
Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

Fast MATLAB assembly of FEM matrices in 2D

and 3D: nodal elements

(revised version: August 2011)

by

Talal Rahman, and Jan Valdman

Technical Report no.: 11 2011

Fast MATLAB assembly of FEM matrices
in 2D and 3D: nodal elements

Talal Rahman1 and Jan Valdman2

1Bergen University College, Norway
talal.rahman@hib.no

2 IT4Innovations Centre of Excellence
of VŠB-TU Ostrava, Czech Republic

and MPI MIS Leipzig, Germany
valdman@mis.mpg.de

Abstract. We propose an effective and flexible way to assemble finite
element stiffness and mass matrices in MATLAB. The major loops in
the code have been vectorized using the so called array operation in
MATLAB, and no low level languages like the C or Fortran has been used
for the purpose. The implementation is based on having the vectorization
part separated, in other words hidden, from the original code thereby
preserving its original structure, and its flexibility as a finite element
code. The code is fast and scalable with respect to time.

Keywords: MATLAB code vectorization, finite elements, stiffness and
mass matrices

1 Introduction

MATLAB has been for years one of the most reliable providers of the environ-
ment for computing with finite elements, whether in the classroom or in the
industry. Several papers have been written in recent years focusing on the use of
MATLAB for solving partial differential equations, cf. e.g. [1,2,3,4,5,6]. It is how-
ever known that MATLAB becomes extremely slow when it comes to executing
codes with for-loops as compared to other languages like C or Fortran. Unless
the for-loops are vectorized using the so called array operation, codes written
in MATLAB cannot compete in speed with codes written in C or Fortran. In
the process of vectorization, however, it is often the case that the code looses its
original structure and becomes less flexible.

In this paper, we propose an effective implementation of the finite element
assembly in MATLAB, where all loops over the finite elements are vectorized. In
order to preserve its original code structure and its flexibility as a finite element
code, attempts are made to keep the vectorization separate from the original
code. The idea is to be able to develop an effective MATLAB code without
having to think of the vectorization.

This concept was first used inside SERF2DMatLab [7], a MATLAB finite
element code for the simulation of electro-rheological fluid. The present paper

2 Talal Rahman and Jan Valdman

Fig. 1. Triangular coarse mesh (left) and level 4 refined mesh (right) of L-shape geom-
etry.

is an attempt to make this concept available for the first time to a broader
community, and to lay a foundation for further development of the concept.

2 Example of non-vectorized and vectorized code: areas
and volumes computation

For simplicity, let a 2D geometry be subdivided into triangles as shown in Fig.
1. Coordinates of the triangle nodes are collected in the matrix

coordinates = [0 0; 1 0; 2 0; 2 1; 1 1; 0 1; 0 2; 1 2],

and the connections between the nodes in the triangles are provided by the
matrix

elements = [1 2 5; 5 6 1; 2 3 4; 2 4 5; 6 5 8; 6 8 7]

If a triangle consists of three nodes with coordinates (a, d), (b, e), (c, f), its area
AT can be computed as

AT =

∣∣∣∣∣∣det

1 a d
1 b e
1 c f

∣∣∣∣∣∣ /2 =
∣∣∣∣det

(
c− a f − d
c− b f − e

)∣∣∣∣ /2 =

|a · e+ b · f + c · d− a · f − b · d− c · e|/2

Computation of all areas results in a loop over all triangles and in the following
code.

Non-vectorized code to compute triangular areas:

tic
areas=zeros(size(elements,1),1);
for i=1:size(elements,1)

Fast MATLAB assembly of FEM matrices: nodal elements 3

a=coordinates(elements(i,1),1);
b=coordinates(elements(i,2),1);
c=coordinates(elements(i,3),1);
d=coordinates(elements(i,1),2);
e=coordinates(elements(i,2),2);
f=coordinates(elements(i,3),2);
areas(i)=abs(a*e + b*f + c*d - a*f - b*d - c*e)/2;

end
toc

Since the geometrical information needed for all triangles is known at once, the
area computation can be done in the following loop-free code.

Vectorized code to compute triangular areas:

tic
a=coordinates(elements(:,1),1);
b=coordinates(elements(:,2),1);
c=coordinates(elements(:,3),1);
d=coordinates(elements(:,1),2);
e=coordinates(elements(:,2),2);
f=coordinates(elements(:,3),2);
areas=abs(a.*e + b.*f + c.*d - a.*f - b.*d - c.*e)/2;
toc

Both Matlab codes were included in the file

start_compute_areas

which is a part of a MATLAB package described at the end of Section 4. Similar
concept of vectorization can be applied to 3D. The volume VT of a tetrahedron
defined by vertices (a, e, i), (b, f, j), (c, g, k), (d, h, l) is given as

VT =

∣∣∣∣∣∣∣∣det

1 a e i
1 b f j
1 c g k
1 d h l

∣∣∣∣∣∣∣∣ /6 =

∣∣∣∣∣∣det

d− a h− e l − i
d− b h− f l − j
d− c h− g l − k

∣∣∣∣∣∣ /6
The last determinant involves 24 products of three factors and its computation
would be therefore less efficient. By introducing new variables

da := d− a, he = h− e, li = l − i,
db := d− b, hf = h− f, lj = l − j,
de := d− e hg = h− g, lk = l = k

4 Talal Rahman and Jan Valdman

and we rewrite the volume as

VT = |da · hf · lk + db · li · hg + dc · he · lj
−da · lj · hg − db · he · lk − dc · li · hf |/6,

i.e., only 6 products of three factors are required.

3 A concept of vectorization

MATLAB has two different types of arithmetic operations: matrix operations,
defined by the rules of linear algebra, and array operations, carried out element
by element.

Our implementation is based on extending the element-wise array operation
into a matrix-wise array operation, calling it a matrix-array operation, where the
array elements are matrices rather than scalars, and the operations are defined
by the rules of linear algebra. These are handled by a set of MATLAB functions.
Through this generalization of the array operation, it is now possible to keep the
vectorization hidden from the original code.

The complete FE assembly is formulated in terms of matrix operations locally
on each finite element. These are the standard FE assembly operations, see [8].
Once we have those formulations in hand, the task is then simply to implement
them using those matrix-array operations, and finally to assemble the locally
obtained results into one global result.

The class of finite elements, where it is quite easy to apply our concept,
are the ones that are iso-parametric, e.g. the nodal elements. The basic feature
of an iso-parametric element is that the same shape functions can be used to
represent both the unknown variables and the geometry variables. Subsequently,
if {Φi} are the shape functions defined on the reference element, then a mapping
between the global and the reference coordinate systems can be given by the
following relation called the iso-parametric property,

x =
∑
i

Φi(ξ, η)xi, y =
∑
i

Φi(ξ, η)yi,

where (x, y) is a point on an element corresponding to the point (ξ, η) on the
reference element. The pair (xi, yi) stands for the global coordinates of the node
corresponding to the shape function Φi. Derivatives with respect to the global co-
ordinates are easily calculated from the derivatives with respect to the reference
coordinates using the Jacobian matrix.

In order to calculate the integrals for the element stiffness matrix, one needs
to evaluate the shape function derivatives in the (ξ, η) coordinate system only
at quadrature points on the reference element. These values are then converted
into their counterparts in the (x, y) coordinate system through an application
of the Jacobian matrix inversion. Using the iso-parametric property and an ap-
propriate quadrature rule for the integration, it is in fact quite straight forward
to represent the assembly of the local stiffness, and the local mass matrix, in

Fast MATLAB assembly of FEM matrices: nodal elements 5

terms of (local) matrix operations (e.g. matrix-vector multiplication, Jacobian
matrix inversion), see [8] for details. Each of these (local) matrix operations are
translated into one global matrix-array operation, as mentioned above, in order
to be performed on all finite elements.

Let us explain our concepts on an assembly of a stiffness matrix for linear
elements in 3D. Given a triangulation by matrices ’elements’ and ’coordinates’,
we first create an array ’coord’ of all coordinates corresponding to every element
by

NE=size(elements,1);
coord=zeros(3,4,NE);
for d=1:3

for i=1:4
coord(d,i,:)=coordinates(elements(:,i),d);

end
end

It should be noticed that the loops only run over indices ’i’ and ’d’ and not over
the number of elements ’NE’. The above generated array of matrices ’coord’
serves as an input argument of the function

[dphi,jac] = phider(coord,IP,’P1’);

which provides derivatives of all shape functions defined on every tetrahedron
and collected in an array of matrices ’dphi’. The size of ’dphi’ is

3× 4× 1×NE,

which means that 3 partial derivatives of 4 linear basic functions defined on each
tetrahedron are computed in one integration point. It is clear that the gradient
of a linear basic function is a constant function and only one integration point is
sufficient for an exact integration. The integration point ’IP’ is declared globally

IP=[1/4 1/4 1/4]’;

as the center of mass of the reference tetrahedron with vertices (0, 0, 0), (1, 0, 0),
(0, 1, 0), (0, 0, 1). Obviously, an implementation of higher order elements requires
more integration points, but it is feasible within this framework. Apart from
all derivatives, the determinant of the Jacobian matrix of the affine mapping
between the reference and the actual element is stored in an array of matrices
’jac’ and the command

volumes=abs(squeeze(jac))/6;

provides a column vector of ’NE’ elements containing volumes of all tetrahedral
elements. After the third redundant dimension of the array ’dphi’ is removed by

dphi = squeeze(dphi);

6 Talal Rahman and Jan Valdman

and a new array ’dphi’ is of a size 3× 4×NE, the global stiffness matrix ’K’ is
generated once by the command

K=sparse(X(:),Y(:),Z(:));

Here, arrays of matrices ’X’,’Y’,’Z’ are created by

Y=reshape(repmat(elements,1,4)’,4,4,NE);
X=permute(Y,[2 1 3]);
Z=astam(volumes’,amtam(dphi,dphi));

Note that new functions working on arrays of matrices are needed:

– amtam - it inputs two arrays of matrices A,B of the same size and outputs
the array of matrices C of the same size, such that

C(:, :, i) = A(:, :, i)′ ∗B(:, :, i) for all i

– astam - it inputs a vector a of the size ’NE’ and the matrix B and outputs
the array of matrices C of the same size as B, such that

C(:, :, i) = a(i) ∗B(:, :, i) for all i

Obviously, these functions are a part of a vectorization interface and are located
in a directory called ’library vectorization’. They have been implemented in a
vectorized way and will be further optimized.

4 Example: Linear elements for a scalar problem

Fig. 2. Tetrahedral mesh of unit cube containing 1296 tetrahedra and 343 vertices.

Fast MATLAB assembly of FEM matrices: nodal elements 7

refinement size of assembly of K assembly of M
level K and M time (sec) time (sec)

1 343 0,12 0,05
2 2.197 0,27 0,08
3 15.625 1,66 0,65
4 117.649 12,49 5,73
5 912.673 105,49 48,62
6 7.189.057 1.119,98 539,68

Table 1. 3D assembly of stiffness matrix K and mass matrix M using P1 tetrahedral
elements.

refinement size of assembly of K assembly of M
level K and M time (sec) time (sec)

6 12.545 0,24 0,10
7 49.665 0,87 0,52
8 197.633 4,12 2,82
9 788.481 17,20 13,75

10 3.149.825 77,60 56,42
11 12.591.105 303,39 223,79
12 50.348.033 1.785,54 1.391,09

Table 2. 2D assembly of stiffness matrix K and mass matrix M using P1 triangular
elements.

We assume a 3D discretization of a unit cube depicted in Fig. 2 and consider
only linear nodal shape functions Φi. This is the simplest choice, but the proposed
technology works also for higher order shape functions. In discretization of second
order elliptic problems, we typically need to construct a stiffness matrix K and
a mass matrix M defined as

Kij =
∫
Ω

∇Φi · ∇Φj dx,

Mij =
∫
Ω

ΦiΦj dx,

where Ω is the domain of computation (the cube domain in this case) and ∇
denotes the gradient operator. There is one shape function per vertex, so the size
of K and M is equal to the total number of vertices. We assemble both matrices
for a sequence of nested meshes obtained by a uniform refinement in order to
study the asymptotic behavior of our approach.

Assembly times (in seconds) are shown in Table 1 and were obtained on
x4600-3.mis.mpg.de cluster (located at MPI MIS in Leipzig, Germany) with 256
Gb memory using one of 16 CPUs running on 2.8 GHz. We notice that the size
of the matrices increases after every refinement approximately by factor of 8,
and the time to assemble the matrices increases by approximately the same fac-
tor. This demonstrates an almost (linear) optimal time-scaling of our MATLAB

8 Talal Rahman and Jan Valdman

implementation.

The MATLAB software is available for testing at Matlab Central at http://
www.mathworks.com/matlabcentral/fileexchange/authors/37756 as a pack-
age ’Fast assembly of stiffness and matrices in finite element method’. It contains
two starting files:

start_assembly_P1_3D

and

start_assembly_P1_2D

The first file generates 3D results for Table 1 and the second file assembles the
matrices K and M for a 2D L-shaped geometry using linear nodal elements.
The performance is explained in Table 2. The matrix size increases after every
refinement approximately by the factor of 4 and the time to assemble the ma-
trices increases again by the same factor (with the exception of the last level,
where the time factor is higher). Later, we plan to implement quadratic nodal
elements in both 2D and 3D. Application of matrices K and M to numerical
approximation of Friedrichs’ constant in theory of Sobolev spaces is explained
in paper [9].

5 Example: extension to linear elasticity

refinement size of assembly storage of sparse total storage of
level K time (sec) matrix K (MB) X,Y,Z (MB)

1 1.029 0,27 0,54 4,27
2 6.591 2,56 3,84 34,17
3 46.875 23,71 29,22 273,38
4 352.947 201,75 227,48 2.187,00
5 2.738.019 1.838,54 1.795,66 17.496,00

Table 3. 3D assembly of elastic stiffness matrix K using P1 tetrahedral elements.

Ideas for the scalar problem explained in the last section can be easily ex-
tended to a vector problem such as the linear elasticity problem. Our implemen-
tation is directly based on ideas from [2] and allows for vectorized implementa-
tion of the software provided there. Here we only discuss the generation of the
stiffness matrix K,

Kij =
∫
Ω

ε(ηi) : Cε(ηj) dx,

http://www.mathworks.com/matlabcentral/fileexchange/authors/37756
http://www.mathworks.com/matlabcentral/fileexchange/authors/37756

Fast MATLAB assembly of FEM matrices: nodal elements 9

refinement size of assembly storage of sparse total storage of
level K time (sec) matrix K (MB) X,Y,Z (MB)

6 25.090 1,44 4,74 20,25
7 99.330 4,99 18,85 81,00
8 395.266 23,54 75,20 324,00
9 1.576.962 90,18 300,41 1.296,00

10 6.299.650 381,54 1.200,81 5.184,00
11 25.182.210 1.598,47 4.801,62 20.736,00

Table 4. 2D assembly of elastic stiffness matrix K using P1 triangular elements.

for linear elements on a tetrahedra mesh. Displacement of any tetrahedral node
is described by 3 degrees of freedom, so the displacement basis functions are
vector functions of the form

η1 = (φ1, 0, 0), η2 = (0, φ1, 0), η3 = (0, 0, φ1),
η4 = (φ2, 0, 0), η5 = (0, φ2, 0), η6 = (0, 0, φ2),

etc.

The ε represents a linearized strain tensor

ε(u) = (∇u+ (∇u)T)/2,

where u is a piecewise linear vector function expressed as the linear combination
of the functions η1,η2, An elasticity operator C corresponds to the linear
Hook’s law σ = Cε(u), where σ is the stress tensor and C can be expressed in
terms of the Lamé parameters λ and µ.

The vectorization of the code

fem_lame3d

from [2] is straightforward. The strain tensors will be now stored in an array of
matrices

R=zeros(6,12,NE);
R([1,4,5],1:3:10,:)=dphi;
R([4,2,6],2:3:11,:)=dphi;
R([5,6,3],3:3:12,:)=dphi;

where ’dphi’ is generated for the scalar problem in section 4. With the elasticity
matrix at hand

C=mu*diag([2 2 2 1 1 1]) + lambda*kron([1 0; 0 0],ones(3));

the global stiffness matrix will be generated again by

K=sparse(X(:),Y(:),Z(:));

10 Talal Rahman and Jan Valdman

where arrays of matrices ’X’,’Y’,’Z’ are created by

Y=reshape(repmat(Elements,1,12)’,12,12,NE);
X=permute(Y,[2 1 3]);
Z=astam(volumes’,amtam(R,smamt(C,permute(R,[2 1 3]))));

Note that a new matrix

Elements=3*elements(:,kron(1:4,[1 1 1]))...
-kron(ones(NE,1),kron([1 1 1 1],[2 1 0]));

provides a local-global nodes numbering for the vector problem. In addition to
the function ’amtam’ and ’astam’ used in the scalar problem, a new function
from the directory ’library vectorization’ is needed:

– smamt - it inputs a matrix A and an array of matrices B, and outputs the
array of matrices C, such that

C(:, :, i) = A ∗B(:, :, i)′ for all i

The performance of our vectorized approach can be tested by running the file

start_assembly_P1_3D_elasticity

For the convenience, a 2D implementation has also been included in the file

start_assembly_P1_2D_elasticity

Tables 3 and 4 demonstrate again a proper (linear) scalability with respect to
the time. We also provide memory requirements for the total storage of all three
arrays of matrices X,Y, Z and for the stiffness matrix K after the asembly using
the ’sparse’ command. Note that X,Y are integer arrays and Z is a double array
with the same dimension equal number of elements ’NE’ times the size of the
local stiffness matrix which is 6 x 6 (12 x 12) in 2D (3D) for linear elasticity using
linear nodal elements on triangles (tetrahedra). In our benchmarks, the memory
needed to store X,Y, Z is about 5 times larger in 2D and about 10 times larger
in 3D. This is a typical redundancy for FEM assembling procedures drive and
and it can not be avoided in other C or Fortran based implementations that
compute all local (stiffness of mass) matrices at once.

Possible extensions in future:

We are primarily interested in extending the functionality of our code to nodal
rectangular elements in 2D and hexahedral elements in 3D. Another focus will
be nonnodal elements such as Raviart–Thomas Elements from Hdiv spaces for
mixed formulations and Nedelec elements from Hcurl space for computations of
Maxwell equations.

Acknowledgments. The second author would like to express his thanks to
Max Planck Institute for Mathematics in the Sciences (MPI MIS) for providing
computer resources during his stay in Leipzig in 2011.

Fast MATLAB assembly of FEM matrices: nodal elements 11

References

1. J. Alberty, C. Carstensen, and S. A. Funken: Remarks around 50 lines of Matlab:
short finite element implementation, Numer. Algorithms, 1999, 20, 117-137.

2. J. Alberty, C. Carstensen, S. A. Funken, and R. Klose: Matlab implementation of
the finite element method in elasticity, Computing, 2002, 69, 236-263.

3. S. Funken, D. Praetorius, P. Wissgott: Efficient implementation of adaptive P1-
FEM in MATLAB, ASC Report 19/2008, Institute for Analysis and Scientific
Computing, Vienna University of Technology, Wien, 2008.

4. M. S. Gockenbach: Understanding And Implementing the Finite Element Method,
SIAM, 2006.

5. J. Koko: Vectorized matlab codes for linear two-dimensional elasticity, Scientific
Programming, 2007, 15(3), 157-172.

6. P.-O. Persson, and G. Strang: A simple mesh generation in Matlab, SIAM Rev.,
2004, 42, 329-345.

7. T. Rahman: SERF2D-MatLab (Ver 1.1) - Documentation, University of Augsburg,
2003.

8. I. M. Smith and D. V. Griffiths: Programming the Finite Element Method, 4th ed.,
John Wiley & Sons, 2004.

9. J. Valdman: Minimization of Functional Majorant in A Posteriori Error Analy-
sis based on H(div) Multigrid-Preconditioned CG Method, Advances in Numerical
Analysis, vol. 2009, Article ID 164519 (2009).

	Fast MATLAB assembly of FEM matrices in 2D and 3D: nodal elements
	Introduction
	Example of non-vectorized and vectorized code: areas and volumes computation
	A concept of vectorization
	Example: Linear elements for a scalar problem
	Example: extension to linear elasticity

