to sort the corresponding indices into separate groups by building an
array holding the indices for the groups for each index. This array is afterwards supplied to
one of the cluster tree functions

25 4.2 Cluster Trees

Syntax

hlib_cluster_t
hlib_ct_build_bsp_part (const hlib_coord_t coord,

const unsigned int * partition,
int * info);

hlib_cluster_t
hlib_ct_build_alg_part (const hlib_matrix_t S,

const unsigned int * partition,
int * info);

Arguments

coord,S

Coordinates or sparse matrix used for standard geometrical or algebraical clustering.

partition

Array of length n, where n corresponds to the number of coordinates in coord or the dimension
of the matrix S, with partition[i] holding the group of index i. The groups have to be
numbered consecutively starting from 0.

Both functions first sort the indices according to the group information stored in partition

and will create the first level of the cluster tree by constructing a son node for each group.
Afterwards, the indices are further clustered by the standard clustering algorithms, e.g. BSP
or algebraically.

As an example, for the index set I = {0, . . . , 7} with corresponding coordinates i/7 for
index i ∈ I, the indices shall first be separated into odd and even indices before standard BSP
clustering is applied.

double pos[8][1] = { { 0./7. }, { 1./7. }, { 2./7. }, { 3./7. },
{ 4./7. }, { 5./7. }, { 6./7. }, { 7./7. } };

double * coord[8] = { pos[0], pos[1], pos[2], pos[3],
pos[4], pos[5], pos[6], pos[7] };

hlib_coord_t hcoord = hlib_coord_import(8, 1, coord, NULL, & info);

unsigned int partition[8] = { 0, 1, 0, 1, 0, 1, 0, 1 };
hlib_cluster_t ct = hlib_ct_build_bsp_part(coord, partition,

& info);

The resulting cluster tree ct then is:

0, 1, 2, 3, 4, 5, 6, 7

0, 2, 4, 6

0, 2

0 2

4, 6

4 6

1, 3, 5, 7

1, 3

1 3

5, 7

5 7

4.2.3 Cluster Tree I/O

The tree structure of cluster trees can be exported in the PostScript format to a file by

Coordinates and Cluster Trees 26

Syntax

void hlib_ct_print_ps (const hlib_cluster_t ct,
const char * filename,
int * info);

Arguments

ct

Cluster tree to be printed.

filename

Name of the PostScript file to which ct shall be printed to.

4.3 Block Cluster Trees

The next building block for H-matrices are block cluster trees which represent a hierarchical
partitioning of the block indexset over which matrices are defined. They are constructed by
multiplying two cluster trees and choosing admissible nodes, e.g. nodes where the associated
block indexset allows a low-rank approximation in the matrix.

Block cluster trees are represented in H-Lib
pro

by objects of type

typedef hlib_blockcluster_s * hlib_blockcluster_t;

4.3.1 Block Cluster Construction

Due to the definition of a block cluster tree two cluster trees are needed for the construction.
The actual building is performed by the routine

Syntax

hlib_blockcluster_t hlib_bct_build (const hlib_cluster_t rowct,
const hlib_cluster_t colct,
int * info);

Arguments

rowct

Cluster tree representing the row indexset of the block cluster tree.

colct

Cluster tree representing the column indexset of the block cluster tree.

The cluster trees given to hlib bct build can be identical.

Usually, the admissibility condition responsible for detecting admissible nodes in the block
cluster tree is chosen automatically based on the given cluster trees. The strategy can be
changed by the user with the function

27 4.3 Block Cluster Trees

Syntax

void hlib_set_admissibility (const hlib_adm_t adm, const hlib_real_t eta);

Arguments

adm

Define admissibility condition to be either:

HLIB ADM AUTO automatic choice,
HLIB ADM STD MIN standard admissibility with minimal cluster diameter,
HLIB ADM STD MAX standard admissibility with maximal cluster diameter or
HLIB ADM WEAK weak admissibility.

eta

Scaling parameter for the distance between clusters in the admissibility condition.

Attention

Since changes to the admissibility condition can lead to a failure of the H-matrix approx-
imation or to a reduced computational efficiency of the H-matrix arithmetic, only change
the default behaviour if you really know what you are doing.

To access the row and column cluster trees of a given block cluster tree, one can use the
functions

Syntax

hlib_cluster_t hlib_bct_row_ct (const hlib_blockcluster_t bct, int * info);
hlib_cluster_t hlib_bct_column_ct (const hlib_blockcluster_t bct, int * info);

which will return a copy of the corresponding cluster tree objects.

4.3.2 Block Cluster Tree Management Functions

A block cluster tree object is released by the function

Syntax

void hlib_bct_free (hlib_blockcluster_t bct, int * info);

which frees all resources associated with it. This includes the row and column cluster trees if
no other object uses them.

The memory footprint of an object of type block cluster tree can be determined by

Syntax

unsigned long hlib_bct_bytesize (const hlib_blockcluster_t bct, int * info);

which returns the size in bytes.

4.3.3 Block Cluster Tree I/O

The partitioning of the block index set over which a block cluster tree lives can be written in
PostScript format by

Coordinates and Cluster Trees 28

Syntax

void hlib_bct_print_ps (const hlib_blockcluster_t bct,
const char * filename,
int * info);

Arguments

bct

Block cluster tree to be printed.

filename

Name of the PostScript file bct will be printed to.

5 Vectors and Matrices

5.1 Vectors

Instead of representing vectors by standard C arrays, H-Lib
pro

uses a special data type

typedef struct hlib_vector_s * hlib_vector_t;

One reason for this is the usage of special vector types in parallel environments. Furthermore,
this data type gives H-Lib

pro
additional information to check the correctness of vectors, e.g. the

size.

5.1.1 Creating and Accessing Vectors

Although vectors in H-Lib
pro

are not equal to arrays, they can be defined by such data:

Syntax

hlib_vector_t hlib_vector_import_array (const hlib_real_t * arr,
const unsigned int size,
int * info);

hlib_vector_t hlib_vector_import_carray (const hlib_complex_t * arr,
const unsigned int size,
int * info);

Arguments

arr

Array of size size.

size

Size of the array.

The arrays are directly used by the vector data type, i.e. changing the content of the arrays
also changes the content of the vector. This gives the possibility to efficiently access the vector
coefficients as it is shown in the following example:

unsigned int n = 1024;
hlib_real_t * arr = (hlib_real_t *) malloc(sizeof(hlib_real_t) * n);
hlib_vector_t x = hlib_vector_import_array(arr, n, & info);

for (i = 0; i < n; i++)
arr[i] = i+1;

The coefficient i of the vector x would also equal i + 1 as does the array element arr[i+1].

Such kind of vectors, e.g. scalar vectors, can also be created directly by H-Lib
pro

:

29

Vectors and Matrices 30

Syntax

hlib_vector_t hlib_vector_alloc_scalar (const unsigned int size, int * info);
hlib_vector_t hlib_vector_alloc_cscalar (const unsigned int size, int * info);

Arguments

size

Size of the scalar vector.

Since no external C array is available to access the elements of the vectors, this is accom-
plished by H-Lib

pro
functions. To get a specific element of a vector, the following two functions

can be used:

Syntax

hlib_real_t hlib_vector_entry_get (const hlib_vector_t x,
const unsigned int i,
int * info);

hlib_complex_t hlib_vector_centry_get (const hlib_vector_t x,
const unsigned int i,
int * info);

Arguments

x

Vector to get element from.

i

Position of the element in the vector.

Similarly, the setting of a vector element is defined:

Syntax

void hlib_vector_entry_set (const hlib_vector_t x,
unsigned int i,
const hlib_real_t f,
int * info);

void hlib_vector_centry_set (const hlib_vector_t x,
unsigned int i,
const hlib_complex_t f,
int * info);

Arguments

x

Vector to modify element in.

i

Position of the element to modify.

f

New value of the i’th element in x.

Two more functions are available to change a complete vector. First, all elements can be set
to a given constant value with

31 5.1 Vectors

Syntax

void hlib_vector_fill (hlib_vector_t x, const hlib_real_t f, int * info);
void hlib_vector_cfill (hlib_vector_t x, const hlib_complex_t f, int * info);

Arguments

x

Vector to be filled with constant value.

f

Value to be assigned to all elements of the vector.

Furthermore, the vector can be initialised to random values with

Syntax

void hlib_vector_fill_rand (hlib_vector_t x, int * info);

5.1.2 Vector Management Functions

A copy of a vector is constructed by using the function

Syntax

hlib_vector_t hlib_vector_copy (const hlib_vector_t x, int * info);

which returns a new vector object with it’s own data. If the original vector v corresponds to
a C array, the newly created vector does not represent this array but uses a new array.

The size of a vector can be determined by the function

Syntax

unsigned int hlib_vector_size (const hlib_vector_t x, int * info);

Similarly, the memory size of a vector in bytes is obtained by

Syntax

unsigned long hlib_vector_bytesize (const hlib_vector_t x, int * info);

Finally, vectors are released by using

Syntax

void hlib_vector_free (hlib_vector_t x, int * info);

which frees all local memory of a vector. This does not apply to associated C arrays, e.g. if the
vector was constructed with hlib vector import array. There, the array has to be deleted
by the user.

Vectors and Matrices 32

5.1.3 Algebraic Vector Functions

A complete set of function for standard algebraic vector operations is available in H-Lib
pro

.
In contrast to the vector copy function above, the following routine does not create a new

vector but copies the content of x to the vector y. For this, both vectors have to be of the
same type.

Syntax

void hlib_vector_assign (hlib_vector_t y, const hlib_vector_t x, int * info);

Arguments

y

Destination vector of the assignment.

x

Source vector of the assignment.

Scaling a vector, e.g. the multiplication of each element with a constant is performed by

Syntax

void hlib_vector_scale (hlib_vector_t x, const hlib_real_t f, int * info);
void hlib_vector_cscale (hlib_vector_t x, const hlib_complex_t f, int * info);

Summing up to vectors is implemented in the more general form

y := y + αx

with vectors x and y and the constant α. This operation is performed by the functions

Syntax

void hlib_vector_axpy (hlib_vector_t y,
const hlib_real_t alpha,
const hlib_vector_t x,
int * info);

void hlib_vector_caxpy (hlib_vector_t y,
const hlib_complex_t alpha,
const hlib_vector_t x,
int * info);

Real and complex valued dot-products can be computed with

Syntax

hlib_complex_t hlib_vector_dot (const hlib_vector_t x,
const hlib_vector_t y,
int * info);

And the euclidean and the infinity norm of a vector are returned by the functions

Syntax

hlib_real_t hlib_vector_norm2 (const hlib_vector_t x, int * info);
hlib_real_t hlib_vector_norm_inf (const hlib_vector_t x, int * info);

33 5.1 Vectors

If support for FFTW3 was compiled in H-Lib
pro

, forward and backward FFT for vectors is
available with the functions

Syntax

void hlib_vector_fft (const hlib_vector_t v, int * info);
void hlib_vector_ifft (const hlib_vector_t v, int * info);

5.1.4 Vector I/O

In this section, functions for reading and saving vectors from/to files are discussed. Beside it’s
own format, H-Lib

pro
supports several other vector formats.

5.1.4.1 H-Lib
pro

Vectors can be saved and reloaded in a special H-Lib
pro

format. There, the specific type of
vector, e.g. whether it is distributed among processors, is correctly handled by H-Lib

pro
.

Syntax

hlib_vector_t hlib_hformat_load_vector (const char * filename,
int * info);

void hlib_hformat_save_vector (const hlib_vector_t v,
const char * filename,
int * info);

Arguments

v

Vector to be saved in H-Lib
pro

format.

filename

Name of the file containing a vector or where the vector shall be written to.

For storing vectors, H-Lib
pro

uses a binary format but takes care of different computer archi-
tectures, e.g. little and big endianess.

5.1.4.2 SAMG

Vectors stored in the SAMG format (see [Fra]) are also supported by H-Lib
pro

. Since the
SAMG format distributes the description of data to several files, beside the actual file, the
corresponding format file also has to be present in the same directory and with the same
basename, e.g. without the suffix, as the vector file. Otherwise, the I/O will fail.

To read and store vectors in the SAMG format, the following functions are available:

Syntax

hlib_vector_t hlib_samg_load_vector (const char * filename, int * info);

void hlib_samg_save_vector (const hlib_vector_t x,
const char * filename,
int * info);

Due to the restrictions of the SAMG format, the vectors have to be of a scalar type.

http://www.fftw.org

Vectors and Matrices 34

5.1.4.3 Matlab

H-Lib
pro

supports the Matlab V7 file format (see [Mat]) for dense and sparse vectors. The
corresponding vectors can be part of a Matlab structure. All other Matlab data types, e.g.
cells, are not supported. If zlib support was enabled during H-Lib

pro
compilation (see [Kri,

Section 2]), compressed fields in Matlab files are also supported.
All types of vectors will be converted to scalar vector types upon reading, e.g. sparse vectors

become dense. Conversely, only scalar vectors can be saved in the Matlab format.
Since a vector in the Matlab file format is associated with a name, this name has to be

supplied to the corresponding I/O functions.

Syntax

hlib_vector_t hlib_matlab_load_vector (const char * filename,
const char * vecname,
int * info);

void hlib_matlab_save_vector (const hlib_vector_t v,
const char * filename,
const char * vecname,
int * info);

Arguments

v

Scalar vector to be saved in Matlab format.

filename

Name of Matlab file containing the vector.

vecname

Name of the vector in the Matlab file.

5.2 Matrices

All matrices in H-Lib
pro

are represented by the type

typedef struct hlib_matrix_s * hlib_matrix_t;

No difference is made between special matrix types, e.g. sparse matrices, dense matrices or
H-matrices. Of course, inside H-Lib

pro
this distinction is done and the appropriate or expected

type is checked in each function.
To use matrices in H-Lib

pro
three different ways are possible: import a matrix given by some

data structures, build a matrix or load a matrix from a file. The first method usually applies to
sparse and dense matrices whereas H-matrices are normally build by H-Lib

pro
. These different

methods will be discussed in the following sections.

5.2.1 Importing Matrices from Data structures

Sparse Matrices
Before using sparse matrices in H-Lib

pro
, they have to be imported to the internal representation.

For this, the sparse matrix is expected to be stored in compressed row storage or CRS format.
The CRS format consists of three arrays: colind, coeffs and rowptr. The array colind

holds the column indices of each entry in the sparse matrix ordered according to the row, e.g.
at first all indices for the first row, then all indices for the second row and so forth. Here the

35 5.2 Matrices

indices itself are numbered beginning from 0. In the same way, the array coeffs holds the
coefficients of the corresponding entries in the same order. Both array have dimension nnz,
i.e. the number of non-zero entries in the matrix. The last array, rowptr, has dimension n+1,
where n is the dimension of the matrix. It stores at position i − 1 the index to the colind

and coeffs array for the i’th row, e.g. the entries for the i’th row have the column indices
colind[i− 1] . . . colind[i]-1 and the coefficients coeffs[i− 1] . . . coeffs[i]-1. The value
rowptr[n] holds the number of non-zero entries.

As an example, the matrix

S =

2 −1
−1 2 −1

−1 2 −1
−1 2

of dimension 4 × 4 with 10 non-zero entries would result in the following arrays

int rowptr[5] = { 0, 2, 5, 8, 10 };
int colind[10] = { 0, 1, 0, 1, 2, 1, 2, 3, 2, 3 };
hlib_real_t coeff[10] = { 2, -1, -1, 2, -1, -1, 2, -1, -1, 2 };

To import a sparse matrix in CRS format into H-Lib
pro

, the following two functions can be
used:

Syntax

hlib_matrix_t hlib_matrix_import_crs (const int rows,
const int cols,
const int nnz,
const int * rowptr,
const int * colind,
const hlib_real_t * coeffs,
const int sym,
int * info);

hlib_matrix_t hlib_matrix_import_ccrs (const int rows,
const int cols,
const int nnz,
const int * rowptr,
const int * colind,
const hlib_complex_t * coeffs,
const int sym,
int * info);

Arguments

rows,cols

Number of rows and columns of the sparse matrix.

nnz

Number of non-zero entries in the sparse matrix.

rowptr, colind, coeffs

Arrays containing the sparse matrix in CRS format.

sym

If sym is non-zero, the sparse matrix is assumed to be symmetric.

The two routines only differ by the coefficient type of the sparse matrix which can either be
real or complex valued.

Vectors and Matrices 36

To finish the above described example by creating a matrix object from the constructed
arrays, one has to add a call to the corresponding function:

int rowptr[5] = { 0, 2, 5, 8, 10 };
int colind[10] = { 0, 1, 0, 1, 2, 1, 2, 3, 2, 3 };
hlib_real_t coeff[10] = { 2, -1, -1, 2, -1, -1, 2, -1, -1, 2 };
hlib_matrix_t S;

S = hlib_import_crs(4, 10, rowptr, colind, coeffs);

Dense Matrices

Although, due to their high memory and computational overhead, dense matrices do not
represent the preferred format for matrix storage. Nevertheless, H-Lib

pro
is also capable of

handling dense matrices. As for sparse matrices, they have to be imported for further usage.

When using dense matrices, the user has to keep in mind a very important aspect of their
storage:

Attention

In contrast to the standard way in which C addresses dense matrices, H-Lib
pro

expects them
to be in column major format, e.g. stored column wise. The matrix coefficient aij of a n×m
matrix A is therefore at position j · n + i of a corresponding array containing A.

For example, the matrix

D =

(

1 2
3 4

)

has to be stored in an array as follows:

hlib_real_t D[4] = { 1, 3, 2, 4 };

The reason for this is the usage of LAPACK in H-Lib
pro

. LAPACK is originally written in
Fortran and therefore uses column major format for all matrices.

To import a dense matrix into H-Lib
pro

, the following two functions for real and complex
valued matrices are available:

37 5.2 Matrices

Syntax

hlib_matrix_t hlib_matrix_import_dense (const int rows,
const int cols,
const hlib_real_t * D,
const int sym,
int * info);

hlib_matrix_t hlib_matrix_import_cdense (const int rows,
const int cols,
const hlib_complex_t * D,
const int sym,
int * info);

Arguments

rows, cols

The number of rows and columns of the dense matrix.

D

Array of dimension rows·cols in column major format containing the matrix coefficients.

sym

If sym is non-zero, the matrix is assumed to be symmetric.

Importing the above defined matrix D is accomplished by

hlib_real_t D[4] = { 1, 3, 2, 4 };
hlib_matrix_t M = hlib_matrix_import_dense(2, 2, D, 0, & info);

5.2.2 Building H-Matrices

Before any H-matrix can be built, a corresponding block cluster tree has to be available, which
describes the partitioning of the block indexset of the matrix and defines admissible matrix
blocks. Please refer to Section 4.3 on how to get a suitable block cluster tree object.

5.2.2.1 Sparse Matrices

Sparse matrices are converted into H-matrices by using

Syntax

hlib_matrix_t hlib_matrix_build_sparse (const hlib_blockcluster_t bct,
const hlib_matrix_t S,
const hlib_real_t eps,
int * info);

Arguments

bct

Block cluster tree defining partitioning of the block indexset of the sparse matrix.

S

Sparse matrix to be converted to an H-matrix.

eps

Block-wise approximation accuracy of the H-matrix w.r.t. the given sparse matrix.

Usually, the resulting H-matrix is an exact copy of the given sparse matrix and therefore,
the parameter eps is not used. This usually holds, if the discretisation of the underlying
operator of the sparse matrix maintains strong locality conditions, e.g. basis functions with

Vectors and Matrices 38

small support. If this does not the case, e.g. global connectivity between indices, the sparse
matrix is approximated by the H-matrix. The accuracy of this approximation for each subblock
is specified by eps (see also next section).

5.2.2.2 Dense Matrices

Since dense matrices involve an unacceptable memory overhead, an H-matrix approximation
should not be built out of a given dense matrix but by constructing the data sparse approxi-
mation directly. This is accomplished by various algorithms.

Attention

The algorithms for computing a H-matrix approximation of a given dense matrix only work
for certain classes of matrices, e.g. coming from integral equations with specific smoothness
properties (see ???). They might not work for general matrices. Be sure to check the appli-
cability of the algorithms before using a certain routine. Otherwise quadratic complexity
for the storage and cubic complexity for the computation might occur.

Adaptive Cross Approximation

Adaptive cross approximation or ACA (see [Beb00]) is a technique which constructs an approx-
imation to a dense matrix by successively adding rank-1 matrices to the final approximation.
For this, only the matrix coefficients of the dense matrix are needed. These coefficients are
given by the user in terms of a coefficient function which evaluates certain parts of the global
dense matrix. The definition of these functions is as follows:

Syntax

typedef void (* hlib_coeff_fn_t) (int n, int * rowidx, int m, int * colidx,
hlib_real_t * matrix, void * arg);

typedef void (* hlib_ccoeff_fn_t) (int n, int * rowidx, int m, int * colidx,
hlib_complex_t * matrix, void * arg);

Arguments

n, rowidx

Number of row indices and an array containing the row indices at which the matrix shall be
evaluated.

m, colidx

Number of column indices and an array containing the column indices at which the matrix shall
be evaluated.

matrix

Array of dimension n·m at which the computed coefficients at the positions defined by rowidx

and colidx shall be stored in column major format, e.g. coefficient (rowidx[i],colidx[j]) at
position matrix[j*n + i].

arg

Optional argument to the coefficient function (see below).

Instead of block coefficient functions of type hlib coeff fn t or hlib ccoeff fn t, one
could also implement a function returning the single matrix coefficient Aij :

hlib_real_t coeff (int i, int j, void * arg) {
/* implement computation of A_ij */

39 5.2 Matrices

}

void bcoeff (int n, int * rowidx, int m, int * colidx,
hlib_real_t * matrix, void * arg) {

int i, j;
for (j = 0; j < m; j++)

for (i = 0; i < n; i++)
matrix[j*n + i] = coeff(rowidx[i], colidx[j], arg);

}

The block variant was chosen in H-Lib
pro

, to allow certain optimisations, e.g. reusage of auxiliary
data for the computation of matrix coefficients.

Remark

The given coeffiecient array matrix is by default initialised to 0. If additional checks shall be
performed, matrix is initialised with NaN and checked after calling the callback function,
whether all entries have been set (see ???).

Different variants of ACA are available in H-Lib
pro

, each of them with it’s own advantages and
disadvantages. Interesting, from a computational point of view, are the original formulation
and advanced ACA (see [BG05]), ACA+ for short. These two have a linear complexity in
the dimension of the matrix and a quadratic complexity in the rank of the approximation.
This reduced complexity is possible since only a minor part of all coefficients is used inside
the algorithms. Unfortunately, this sometimes leads to errors in the approximation and hence,
both methods represent a heuristic approach. In practise however, at least ACA+ works quite
well.

To guarantee a certain approximation, one has to look at all coefficients of the matrix, which
then leads to a quadratic complexity in the size of the matrix block. This algorithm is called
ACAFull (see [BGH03]). Although the approximation can be guaranteed, the resulting rank
due to ACAFull might not be minimal, leading to an increase in the memory usage of the
resulting H-matrix.

Since an non-optimal rank might also happen with ACA or ACA+, each approximation is
truncated afterwards to ensure minimal memory overhead. This truncation procedure has a
computational complexity linear in the size of the matrix block and quadratic in the rank.

An optimal rank right from the beginning can be achieved with singular value decomposition

or SVD. Although this algorithm is not directly related to adaptive cross approximation, it
is included in H-Lib

pro
. Unfortunately, SVD has a cubic complexity in the size of the matrix

block and is therefore only applicable for small matrices.

After defining a coefficient function, the following two routines can be used to construct a
H-matrix approximation to the corresponding dense matrix:

Vectors and Matrices 40

Syntax

hlib_matrix_t hlib_matrix_build_coeff (const hlib_blockcluster_t bct,
const hlib_coeff_fn_t f,
void * arg,
const hlib_lrapx_t lrapx,
const hlib_real_t eps,
const int sym,
int * info);

hlib_matrix_t hlib_matrix_build_ccoeff (const hlib_blockcluster_t bct,
const hlib_ccoeff_fn_t f,
void * arg,
const hlib_lrapx_t lrapx,
const hlib_real_t eps,
const int sym,
int * info);

Arguments

bct

Block cluster tree over which the H-matrix shall be built.

f

Coefficient function defining dense matrix.

arg

Optional argument which will be passed to the coefficient function.

lrapx

Defines the type of low-rank approximation used in each admissible matrix block and can be
one of

HLIB LRAPX SVD use singular value decomposition
HLIB LRAPX ACA use adaptive cross approximation
HLIB LRAPX ACAPLUS use advanced adaptive cross approximation
HLIB LRAPX ACAFULL use adaptive cross approximation with full pivot search
HLIB LRAPX ZERO approximate low-rank blocks by zero

eps

Block-wise approximation accuracy of the H-matrix w.r.t. the given dense matrix.

Remark

HLIB LRAPX ZERO can be used to build only the nearfield part of the matrix, since all farfield
blocks are left empty.

Since an H-matrix is usually not an exact representation of the dense matrix but only an
approximation, the accuracy for this approximation has to be specified. In H-Lib

pro
, this is

always done in a block-wise fashion. That means, that for a given dense matrix D and the
corresponding H-matrix A build out of D with an accuracy of ε ≥ 0 this accuracy only holds
for all block indexsets defined by leaves t × s in the block cluster tree:

‖D|t×s − A|t×s‖ ≤ ε

but not necessarily for the matrices itself. This is a general property for all matrix operations
in the context of H-matrices.

41 5.2 Matrices

As an example for building an H-matrix with adaptive cross approximation, we consider the
integral equation

∫

1

0

log |x − y|u(y)dy = f(x), x ∈ [0, 1]

with a suitable right hand side f : [0, 1] → R. We are looking for the solution u : [0, 1] → R.
A standard Galerkin discretisation with constant ansatz functions ϕi, 0 ≤ i < n,

ϕi(x) =

{

1 x ∈
[

i
n
, i+1

n

]

0 otherwise

leads to a linear equation system with the matrix coefficients

aij =

∫

1

0

∫

1

0

ϕi(x) log |x − y|ϕj(y)dydx

=

∫ i+1

n

i
n

∫ j+1

n

j

n

log |x − y|dydx

=: integrate a(i, j, n),

where integrate a denotes a function which evaluates the integral.
All of this is put together in the following example. There the coordinates of the indices

are set at the centre of the support of each basis function. The function coeff fn evaluates
integrate a at the given indices and writes the result into the given dense matrix. Please
note the access to D in column major form. The actual H-matrix is built using ACA+, which
is the recommended variant of adaptive cross approximation.

void coeff_fn (int n, int * rowidx, int m, int * colidx,
hlib_real_t * D, void * arg) {

int i, j;
int * n = (int *) arg;

for (i = 0; i < n; i++)
for (j = 0; j < m; j++)
D[j*n + i] = integrate_a(rowidx[i], colidx[j], *n);

}

void build_matrix () {
int i, info;
int n = 1024;
double ** pos = (double**) malloc(sizeof(double*) * n);
hlib_coord_t coord;
hlib_cluster_t ct;
hlib_blockcluster_t bct;
hlib_matrix_t A;

for (i = 0; i < n; i++) {
pos[i] = (double*) malloc(sizeof(double));
pos[i][0] = (((double) i) + 0.5) / ((double) n);

}

Vectors and Matrices 42

coord = hlib_coord_import(n, 1, pos, NULL, & info);
ct = hlib_ct_build_bsp(coord, & info);
bct = hlib_bct_build(ct, ct, & info);
A = hlib_matrix_build_coeff(bct, coeff_fn, & n, HLIB_LRAPX_ACAPLUS,

1e-4, 1, & info);
}

Remark

The above example is also implemented in the file examples/bem1d.c. There, also source
code for the function integrate a is available.

Hybrid Cross Approximation
To be done.

5.2.2.3 Matrix Coarsening

By default, H-matrix will be coarsend during construction, i.e. submatrices of a decomposed
matrix block will be agglomerated either in a low-rank or a dense matrix. The goal of this
technique is the reduction of the memory usage since the newly created matrix block will be
deleted if it consumes more memory than the sum of the submatrices and vice versa.

This coarsening strategy involves conversion and truncation and is therefore time consuming.
Depending on the restrictions (memory or time) on the problem to compute, the user can either
enable or disable this feature by

Syntax

void hlib_set_coarsening (const int build, const int arith);

Arguments

build

Activate coarsening during H-matrix construction if build is non-zero and deactivate otherwise.

arith

Activate coarsening during H-matrix algebra if arith is non-zero and deactivate otherwise (see
Section 6.6).

5.2.3 Matrix Management

Using the following two function one can get the number of rows and columns of a specific
matrix.

Syntax

unsigned int hlib_matrix_rows (const hlib_matrix_t A, int * info);
unsigned int hlib_matrix_cols (const hlib_matrix_t A, int * info);

The number of rows and columns can be used to constructs vectors of the right dimension
for matrix computations, e.g. matrix vector multiplication. An easier and also safer way, since
vector do not have to be of scalar type in H-Lib

pro
, is the usage of the following two functions,

which return a vector of compatible format and size either for the row or the column cluster
tree of the given matrix A:

43 5.2 Matrices

Syntax

hlib_vector_t hlib_matrix_row_vector (const hlib_matrix_t A, int * info);
hlib_vector_t hlib_matrix_col_vector (const hlib_matrix_t A, int * info);

To obtain a copy of a block cluster tree associated with a matrix, the function

Syntax

hlib_blockcluster_t hlib_matrix_bct (const hlib_matrix_t A, int * info);

is available.

In contrast to the copy operations so far, e.g. for cluster trees and block cluster trees, copying
a matrix always creates a new matrix. The copy can be either exact or up to a given accuracy.
Both operations are done with the functions:

Syntax

hlib_matrix_t hlib_matrix_copy (const hlib_matrix_t A, int * info);
hlib_matrix_t hlib_matrix_copy_eps (const hlib_matrix_t A, hlib_real_t eps,

int * info);

Arguments

eps

Block-wise accuracy of the copy compared to A.

Alternatively, the copy operation can be restricted to the blockdiagonal part of the matrix,
e.g. all off-diagonal blocks are omitted. This form of a matrix copy is particularly interesting
for preconditioning, if the preconditioner itself has to be only a rough approximation of the
inverse but needs to be computed very fast (see also Section 6.4). To control the size of the
remaining diagonal blocks, only off-diagonal blocks on the first lvl levels are omitted, where
lvl is defined by the user. The corresponding functions are:

Syntax

hlib_matrix_t hlib_matrix_copy_blockdiag (const hlib_matrix_t A,
const unsigned int lvl,
int * info);

hlib_matrix_t hlib_matrix_copy_blockdiag_eps (const hlib_matrix_t A,
const unsigned int lvl,
const hlib_real_t eps,
int * info);

Arguments

lvl

Number of levels on which off-diagonal blocks shall be omitted from the copy operation.

The methods above will produce new matrix objects. If the content of a matrix shall be
copied to an existing matrix, one of the two following functions can be used:

Vectors and Matrices 44

Syntax

void hlib_matrix_copyto (const hlib_matrix_t A, hlib_matrix_t B, int * info);
void hlib_matrix_copyto_eps (const hlib_matrix_t A, hlib_matrix_t B,

const hlib_real_t eps, int * info);

Arguments

A,B

Source and destination matrix for the copy operation.

eps

Block-wise accuracy of the copy compared to A.

In order for the copy operation to be successfull, the format of the matrices A and B has to be
compatible, e.g. H-matrices over the same block cluster tree. An example of an illegal copy
would be a dense A and a sparse B.

Deallocating a matrix is accomplished with

Syntax

void hlib_matrix_free (hlib_matrix_t A, int * info);

Again, please remember to only use this function and not free to prevent undefined behaviour.

The memory usage of a specific function can be obtained by

Syntax

unsigned long hlib_matrix_bytesize (const hlib_matrix_t A, int * info);

In some situations it might be necessary to access single matrix coefficients. For this the
following functions are available to return the entry Aij :

Syntax

hlib_real_t hlib_matrix_entry_get (const hlib_matrix_t A,
const unsigned int i,
const unsigned int j,
int * info);

hlib_complex_t hlib_matrix_centry_get (const hlib_matrix_t A,
const unsigned int i,
const unsigned int j,
int * info);

Remark

For H-matrices obtaining a single coefficient has the complexity O (k log n), where k is the
maximal rank in the matrix and n the number of rows/columns of A. It should therefore
only be used when absolutely necessary.

5.2.4 Matrix Norms

H-Lib
pro

supports two basic norms for matrices: the Frobenius and the spectral norm. The
Frobenius norm plays a crucial role in the approximation of each matrix block, where the local
accuracy is always meant with respect to the Frobenius norm of the local matrix. The spectral

45 5.2 Matrices

norm, e.g. the largest eigenvalue, gives a better overview of the global approximation, e.g. how
good the computed, approximate inverse compares to the exact inverse.

In the case of the spectral norm, the largest eigenvalue is computed by using the Power

iteration (see [GL96]). Since this is also only an approximate method and due to efficiency
the computational effort for computing the norm is restricted in H-Lib

pro
, the result of this

procedure does not necessarily represent the exact spectral norm of the matrix. Although in
practise, the convergence behaviour for most matrices is quite well.

Computing the Frobenius and the spectral norm for a single matrix is done by the following
two functions:

Syntax

hlib_real_t hlib_matrix_norm_frobenius (const hlib_matrix_t A, int * info);
hlib_real_t hlib_matrix_norm_spectral (const hlib_matrix_t A, int * info);

Furthermore, if the matrix A is not ill-conditioned the spectral norm of A−1 can be obtained
with

Syntax

hlib_real_t hlib_matrix_norm_spectral_inv (const hlib_matrix_t A, int * info);

To compute the norm of the difference ‖A − B‖ between two matrices A and B in the
Frobenius or the spectral norm, the functions

Syntax

hlib_real_t hlib_matrix_norm_frobenius_diff (const hlib_matrix_t A,
const hlib_matrix_t B,
int * info);

hlib_real_t hlib_matrix_norm_spectral_diff (const hlib_matrix_t A,
const hlib_matrix_t B,
int * info);

are available. Here, in the case of the Frobenius norm, both matrices have to be of the same
type and, if they are H-matrices, defined over the same block cluster tree. This does not apply
to the spectral norm since it only relies on matrix vector multiplication.

Finally, the approximation of the inverse of a matrix A by another matrix B, e.g. the norm

‖I − AB‖2

can be computed by the function

Syntax

hlib_real_t hlib_matrix_norm_inv_approx (const hlib_matrix_t A,
const hlib_matrix_t B,
int * info);

5.2.5 Matrix I/O

Various matrix file formats are supported by H-Lib
pro

which will be discussed in this section.

Vectors and Matrices 46

5.2.5.1 H-Lib
pro

Since H-matrices can not be stored in an efficient way in previously described matrix formats,
H-Lib

pro
defines it’s own file format for matrices. This format also supports sparse and dense

matrices.
The corresponding functions to load and save matrices from/to files are:

Syntax

hlib_matrix_t hlib_hformat_load_matrix (const char * filename,
int * info);

void hlib_hformat_save_matrix (const hlib_matrix_t A,
const char * filename,
int * info);

Arguments

A

Matrix to save to filename

filename

Name of file to load/save matrix from/to.

5.2.5.2 SAMG

The SAMG package (see [Fra]) defines a matrix file format for sparse matrices and vectors in a
linear equations system, namely the solution and the right-hand-side. Im- and exporting these
objects is supported by H-Lib

pro
.

The SAMG defines several files together describing the format and data of matrices. The
SAMG I/O functions in H-Lib

pro
only expect the actual data files but presume the format file

with the same basename, e.g. the filename without a suffix, to be present in the same directory.

Syntax

hlib_matrix_t hlib_samg_load_matrix (const char * filename,
int * info);

void hlib_samg_save_matrix (const hlib_matrix_t S,
const char * filenamename,
int * info);

Arguments

S

Sparse matrix to store in SAMG format.

filename

Name of the matrix file.

5.2.5.3 Matlab

The same restriction, which apply to reading vectors from Matlab files are also valid for
matrices, i.e. only dense and sparse matrices either as a single data element or as part of
a structure are supported. Compressed fields can only be read, when zlib support was chosen
during compilation (see [Kri, Section 2]). Other data types, e.g. cells, are not supported and
will be skipped. Furthermore, due to the different storage format, H-matrices can not be saved
in the Matlab format.

47 5.2 Matrices

Since a matrix in the Matlab file format is associated with a name, this name has to be
supplied to the corresponding I/O functions.

Syntax

hlib_matrix_t hlib_matlab_load_matrix (const char * filename,
const char * matname,
int * info);

void hlib_matlab_save_matrix (const hlib_matrix_t M,
const char * filename,
const char * matname,
int * info);

Arguments

M

Sparse or dense matrix to save to filename

filename

Name of Matlab file to load/save matrix from/to.

matname

Name of the matrix in the Matlab file.

5.2.5.4 Harwell-Boeing/Harwell-Rutherford

The Harwell-Boeing matrix format defines a file format to store sparse matrices and vectors.
With the extended version, Harwell-Rutherford, a variety of other data can also be stored,
e.g. coordinates. H-Lib

pro
supports reading and writing matrices in this format, although the

special storage by elementary matrices is not yet supported.

The corresponding function to load matrices from files is:

Syntax

hlib_matrix_t hlib_hb_load_matrix (const char * filename,
int * info);

hlib_matrix_t hlib_hb_save_matrix (const hlib_matrix_t A,
const char * filename,
int * info);

Arguments

A

Matrix to save to filename

filename

Name of file to load matrix from.

5.2.5.5 PostScript

Matrices in H-Lib
pro

can also be printed in PostScript format. Here various options are available
to define the kind of data in the resulting image:

HLIB MATIO SVD print singular values of matrix in logarithmic scale

HLIB MATIO ENTRY print each entry of matrix

HLIB MATIO PATTERN print sparsity pattern (non-zero entries)

Vectors and Matrices 48

These options can also be combined by boolean “or”, e.g. to print the SVD and the sparsity
pattern the combination HLIB MATIO SVD || HLIB MATIO PATTERN is used. By default, only
the structure of the matrix is printed. There, different kind of blocks are marked by different
colours:

dense matrix blocks

low-rank matrix blocks

non-admissible low-rank matrix blocks (see ???)

sparse matrix blocks

no matrix block exists, e.g. for symmetric matrices

In addition, special information about each block is printed. For dense and sparse blocks the
dimension is shown in the lower left corner. For low-rank blocks, there the rank of the matrix is
printed. If SVD is chosen to be printed for each block the actual rank of the matrix is printed
at the centre of each block. For low-rank matrices this is only shown, if the SVD-rank differs
from the rank of the matrix. An example for a sparse matrix and a dense matrix (with and
without SVD) looks like:

225

28

21 15

10 21

21 10

15 21 36

28 10

10

21 5

6 4

28 10

10

21 5

6 4

28

21 15

10 21

21 10

15 21 36

21 4

21 21 10

10

6 5

15 6 12

12

21 4

21 21 10

10

6 5

15 6

21 21
4 21 10

10

6 15

5 6 12

12

21 21
4 21 10

10

6 15

5 6

28
21 10
15 21

21 15

10 21 36

28 10

10

4 6

5 21

28 10

10

4 6

5 21

28
21 10
15 21

21 15

10 21 36

9 6

21 8

8 15 8 12

12

9 6

21 8

8 15 8 19

19

9 6

15 8

8 21 8 12

12

9 6

15 8

8 21 8

8

21 8

8 15

6 9 12

12

8

21 8

8 15

6 9 19

19

8

15 8

8 21

6 9 12

12

8

15 8

8 21

6 9

36

21 10

15 21

21 15

10 21 28

21 5

6 4 10

10 28

21 5

6 4 10

10 28

36

21 10

15 21

21 15

10 21 28

6 5

15 6 10

10

21 4

21 21 12

12

6 5

15 6 10

10

21 4

21 21

6 15

5 6 10

10
21 21
4 21 12

12

6 15

5 6 10

10
21 21
4 21

36

21 15

10 21

21 10
15 21 28

4 6

5 21 10

10 28

4 6

5 21 10

10 28

36

21 15

10 21

21 10
15 21 28

28

721 715

10
15

21

7

21 10

7
15

15
21 36

28 10

10

21 5

6 4

28 10

10

21 5

6 4

28

721 715

10
15

21

7

21 10

7
15

15
21 36

721 4

21
7

21 10

10

6 5

15 6 12

12

721 4

21
7

21 10

10

6 5

15 6

7

21 21
4 721 10

10

6 15

5 6 12

12

7

21 21
4 721 10

10

6 15

5 6

28

15

21 10
715 721

15
21

7
15

10
7

21 36

28 10

10

4 6

5 21

28 10

10

4 6

5 21

28

15

21 10
715 721

15
21

7
15

10
7

21 36

9 6

21 8

8 15 8 12

12

9 6

21 8

8 15 8 19

19

9 6

15 8

8 21 8 12

12

9 6

15 8

8 21 8

8

21 8

8 15

6 9 12

12

8

21 8

8 15

6 9 19

19

8

15 8

8 21

6 9 12

12

8

15 8

8 21

6 9

36

7

21 10

7
15

15
21

721 715

10
15

21 28

21 5

6 4 10

10 28

21 5

6 4 10

10 28

36

7

21 10

7
15

15
21

721 715

10
15

21 28

6 5

15 6 10

10

721 4

21
7

21 12

12

6 5

15 6 10

10

721 4

21
7

21

6 15

5 6 10

10

7

21 21
4 721 12

12

6 15

5 6 10

10

7

21 21
4 721

36

15
21

7
15

10
7

21

15

21 10
715 721 28

4 6

5 21 10

10 28

4 6

5 21 10

10 28

36

15
21

7
15

10
7

21

15

21 10
715 721 28

The actual PostScript image is finally produced by the function

Syntax

void hlib_matrix_print_ps (const hlib_matrix_t A,
const char * filename,
const int options,
int * info);

Arguments

A

Matrix to be printed.

filename

Name of the PostScript file A shall be printed to.

options

Combination of MATIO options or 0.

6 Algebra

6.1 Matrix Vector Multiplication

The multiplication of a matrix A with a vector x is implemented in H-Lib
pro

as the update of
the destination vector y as:

y := βy + αAx.

The special cases with β = 0 or α = 0 are also handled efficiently. Furthermore, the multipli-
cation with the adjoint matrix AH is supported by H-Lib

pro
. The type of operation is chosen

by a parameter of type

typedef enum { HLIB_MATOP_NORM,
HLIB_MATOP_TRANS,
HLIB_MATOP_ADJ } hlib_matop_t;

where HLIB MATOP NORM corresponds to Ax, HLIB MATOP TRANS to AT x and HLIB MATOP ADJ

to AHx.
The following two functions above computation. Both routines can handle real and complex

valued matrices and vectors. The difference in the name only applies to the type of the constant
factors.

Syntax

void hlib_matrix_mulvec (const hlib_real_t alpha,
const hlib_matrix_t A, const hlib_vector_t x,
const hlib_real_t beta, hlib_vector_t y,
const hlib_matop_t matop, int * info);

void hlib_matrix_cmulvec (const hlib_complex_t alpha,
const hlib_matrix_t A, const hlib_vector_t x,
const hlib_complex_t beta, hlib_vector_t y,
const hlib_matop_t matop, int * info);

Arguments

A

Sparse, dense or H-matrix to multiply with.

x

Argument vector of dimension hlib matrix cols(A) if Ax is performed and
hlib matrix rows(A) in the case of AHx.

y

Result vector of the multiplication of dimension hlib matrix rows(A) if Ax is performed and
hlib matrix cols(A) in the case of AHx.

alpha,beta

Scaling factors for the matrix-vector product and the destination vector.

matop

Defines multiplication with A or adjoint matrix of A.

49

Algebra 50

6.2 Matrix Addition

The sum of two matrices A and B in H-Lib
pro

is defined as

B := αA + βB

with α, β ∈ R or α, β ∈ C depending on using real or complex arithmetic.

The two matrices for the matrix addition have to be compatible, i.e. of the same format. For
example, it is not possible to add a sparse and a H-matrix. Furthermore, H-matrices have to
be defined over the same block cluster tree.

When summing up H-matrices, this is done up to a given accuracy. As usual, this accuracy
is block-wise. Sparse and dense matrices are always added exactly.

Syntax

void hlib_matrix_add (const hlib_real_t alpha, const hlib_matrix_t A,
const hlib_real_t beta, hlib_matrix_t B,
const hlib_real_t eps, int * info);

void hlib_matrix_cadd (const hlib_complex_t alpha, const hlib_matrix_t A,
const hlib_complex_t beta, hlib_matrix_t B,
const hlib_real_t eps, int * info);

Arguments

A, B

Matrices to be added. The result will be stored in B.

alpha, beta

Additional scaling factors for both matrices.

eps

Block-wise accuracy of the addition in the case of H-matrices.

6.3 Matrix Multiplication

Matrix multiplication can only be performed with dense and H-matrices. Furthermore, if the
arguments are H-matrices, they have to have compatible cluster trees, e.g. for the product

C := A · B

the column cluster tree of A and the row cluster tree of B must be identical. This also applies to
the row cluster trees of A and C as well as for the column cluster trees of B and C. Otherwise
the function exits with a corresponding error code.

The multiplication itself is defined as the update to a matrix C with additional scaling
arguments:

C := αAB + βC.

The matrices A and B can also be transposed or conjugate transposed in the case of complex
valued arithmetic.

51 6.4 Matrix Inversion

Syntax

void hlib_matrix_mul (const hlib_real_t alpha,
const hlib_matop_t matop_A, const hlib_matrix_t A,
const hlib_matop_t matop_B, const hlib_matrix_t B,
const hlib_real_t beta, hlib_matrix_t C,
const hlib_real_t eps, int * info);

void hlib_matrix_cmul (const hlib_complex_t alpha,
const hlib_matop_t matop_A, const hlib_matrix_t A,
const hlib_matop_t matop_B, const hlib_matrix_t B,
const hlib_complex_t beta, hlib_matrix_t C,
const hlib_real_t eps, int * info);

Arguments

A, B

Dense or H-matrices used as factors for the matrix multiplication.

matop A, matop B

Defines multiplication with A, B or the corresponding adjoint matrices AH and BH .

C

Dense or H-matrix containing the result of the matrix multiplication.

alpha, beta

Additional scaling arguments for the product and the destination matrix.

eps

Block-wise accuracy of the H-arithmetic during the matrix multiplication.

6.4 Matrix Inversion

In H-Lib
pro

, the inverse of a matrix is computed using Gaussian elimination. This method is
implemented for dense and H-matrices, e.g. sparse matrices can not be inverted.

The following functions computes the corresponding inverse to the given matrix A, which
will be overwritten by the result.

Syntax

void hlib_matrix_inv (hlib_matrix_t A,
const hlib_real_t eps,
int * info);

Arguments

A

Dense or H-matrix to be inverted. A will be overwritten by the result.

eps

Block-wise accuracy of the H-arithmetic during the inversion.

The quality of the computation can be checked by computing the spectral norm of ‖I−AB‖,
with B being the approximate inverse of A, by using function hlib matrix inv approx (see
Section 5.2.4).

If only the diagonal of the inverse of a given matrix A is of interest, a special function is
available in H-Lib

pro
, which computes this in shorter time and returns the result in the form of

a vector:

Algebra 52

Syntax

hlib_vector_t hlib_matrix_inv_diag (hlib_matrix_t A,
const hlib_real_t eps,
int * info);

Arguments

A

Dense or H-matrix for which the diagonal of the inverse shall be returned. A will be overwritten
during the computation.

eps

Block-wise accuracy of the H-arithmetic during computation.

Remark

The time for the computation of the diagonal of the inverse can be significantly decreased
for H-matrices built upon sparse matrices by using nested dissection (see Section 4.2.2) in
the definition of the H-matrix.

An alternative algorithm is the LU decomposition of a matrix, which allows the fast evalu-
ation of the inverse operator. Since not the real inverse is computed, the decomposition can
not be used for matrix arithmetic, e.g. matrix multiplication.

Function hlib matrix inv lu computes the LU decomposition and overwrites A with a
matrix representing the inverse of the factors, e.g. (LU)−1. Therefore, evaluating A afterwards
corresponds to A−1 and not A.

Syntax

void hlib_matrix_inv_lu (hlib_matrix_t A,
const hlib_real_t eps,
int * info);

Arguments

A

Dense or H-matrix to be decomposed using LU factorisation. A will be overwritten with the
inverse of the factorisation result.

eps

Block-wise accuracy of the H-arithmetic during the LU decomposition.

Remark

Again, if the H-matrix is defined by a sparse matrix, nested dissection (see Section 4.2.2)
can be used to accelerate the computation of the LU factorisation.

6.5 Solving Linear Systems

Solving the linear system

Ax = b

with the matrix A and the right hand side b is accomplished by the H-Lib
pro

function

53 6.5 Solving Linear Systems

Syntax

void hlib_solve (const hlib_matrix_t A,
hlib_vector_t x,
const hlib_vector_t b,
hlib_solve_info_t solve_info,
int * info);

Arguments

A, x, b

Define linear equation system.

solve info

If not NULL, used to return information about solution process.

By default, the exact type of solution technique used to solve the system is chosen by
H-Lib

pro
depending on the characteristics of the matrix A, e.g. whether it is symmetric or

positiv definite. In some cases, the user might want to change this default behaviour and
explicitly define the solution algorithm. For this, H-Lib

pro
implements various iterative methods:

Richardson, CG, BiCG-Stab, MINRES and GMRES iteration (see [Hac93], [vdV92], [PS75]
and [SS86]). To modify the iteration algorithm, the following functions are available which
make use of the Richardson, the the CG, BiCG-Stab and the MINRES iteration:

Syntax

void hlib_solver_richardson (int * info);
void hlib_solver_cg (int * info);
void hlib_solver_bicgstab (int * info);
void hlib_solver_minres (int * info);

In the case of the GMRES-Iteration an additional parameter is expected which describes the
dimension of the local Krylov subspace, e.g. when to restart.

Syntax

void hlib_solver_gmres (const int restart, int * info);

Arguments

restart

Defines the number of iteration steps after which a restart is performed during the GMRES-
iteration, e.g. the dimension of the constructed Krylov subspace.

To return to the default solver, e.g. automatic choice, one uses

Syntax

void hlib_solver_auto (int * info);

The stopping criterion for the iterative solvers in H-Lib
pro

is defined with the function
hlib solver stopcrit:

Algebra 54

Syntax

void hlib_solver_stopcrit (const int maxit,
const hlib_real_t abs_red,
const hlib_real_t rel_red,
int * info);

Arguments

maxit

Maximal number of iterations.

abs red

Absolute reduction of the l2-norm of the residual or negative, if this reduction shall not be
checked.

rel red

Relative reduction of the l2-norm of the residual compared to the initial norm of the residual
or negative, if this reduction shall not be checked.

The addition argument solve info to hlib solve can be used to get information about the
solution process. The definition of the corresponding type is

typedef struct {
unsigned int converged;
unsigned int steps;
hlib_real_t res_norm;
hlib_real_t conv_rate;

} hlib_solve_info_t;

Here, the field converged is 1, if the iteration converged and 0 otherwise. The number of
iteration steps is stored in steps. Similar, the norm of the final residual and the average
convergence rate are put into res norm and conv rate respectively.

Usually, solving a linear systems involves preconditioning , e.g. solving the transformed
system.

WAx = Wb,

This is also possible in H-Lib
pro

and implemented in the function

Syntax

void hlib_solve_precond (const hlib_matrix_t A, const hlib_matrix_t W,
hlib_vector_t x, const hlib_vector_t b,
solve_info_t solve_info,
int * info);

Arguments

W

Preconditioner to the linear equation system.

Remark

When solving a preconditioned system, the residual is defined as

r = W (Ax − b),

e.g. is also preconditioned. This also applies to the corresponding norms supplied by the
solve info variable.

55 6.6 Changing Algebra behaviour

6.6 Changing Algebra behaviour

Two aspects of the H-arithmetics can be influenced by the user: the absolute truncation error
and the coarsening of matrix blocks.

The absolute truncation error defines the lower bound of the absolute value of the singular
values taken into account during the truncation of low-rank blocks, i.e. all singular values and
corresponding singular vectors which are smaller than the error bound are omitted. By default,
this limit is 0, e.g. no limit is set. In some applications increasing this limit significantly reduces
the runtime of H-arithmetics, e.g. inversion or LU factorisation, since the rank of low-rank
blocks is reduced without affecting the accuracy. Unfortunately, this is not valid for general
problems, especially, if the entries in the matrix vary by a large magnitude.

The absolute truncation error is set for all subsequent H-arithmetic functions by

Syntax

void hlib_set_abs_eps (const hlib_real_t eps);

Coarsening of matrix blocks is the technique of replacing subblocks in a matrix by a new
low-rank or dense matrix of corresponding size to reduce the memory consumption without
affecting the per block approximation properties. This was already applied during matrix
construction (see Section 5.2.2) and leads to a significant reduction in memory costs. A similar
reduction can also be observed during H-matrix arithmetics. Unfortunately, the coarsening
process does not come for free, the agglomeration of matrix blocks involves the trunction of low-
rank matrices which, depending on the rank, can be time consuming. Therefore, coarsening is
deactivated during H-algebra by default. To activate this feature, one has to call the following
function:

Syntax

void hlib_set_coarsening (const int build, const int arith);

Arguments

build

Activate coarsening during H-matrix construction if build is non-zero and deactivate otherwise.

arith

Activate coarsening during H-matrix algebra if arith is non-zero and deactivate otherwise.

Algebra 56

7 Miscellaneous Functions

The following functions are mostly included in H-Lib
pro

for convenience and are usually available
by other libraries or even the operating system itself.

7.1 Measuring Time

Two types of time can be measured by H-Lib
pro

: the CPU time and the wall clock time. The
first corresponds to the time spent by the program actually computing things. This type of
time has the advantage, that the load on the machine does not have any influence on the value
of the time. In contrast to this, the wall clock time is the actual time as measured by a real
clock. This type of time is dependent on the load on the computer system and therefore might
be different between two runs of the program.

The actual functions to obtain both types are:

Syntax

double hlib_walltime ();
double hlib_cputime ();

The absolute value of these functions is normally not usable. Only the difference between two
measurements returns the passed time.

7.2 Progress Meter

Depending on the verbosity level chosen by the user, H-Lib
pro

will print the progress of the
computation to the screen. The corresponding information can also be requested by the user
to implement a different display of the progress. For this, a callback function has to be provided
of type

typedef void (* hlib_progressfn_t) (const double * values,
int * cancel,
void * arg);

The parameter value stores the minimal, the maximal and the current value of the progress,
which can be accessed by the constants

enum { HLIB_PROGRESS_MIN, HLIB_PROGRESS_MAX, HLIB_PROGRESS_VAL };

The second argument allows the user to interrupt the current execution, e.g. matrix construc-
tion or LU factorisation, by setting the value of cancel to anything different from 0.

57

Miscellaneous Functions 58

Attention

By interrupting a H-Lib
pro

computation, the state of the result is not defined, e.g. matrices
do not contain meaningfull data.

Finally, the fourth argument arg is an optional argument by the user supplied to the function

Syntax

void hlib_set_progress_cb (hlib_progressfn_t fn,
void * arg);

Arguments

fn

Callback function to be called upon change in the progress of any computation or NULL to revert
to the default behaviour.

arg

Optional argument passed through to the callback function.

which will set fn as the new progress function.

7.3 Quadrature Rules

Since H-Lib
pro

is capable of discretising integral equations, different quadrature rules are imple-
mented as part of the computations. These rules are also exported so that external routines
can benefit from them.

7.3.1 Gaussian Quadrature

Quadrature rules for Gaussian quadrature of order n over the interval [0, 1] are constructed by
the function

Syntax

void
hlib_gauss_quadrature_1d (const unsigned int order,

double * points, double * weights,
int * info);

Arguments

n

Order of the quadrature.

points

Array of size order where the quadrature points will be stored.

weights

Array of size order where the quadrature weights will be stored.

7.3.2 Quadrature Rules for Triangles

H-Lib
pro

also provides quadrature rules for the integration over a pair of triangles, e.g. when
computing integral equations on a surface grid. These rules were developed by Stefan Sauter
(see [SS04]). There different rules apply to different cases of triangle interaction:

59 7.3 Quadrature Rules

same triangle common edge common vertex separated triangles

The quadrature points are build for each triangle individually, where the triangle itself is
the standard 2d simplex

(0,0) (1,0)

(0,1)

Therefore, you have to transform the computed coordinates to your triangles.
Computing the quadrature rules for equal triangles in done with

Syntax

void
hlib_sauter_quadrature_eq (const unsigned int order,

double * tri1_pts[2],
double * tri2_pts[2],
double * weights,
int * info);

Arguments

order

Order of the quadrature.

tri1 pts, tri2 pts

Array where the 2d quadrature coordinates for both triangles are stored. The array have to be
of size 6 · order4.

weights

Array of size 6 · order4 holding the quadrature weights.

Similar defined are the functions for triangles with a common edge, a common vertex or
separated triangles:

Syntax

void
hlib_sauter_quadrature_edge (const unsigned int order,

double * tri1_pts[2],
double * tri2_pts[2],
double * weights,
int * info);

Arguments

tri1 pts, tri2 pts, weights

Arrays of size 5 · order4.

Miscellaneous Functions 60

Syntax

void
hlib_sauter_quadrature_vtx (const unsigned int order,

double * tri1_pts[2],
double * tri2_pts[2],
double * weights,
int * info);

Arguments

tri1 pts, tri2 pts, weights

Arrays of size 2 · order4.

Syntax

void
hlib_sauter_quadrature_sep (const unsigned int order,

double * tri1_pts[2],
double * tri2_pts[2],
double * weights,
int * info);

Arguments

tri1 pts, tri2 pts, weights

Arrays of size order4.

Bibliography

[Beb00] M. Bebendorf. Approximation of boundary element matrices. Numerische Mathe-

matik, 86:565–589, 2000.

[BG05] S. Börm and L. Grasedyck. Hybrid cross approximation of integral operators. Nu-

merische Mathematik, 2:221 – 249, 2005.

[BGH03] S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical Matrices. Technical report,
Lecture note 21, MPI Leipzig, 2003.

[Fra] Fraunhofer SCAI, http://www.scai.fraunhofer.de/. SAMG file format specification.

[GL96] G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, 3rd edition, 1996.

[Hac93] W. Hackbusch. Iterative Lösung großer schwachbesetzter Gleichungssysteme. B.G.
Teubner, Stuttgart, 1993.

[Hac99] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. I. Introduction to
H-matrices. Computing, 62(2):89–108, 1999.

[Kri] Ronald Kriemann. HLIBpro User manual. Max-Planck-Institute for Mathematics in
the Sciences, Leipzig.

[Mat] The MathWorks, http://www.mathworks.com/. MAT-File Format Version 7.

[PS75] C.C. Paige and M.A. Saunders. Solution of sparse indefinite systems of linear equa-
tions. SIAM J. Numer. Anal., 12(4):617–629, September 1975.

[SS86] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Comput., 7(3):856–869, 1986.

[SS04] S. Sauter and C. Schwab. Randelementmethoden: Analysen, Numerik und Imple-

mentierung schneller Algorithmen. Teubner, Stuttgart, 2004.

[vdV92] H. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bicg for the
solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13:631–644,
1992.

61

Index

A

ACA . 4, 38
ACA+ .39
ACAFull .39
adaptive cross approximation4, 38
addition . 50
algebra . 49

B

BiCG-Stab . 53
binary space partitioning 22

C

CG . 53
cluster tree . 21

construction . 22
management .21

coarsening . 42, 55
coordinate . 19

I/O . 21
management .20
periodicity .20

D

data types . 16
dot product .32

E

error
function . 16

error handling . 13

F

FFT . 33
finalisation . 13
Frobeniusnorm . 44

G

Gaussian quadrature58
GMRES . 53

H

HLIB NTHREADS . 17

I

initialisation . 13
inversion . 11, 51

L

LU factorisation 7, 10, 51

M

matrix . 34
addition . 50
coarsening . 42
inversion . 11, 51
LU decomposition 51
multiplication . 50
norm . 44

MINRES . 53
multiplication .50

N

nested dissection 10, 22, 52
norm

Frobenius . 44
matrix .44
spectral . 44
vector . 32

P

parallel . 17
preconditioning . 54
progress meter . 57

Q

quadrature . 58
Gaussian . 58
triangles . 58

R

reference counting . 17
Richardson . 53

S

62

63 Index

singular value decomposition 6, 39
spectral norm .44
SVD .39

T

threads . 17
time

CPU . 57
wall clock . 57

timing . 57
triangle quadrature . 58

V

vector . 29
dot product . 32
norm . 32

Function and Datatype Index

A

hlib adm t . 26

B

hlib bct build 4, 10, 11, 26
hlib bct bytesize . 27
hlib bct column ct . 27
hlib bct free . 8, 11, 27
hlib bct print ps 4, 10, 11, 27
hlib bct row ct . 27
hlib blockcluster t . 26
hlib bsp t .22

C

hlib ccoeff fn t . 38
hlib cluster t . 21
hlib coeff fn t . 38
hlib complex t . 16
hlib coord free . 20
hlib coord import 4, 19
hlib cputime . 57
hlib ct build alg .11, 24
hlib ct build alg nd 10, 24
hlib ct build alg part 24
hlib ct build bsp . 4, 22
hlib ct build bsp nd 22
hlib ct build bsp part 24
hlib ct bytesize . 21
hlib ct free . 8, 11, 21
hlib ct print ps 4, 10, 11, 25

D

hlib done . 8, 11, 13

E

hlib error desc . 4, 16
hlib errorfn t . 16

G

hlib gauss quadrature 1d 58

H

hlib hb load matrix . 47
hlib hformat load matrix 46
hlib hformat load vector 33
hlib hformat save matrix 46
hlib hformat save vector 33

I

hlib init . 3, 9, 13

L

hlib load coord . 21
hlib load matrix . 9
hlib load vector . 9
HLIB LRAPX ACAPLUS 5
hlib lrapx t . 39

M

HLIB MATIO PATTERN 9
HLIB MATIO SVD . 6
hlib matlab load matrix 47
hlib matlab load vector 34
hlib matlab save matrix 47
hlib matlab save vector 34
hlib matop t . 49
hlib matrix add .50
hlib matrix build ccoeff 39
hlib matrix build coeff 5, 39
hlib matrix build sparse 10, 11, 37
hlib matrix bytesize 5, 10, 44
hlib matrix cadd .50
hlib matrix centry get 44
hlib matrix cmul .50
hlib matrix cmulvec 49
hlib matrix col vector 9, 42
hlib matrix cols .42
hlib matrix copy . 43
hlib matrix copy blockdiag43
hlib matrix copy blockdiag eps43
hlib matrix copy eps 8, 43
hlib matrix copyto . 43
hlib matrix copyto eps 43

64

65 Function and Datatype Index

hlib matrix entry get 44

hlib matrix free 6, 8, 11, 44

hlib matrix import ccrs 35

hlib matrix import cdense 36

hlib matrix import crs 35

hlib matrix import dense 36

hlib matrix inv .11, 51

hlib matrix inv diag 51

hlib matrix inv lu 8, 10, 52

hlib matrix mul .50

hlib matrix mulvec . 49

hlib matrix norm frobenius 45

hlib matrix norm frobenius diff 45

hlib matrix norm inv approx 8, 45

hlib matrix norm spectral 45

hlib matrix norm spectral diff 6, 45

hlib matrix norm spectral inv45

hlib matrix print ps 5, 8–11, 48

hlib matrix row vector 42

hlib matrix rows . 42

hlib matrix t . 34

P

hlib progressfn t . 57

S

hlib samg load coord 21

hlib samg load matrix 46

hlib samg load vector 33

hlib samg save matrix 46

hlib samg save vector 33

hlib sauter quadrature edge59

hlib sauter quadrature eq 59

hlib sauter quadrature sep 60

hlib sauter quadrature vtx 60

hlib set abs eps . 55

hlib set admissibility26

hlib set bsp type .22

hlib set coarsening 42, 55

hlib set error fn .16

hlib set nthreads .17

hlib set progress cb . 58

hlib set verbosity .3, 13

hlib solve . 7, 9, 52

hlib solve info t .54

hlib solve precond 8, 10, 11, 54

hlib solver auto . 53

hlib solver bicgstab . 53
hlib solver cg . 53
hlib solver gmres . 53
hlib solver minres .53
hlib solver richardson 53
hlib solver stopcrit .53

V

hlib vector alloc cscalar 29
hlib vector alloc scalar 29
hlib vector assign . 32
hlib vector axpy . 32
hlib vector bytesize . 31
hlib vector caxpy . 32
hlib vector cfill . 30
hlib vector copy . 31
hlib vector cscale . 32
hlib vector dot .32
hlib vector entry cget 30
hlib vector entry cset 30
hlib vector entry get 30
hlib vector entry set 30
hlib vector fft .33
hlib vector fill . 30
hlib vector fill rand . 31
hlib vector free 8, 11, 31
hlib vector ifft . 33
hlib vector import array7, 29
hlib vector import carray 29
hlib vector norm2 .32
hlib vector norm inf 32
hlib vector scale . 32
hlib vector size . 31
hlib vector t . 29
hlib vector axpy . 7
hlib vector copy . 7
hlib vector fill . 7
hlib vector norm2 .7

W

hlib walltime . 57

	Preface
	Introductory Examples
	Integral Equation
	Sparse Linear Equation System

	General Functions and Data types
	Initialisation and Finalisation
	Error Handling
	Data types
	Reference Counting
	Parallel Computing

	Coordinates and Cluster Trees
	Coordinates
	Coordinate Management Functions
	Coordinate I/O

	Cluster Trees
	Cluster Tree Management Functions
	Cluster Tree Construction
	Cluster Tree I/O

	Block Cluster Trees
	Block Cluster Construction
	Block Cluster Tree Management Functions
	Block Cluster Tree I/O

	Vectors and Matrices
	Vectors
	Creating and Accessing Vectors
	Vector Management Functions
	Algebraic Vector Functions
	Vector I/O

	Matrices
	Importing Matrices from Data structures
	Building H-Matrices
	Matrix Management
	Matrix Norms
	Matrix I/O

	Algebra
	Matrix Vector Multiplication
	Matrix Addition
	Matrix Multiplication
	Matrix Inversion
	Solving Linear Systems
	Changing Algebra behaviour

	Miscellaneous Functions
	Measuring Time
	Progress Meter
	Quadrature Rules
	Gaussian Quadrature
	Quadrature Rules for Triangles

	Bibliography

